Skip to main content

Full text of "The metallurgists and chemists' handbook; a reference book of tables and data for the student and metallurgist"

See other formats


K. 

m 

irfJHt* 
IStttts 

Arrrs^unt  X 

~X 

-X 

On 


THE 

METALLURGISTS  AND  CHEMISTS' 
HANDBOOK 


iiiwinrMritiinimiiiiimitiiiiiiiiiffliiiinniiHiiiiiiiiiiMiriiiiniiiiiiiiHitiiiiiiiiiiirMiiiiiiiimiiiiniii^ 


yke  QrawJJillBook  &  Jne 

PbSLISHERS     OFaOOKS      FO  B^^ 

Coal  Age  -^  Electric  Railway  Journal 
Electrical  World  v  Engineering  Kews-Record 
American  Machinist  v  inoenicn'a  Internacional 
Engineering 8 Mining  Journal  "^  Power 
Chemical  6  Metallurgical  Engineering 
Electrical  Merchandising 


limiiiiimiiniunHiiiMiiilinnnniiiiiiiiinniiiiuimiiiHiiiiniHuiiiiiHiiiiiiHnmnHiiiiiHi 


THE 

METALLURGISTS 

AND 

CHEMISTS'  HANDBOOK 

A  REFERENCE  BOOK  OF  TABLES  AND 

DATA  FOR  THE  STUDENT  AND 

METALLURGIST 


COMPILED   BY 

DONALD  M.  LIDDELI      .," 

OAl>TAIN,    SIG.    R.    C,   A.    S.;   CHIEF    ENGINEER,    WAR    CREDITS  BOARD 
CONSULTING    METALLURGICAL   ENGINEER,  AND  SOMETIME  MAN- 
AGING EDITOR  OF  The  Engineering  and  Mining  Journal 


Second   Edition 

Revised  and  Enlarged 

.Second  Impression 


McGRAW-HILL  BOOK  COMPANY,  Inc. 
239  WEST  39TH  STREET.     NEW  YORK 


LONDON:  HILL  PUBLISHING  CO.,  Ltd. 

6   &   8  BOUVERIE   ST.,   E.   C. 

1918 


Coi'yRIGHT,    1916,    1918,   BY   THK         * 

McGr'aw-Hill  Book  Company,  Inc. 


THK     MAl'I->:     HBKKK     VORK     PA. 


PREFACE  TO  SECOND  EDITION 


lu  preparing  the  second  edition  of  the  "Metallurgists  and 
Chemists'  Handbook"  there  has  been  no  change  from  the  plan 
originally  adopted,  and  the  additions,  in  the  main,  have  been 
largely  those  bearing  on  war  activities,  such  as  additional 
information  on  alloys  and  toxic  gases.  Unfortunately  much 
that  I  should  like  to  print  on  these  subjects  is  at  present  for- 
bidden ground.  A  short  chapter  has  also  been  added  on 
"Organic  Chemistrj^, "  and  an  attempt  made  to  present  the 
new  concepts  concerning  the  constitution  of  matter. 

Thanks  are  due  to  the  many  friends  who  have  pointed  out 
the  defects  of  the  first  edition.  Among  these  I  feel  most 
indebted  to  are  Dr.  Colin  G.  Fink  for  notefi  on  the"  Constants  of 
tungsten;  B.  A.  Robinson  for  a  careful  rfevie_w 'of  practically 
the  entire  book;  and  Dr.  Robert  B.  Sosrcaii  for  notes  on  the 
carbonates  and  silicates.  • 

DoXALli  M!  LiDDELL. 

Washingtox,  D.  C, 
AprU  15,  1918. 


PREFACE  TO  FIRST  EDITION 

This  book  is  but  little  more  than  a  collection  of  tables — those 
which  my  own  experience  and  the  requests  from  the  readers  of 
the  Engineering  and  Mining  Journal  have  led  me  to  believe 
are  most  necessary  to  the  chemist  and  metallurgist.  There  is 
no  lengthy  discussion  of  processes  or  apparatus.  The  field  of 
descriptive  metallurgy  is  at  present  too  crowded  by  the  monu- 
mental works  of  Schnabel,  Hofman,  Roberts-Austen  and  others, 
to  admit  of  further  competition.  Certain  sections  will  probably 
be  criticized  for  their  brevity,  but  these  treat  of  those  processes 
where  there  are  no  tables  of  constants,  and  the  matter  must 
either  be  descriptive  or  else  non-existent. 

In  the  preparation  of  these  tables  I  have  been  constantly 
struck  by  the  divergent  values  given  bj"  different  authorities 
for  the  same  constants.  While  space  has  usually'  prevented  my 
giving  the  names  of  the  experimenters  and  the  dates  of  their 
work,  I  have  attempted  to  exercise  some  discrimination  in  the 
choice  between  published  values,  taking  into  consideration  the 
experimenter  where  known,  and  so  far  as  available,  the  methods 
used,  and,  if  I  had  not  the  original  source,  the  general  character 
of  the  book  in  which  his  work  was  transcribed. 

Yet,  on  the  theorj^  of  probability  only,  the  choice  cannot 
always  have  been  a  happy  one.  Again,  apart  from  any 
reliability'  of  the  figures  as  I  have  found  or  chosen  them,  several 
years  of  sad  experience  have  demonstrated  the  fallibility  of 
compositors  and  proofreaders.  So  for  all  the  unknown  errors 
of  fact,  of  judgment  and  of  type  contained  herein,  I  herewith 
tender  apolog>'.  And  I  shall  therefore  take  it  as  a  favor  to  be 
advised  of  any  errors  which  the  reader  may  detect,  at  the  same 
time  asking  his  indulgence  concerning  them. 
•  Thanks  are  due  the  many  publishers  who  have  so  kindly 
allowed  copying  from  their  publications — who  they  are  can  be 
seen  from  the  footnote  credits  through  the  book.  I  must  also 
thank  the  friends  .who  have  aided  me  in  its  preparation: 
Dr.  Edward  Weston,  of  Elizabeth,  N.  J.,  and  W.  R.  Ingalls, 
H.  A.  Megraw  and  Percy  E.  Barbour,  of  the  Engineering  and 
Mining  Journal.  Mr.  IMegraw  contributed  nearly  all  the  data 
on  ore  dressing  and  cyanidation  and  Mr.  Barbour,  besides 
giving  some  valuable  data,  checked  the  page  proof  from  begin- 
ning to  end.  He  is  doubtless  the  only  man  beside  the  author 
who  will  ever  read  the  entire  book.  And  more  than .  all  is 
appreciation  due  for  the  many  hours  of  painstaking  work  by 
my  wife  in  compiling  and  checking  the  various  tables,  and  in 
reading  the  proofs. 

Donald  M.  Liddell. 
Elizabeth,  N.  J. 

February   11,  1916. 


CONTENTS 

Page 

PxtEFACE V 

Sec.         I.  Mathematics 1 

Sec.       II.  Price  and  Productiox  Statistics      ...  53 

Sec.     III.  Physical  Constants 75 

Sec.      IV.  Chemical  Data 2.39 

Sec.        V.  Sampling,  Assaying  and  Analysis 318 

Sec.      VI.  Ore  Dressing 355 

Sec.    VII.  Cyanidation 419 

Sec.  VIII.  Fuels  and  Refractories      429 

Sec.     IX.  Mechanical   Engineering    and   Construc- 
tion   456 

Sec.       X.  General  Metallurgy 491 

Sec.      XI.  Organic  Cheivhstry 625 

Sec.    XII.  First  Aid 632 

Index 641 


METALLURGISTS  AND  CHEMISTS' 
HANDBOOK 


SECTION  I 
MATHEMATICS 


SYMBOLS 


The  abbreviations  given  below  will  be  standard  in  this  book. 
It  has  been  attempted  to  make  them  conform  to  those  recom- 
mended by  the  International  Electrotechnical  Commission, 
and  the  current  practice  of  the  best  edited  chemical,  physical, 
and  mathematical  pubUcations. 

A      ampere  1;  work  (the  latter  also  represented  by  W) 

a      acceleration 

B      magnetic  flux  density 

B,  b  breadth 

C      coulombs;  electric  capacity;  Centigrade  temperature 

D      electrostatic  flux  density;  depth 

d      differential 

7      coefficient  of  adiabatic  expansion,  1.406  approx. 

A      heat;  increment 

d       partial  differential 

E,  e  electromotive  force;  lumens  per  cm.-,  foot  candles 

e      base  of  Napierian  logarithms  =  2.718281828459 

c      dielectric  constant 

F      factor  of  safety;  farad' 

/      frequency;  force;  coefficient  of  friction 

G      conductance 

g      acceleration  due  to  gravity  =  981  cm.  per  sec. 

H      magnetic  field;  henry i 

H,  h  height;  head     " 

J?      efficiency 

7,  i  current;  international  candle 

i      imaginary  square  root  of  —  1 ;  in  older  works,  amperes 

J      intensity   of  magnetization;  mechanical  equivalent   of 
heat,  the  joule^ 

K      susceptibility 

L      self  inductance;  lumen -second  or -hour 

I      length^ 
M      mutual  inductance 

•  Recommended  by  the  Internatiooal  Electrotechnical   Commission  for 
use  after  numerical  values. 
>  In  dimensional  equations,  tise  L,  M,  T,  for  length,  mass  and  time. 

1 


2        METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

m       mass^ 

M      permeability ;  coefficient  of  friction 

n      number  of  turns  in  unit  of  time 

01  angular  velocity,  ^r 

P  power;  pressure 

p  pressure 

IT  ratio  of  circumference  to  diameter  =  3.1415926535897 

Q  quantity  of  electricity 

R  resistance;  gas  constant 

r  radius 

p  resistivity 

S  reluctance 

2  summation    « 

T      absolute  temperature;  thickness;  period 

t      temperature,  time,^  thickness 

6,  «>  temperature  centigrade 
e      temperature  absolute 
V,  V  velocity,  volt' 
A'       reactance 
ir      weight;  energy;  watt* 
w      weight 

<f>      phase  displacement 
4>      magnetic  flux 
Z      impedance 

Mathematical  Symbols 

+     plus,  positive  Z     angle 

—     minus,  negative  O     parallelogram 

±     plus  or  minus  D     square 

=     equals  or  equal  to  O     circle 

o     equivalent  to  L     right  angle 

X     multiplied  by  ±     perpendicular  to 

-^     divided  by  ^  degree,  hour 

>     greater  than  '  minute,  foot 

<     less  than  "  second,  inch 

oc      varies  as  va  "n"throot 

([|  }]),    symbols   denoting  a"  "ri."th  power 

numbers  enclosed  are  con-  S  summation 

sidered  as  one  expression  ^-^  cycle 

A     triangle  A  increment 

X       ratio     of     circumference  y  integral 

to  diameter  d  partial  differential 

log  logarithm  =  identical 

logn  log  to  base  "n"  =  approaches 

,         J    a       c       .     ^     ,  00  infinity 
a:o::c  :d,  r  =  -„  a  is  to  o  as 
^       ^      CIS  tod 

1  Recommended  by  the  International  Electrotecbnical  Commission  for  uae 
after  numerical  values. 
*In  dimensional  equations,  uae  L,  M ,  T.  for  length,  ma.<;s  and  time. 


MATHEMATICS 


Trigonometric  Abbreviations 


sin      sine 

tan 

tangent 

cos     cosine 

cot 

cotangent 

sec      secant 

versin 

versed  sine 

CSC      cosecant 

covers 

coversed  sine 

1 

sin~i0  angle  whose 

sine 

is  $             sin  6~^ 

sin  d 

The 

Greek  Alphabet 

A.  a  alpha 

1,1  iota 

P,p  rho 

h,ii  beta 

K,K  kappa 

S,s,(7  sigma 

r,7  gamma 

A,X  lambda 

T,r  tau 

A,6  delta 

M,/i  mu 

T,u  upsilon 

E.e  epsilon 

N,;/  nu 

4>.<^  phi 

Z,f  zeta 

r.^xi 

X,x  chi 

H,J7  eta 

0,0  omicron 

*,i^  psi 

e,e,d  theta 

n,7r  pi 

fi,«  omega 

Mathematical  Constants 


e  =.2.718281828459045 

3.55  ,  . 

T  =  jY^  (approx.). 

TT  =  3.14159265358979 
Vtt    =  1.772 
7r2  =  9.8696 

-  =  0.5642 


log  JO  =  0.434294 
299 
«  =  T77>  (approx.). 


log  TT 
logeX 
1 


110 
0.4971499 
2.302585  logiox 

0.10132 


-s/.S  =  1 .  4422509 
\/5  =  2.2360680 
^5  =  1.709621 


V2  =  1.4142136 
'^=  1.2599210 
■^.5  =  0.7937002 
a/3  =  1 . 7320508 

Temperature  Reduction 
The  Fahrenheit  scale  is  based  on  212°  as  the  boiling  point  of 
water  at  normal  pressure,  32°  as  the  freezing  point.     Its  zero 
was  formerly  supposed  to  be  the  lowest  temperature  attainable 
artificially. 

The  Centigrade  (Celsius)  scale  assumes  the  freezing  point  of 
water  as  being  0°,  the  boiling  point  under  normal  pressure 
as  100°. 

The  Reaumur  scale  assumes  the  freezing  point  of  water  as 
0°,  the  boiling  point  of  water  as  80°. 

^0  C.°  =  R.°  ;i%  R.°  =  C.° 
%(F°  -  32)  =  C.°. ;  %  C.°  +  32  =  F.° 
^(F.°  -  32)  =  R.°  ;  %  R.°  +  32  =  F.° 

Units  of  Heat 
The  British  Thermal  Unit  (B.T.U.)  is  the  quantity  of  heat 
required  to  raise  the  temperature  of  1  lb.  of  water  1°F.,  at  or 
near  its  maximum  density  (39.1°F.). 


4        MET.\LLURG1STS  AND  CHEMISTS'  HANDBOOK 

The  calorie  (cal.)  is  the  quantity  of  heat  necessary  to  raise 
the  temperature  of  1  gram  of  water  from  10°C.  to  11°C.  (some- 
times also  defined  as  "from  4°C.  to  5°C.,"  less  commonly  still, 
from  "0=C.  to  1°C." 

The  kilogram-calorie  (Cal.)  is  1000  times  the  above. 

The  pound-calorie  is  the  quantity  of  heat  necessary  to  raise 
the  temperature  of  1  lb.  of  water  1°C.  (usually  from  4°C.  to 
5°C  ) 

1.0  Cal.     =  3.968  B.T.U.  =  2.2046  Ib.-cal. 
1.0  B.T.U.  =  0.252  Cal.  =  778  ft.-lb. 
1  Ib.-Cal.  =  %  B.T.U.  =  0.4536  Cal. 

Latent  heat  of  a  substance  is  the  number  of  calories  required 
t)  be  absorbed  to  change  1  gram  of  the  substance  from  a  solid 
to  a  liquid  or  a  liquid  to  a  gas,  without  change  of  temperature. 
An  equal  quantity  is  given  out  when  the  reverse  change  takes 
place. 

Specific  heat  of  a  .substance  is  the  ratio  of  the  quantities 
of  heat  necessary  to  raise  the  temperature  of  equal  masses 
(if  the  substance  and  of  water  from  the  same  to  the  same 
temperatures. 

The  equivalent  points  on  the  different  scales  are 
0.0°  C  =         0.0°  R. 

-  40.0°  C  =  -  40.0°  F. 

-  25 . 6°  R  =  -  25 . 6°  F. 

Scale  of  Temperatures  by  Color  of  Iron^ 
Dark  red— hardly  visible     970°F.     Orange  2000°F. 

Dull  red  1300°F.     Yellow  2150°F. 

Cherrv— dark  1450°F.     White  heat  2350°F. 

Cherrv— red  1650°F.     White  welding      2600'F. 

Cherry— light  1800°F.     White— dazzling  2800°F. 

Standard  Thermometric  Points^ 

Ice  melts                        0.0'C.  Zinc  solidifies  419. 4°C. 

Water  boils                 100. 0°C.  Sulphur  boils  444. 7°C. 

Aniline  boils  184. 1°C.  Antimonv solidifies  630. 7°C. 

Naphth;ilene  boils     218. 0°C.  Sodium  chloride 

Tin  solidifies               231. 9°C.           solidifies  801. 0°C. 

Benzophenone  boils  306. 0°C.  Silver  sohdifies  960. 5°C. 

Lead  solidifies             327. 4°C.  Copper  solidifies  1083. 0°C. 

Weights  and  Measures 
Linear  Measure — English 
12  in.  =  1  ft. 
3  ft.  =  1  yd. 
b^i  vd.  or  lej^ft.  =  1  rod  or  perch. 
320  rods,  1760  yd.,  5280  ft.  =  1  mile. 
.Also  a  number  of  miscellaneous  units,  some  of  which  are  obso- 
lete, or  obsolescent,  others  are  used  by  certain  trades  only. 

1  For  tables  of  melting  points,  see  pp.  140,  216,  254  and  452.  For  Se«;er- 
cone  data  see  p.  450. 

»  Afcording  to  the  National  Physical  Laboratory. 


MATHEMATICS  5 

A  point  =  M2  in. 

A  line  =  H2  in- 

A  barleycorn  =  3-^  in. 

A  palm  =  3  in. 

A  hand  =  4  in. 

A  span  =  9  in. 

A  cubit  =  18  in. 

A  military  pace  =  30  in. 

A  link  =  Koo  chain 

A  knot  (nautical  mile)  =  6086  ft. 

A  fathom  =  6  ft.  (United  States) 

A  fathom  =  6.08  ft.  (British) 

1  ell  (English)  =  45  in. 

1  ell  (Dutch)  =  1 .  094  yd. 

1  bolt  =  40  yd. 

A  chain  =  4  rods  (66  ft.)  =  20.11684  meters 

A  furlong  =  }4  ™ile 

A  league  =  3  knots 

A  cable  length  =  120  fathoms  (United  States) 

A  cable  length  =608  ft.  (British) 
An  International  Geographical  mile  =  3^5°  ^t  equator  = 

24,350.3  ft. 
A  British  nautical  mile  =    6,080.4  ft. 

Linear  Measure — French^ 
10  millimeters  =  1  centimeter    10  dekameters    =  1  hektometer 
10  centimeters  =  1  decimeter     10  hektometers  =  1  kilometer 
10  decimeters   =  1  meter  10  kilometers     =  1  myriameter. 

10  meters  =  1  dekameter 

A  micron  is  Hooo  mm. ;  a  millimicron  =  Hooo  micron; 
1  angstrom  unit  =  Ho  millimicron 

Conversion  Table,  Linear  Measure- 

lin.    =2.540005  cm.         1  cm.  =    0.3937000  in. 

1  ft.    =  0 .  3048006  m.         1  m.     =  39 .  37000  in.  =  3 .  28083  ft. 

1  yd.  =  0.9144018  ra.         1  m.     =    1 . 09361  yd.  =  0 . 00062  mi. 

1  mi.  =  1 .  609347  km.         1  km.  =    0. 62137  mi.  =  3280. 83  ft. 

The  old  French  measures  and  their  equivalents  are : 

1  toise  =  1 .9490366  m.  1  pouce  =  2. 706995  cm. 

1  pied  =0.3248394  m.  1  ligne    =  0.225583  cm. 

1  toise  =  6  pieds  =  72  pouces  =  864  lignes 

*  The  decimeter,  dekameter,  hektometer  and  myriameter  are  seldom  used 
as  compared  with  the  other  measures.  When  the  metric  system  was  de- 
vised the  meter  was  supposed  to  be  one  ten-millionth  part  of  the  quadrant 
of  the  earth's  surface.  However,  owing  to  inaccuracies  of  measurement,  this 
is  only  approximately  true,  and  the  meter  must  be  defined  as  the  length  of 
a  standard  bar  of  platinum  kept  in  Paris,  when  measured  at  a  temperature 
of  zero  dei;rees  centigrade. 

2  The  foot  is  defined  by  United  States  law  as  being  s**)?^ 93  7  meters. 
Therefore  in  the  United  States  1  meter  =  39.37  in.  exactly.  The  British 
equivalent  is,  however,  1  m.  =-  39.370113  in.  Apparently  the  British  inch 
and  the  American  inch  were  intended  to  be  equivalent,  but  are  not,  though  I 
nave  never  heard  of  any  notice  being  taken  of  this  fact  in  commercial  trans- 
actions. The  value  1  meter  =  39  .37  in.  has  been  used  in  all  equivalents  in 
this  book. 


C        iMETALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Square  Measure — English 

144  sq.  in.  =  1  sq.  ft. 

9  sq.  ft.  =  1  sq.  yd. 
30.25  sq.  vd.\  ,  , 

272.25  sq.ft.  /  =lsq-rod 

160  sq.  rd.  ] 

10  sq.  ch.  I  1  „„,^ 

4  roods    f        =lacre 
43,560  sq.  ft.  J 

640  acres  =  1  sq.  mi. 

A  square  of  flooring  or  roofing  =  100  sq.  ft. 

A  section  of  land  =  1  mi.  sq. 

A  township  =  36  sq.  mi. 

A  board  foot  =  1  ft.  square  X  1  in.  thick 

Square  Measure — French 

100  sq.  mm.  =  1  sq.  cm. 

100  sq.  cm.  =  1  sq.  dm. 

100  sq.  dm.  =  1  sq.  m.  (centar) 

100  sq.  m.  =1  sq.  dekameter  or  ar 

100  sq.  dekameters  =  1  sq.  hcktometer  (hektar) 

lOOsq.hektometcrs  =  1  sq.  kilometer 

Conversion  Table,  Square  Measure 

1  centar  (1  sq.  m.)  =  1550  sq.  in.  =  10.764  sq.  ft. 

1  ar  =  119.6  sq.  yd. 

1  hectar  =  2.47104  acres.  1  acre  =  0.40469 hektar 

1  sq.  cm.       =  1.5500  sq.  in.  1  sq.  in.    =  6.4516  sq.  cm. 

1  sq.  meter  =  10.76387  sq.  ft.         1  sq.  ft.    =  0.092903  .sq.  m. 

1  sq.  km.      =  0.3861  sq.  mi.  1  sq.  mi.  =  2.589998  sq.  km. 

Cubic  Measure — English^ 

1728  cu.  in    =  1  cu.  ft. 

27  cu.  ft.   =  1  cu.  yd. 

128  cu.  ft    =1  cord 

50  cu.  ft.  of  square  timber  =  1  load 

40  cu.  ft.  of  unhewn  timber  =  1  load 

A  board  foot  =  1  ft.  square  X  1  in.  thick 

Weight — English 
Avoirdupois 

16  drams  (dr.)  =  1  ounce  (oz.) 
16  oz.  =  1  pound  (lb.) 

100  lb.  =  1  hundred-weight  (cwt.) 

20  cwt.  =  1  ton 

Troy 
24  grains  =  1  pennyweight  (dwt.) 
20  dwt.      =  1  oz.  Tr. 
12  oz.  Tr.  =  1  lb.  Tr. 
>  For  French  cubic  equivalents  see  under  "Measures  of  Capacity,"  p.  9. 


MATHEMATICS 


The  Avoirdupois  pound  =  7000    grains  =  14.5833  oz.  Tr. 
The  Troy  pound  =  5760    grains  =  13. 1657  oz.  Avoir, 

The  Avoirdupois  ounce    =  437.5  grains  =  0.9115  oz.  Tr. 
1  ton  =  29,166.66  oz.  Tr. 

1  ton  =  0.89287  long  ton 

1  long  ton  =  1.12  short  tons  =  2240  lb. 
(Troy  weight  is  used  in  weighing  gold,  silver,  platinum,  etc. 
In  weighing  precious  stones  the  metric  carat  =  200  mg.,  is 
now  used.) 

1  barrel  of  flour         =      8  sacks  =  196  lb. 

1  barrel  of  pork         =  200  lb. 

1  barrel  of  cement     =      4  sacks  =  376  lb. 


10  milligrams 
10  decigrams 
10  dekagrams 


Weights- 

=  1  centigram 

=  1  gram 

=  1  hectogram 


-French 

10  centigrams    =  1  decigram 
10  grams  =  1  dekagram 

10  hectograms  =  1  kilogram^ 


100  kilograms  =  1  metric  quintal 
1000  kilograms  =  1  metric  ton  (tonne)  or  millier 

Conversion  Table,  Weight 

1  oz.  avoir.  =    28.34953  grams 

1  lb.  avoir.  =  453.59  grams 

1  ton  =  907 .  18  kg. 

1  gram  =  0.035274  oz.  avoir.  =  0.00220  lb. 

1  kg.  =  35.27393  oz.  avoir.  =  2.2046223  lb. 

1  metric  ton  =  1. 102311  tons  =  0.9842  long  tons 

1  grain  =  64.799  mg. 

Idwt.  =     1.55517  g. 

1  oz.  Troy  =31. 1035  g. 

lib.  Troy  =    0.37324kg. 

1  gram  =  15.4324  gr.  =  0.64301  dwt. 

1  mg.  =    0.64301  dwt.  =  0.03215  oz.  Tr, 

1  kg.  =  32 .  15074  oz.  Tr.  =  2 .  67923  lb.  Tr, 

The  libra  used  in  Spain,  Portugal  and  Spanish  America 
differs  slightly  from  the  U.  S.  pound,  ranging  from  1.012  in 
Portugal  and  Brazil  to  1.016  in  Cuba  and  Porto  Rico. 

The  Assay  Ton, — A  weight  used  by  assayer  such  that  1  ton 
(2000  lb.)  :  1  oz.  Tr. : :  1  A.T. :  1  mg.;  i.e.,  if  the  assayer  weighs 

*  When  the  metric  system  was  devised,  it  was  intended  that  1  gram 
should  equal  the  mass  of  1  cubic  centimeter  of  water  at  its  greatest  density 
(4°C.)  This  relation  does  not  exactly  hold,  and  it  is  necessary  to  define 
the  gram  as  the  one-thousandth  part  of  a  standard  mass  of  platinum  kept 
in  Paris.  At  4°C.  the  mass  of  1  cc.  of  water  differs  so  slightly  from  unity 
that  for  nearly  all  calculations  no  correction  is  necessary.  A  liter  was  in- 
tended to  be  equal  to  1000  cc.  but  was  detined  as  the  volume  occupied  by  a 
kilogram  of  water  at  4°C.  and  760  mm.  pressure.  It  is  therefore  equivalent 
to  1000 .  027  CO.  (de  Lepinay,  Benoit  and  Buisson.) 


8        MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOJ<: 

out  assay  tons,  each  milligram  of  metal  recovered  represents 
1  Trov  oz. 

1  A.T.  =  29.16667  grams 
On  the  English  system,  ton  of  2240  lb. 

1  A.T.  =  32.66667  grams 

Apothecaries  Weight 
20  grains  =  1  scruple  O) 

3  9  =1  dram  (3) 

8  3  =1  ounce  (5) 

12  5  =1  lb.  Tr. 

Apothecaries  Measure 
60  minims  (ITl)  =  1  dram 
8  drams  =1  fluid  ounce 

16  fl.  oz.  =  1  pt. 

The  apothecaries  grain  is  equal  to  the  Troy  grain;  the  scruple 
to  %  of  the  pennyweight. 

1  gr.  =  64.799  mg.  1  S         =  1295.98  mg. 

1  3    =  3887.94  mg.  1  fl.  oz.  =  29.5729  milUliters 

1  milliliter  (1  c.c.)  =  0.3381  fl.  oz. 

Measures  of  Capacity — English 

Dry  Liquid 

2  pt.    =1  qt.  4  gills  =  1  pt. 

8  qt.    =1  peck  2  pt.     =1  qt. 

4  pk.  =  1  bushel  4  qt.     =1  gal. 

311^  gal.  =  1  barrel  (bbl.)  U.  S. 

2      bbl.  =  1  hogshead  (hhd.) 

2      hhd.  =  1  pipe 

42      gal.  =  1  bbl.  (Standard  Oil  Co.),  formerly 

a  tierce 
84      gal.  (2  tierces)  =  1  puncheon 

A  liquid  gallon  (U.  S.)  contains    231 .0      cu.  in. 
An  Imperial  gallon        contains    277.408  cu.  in.^ 
A  bushel  (U.  S.)  contains  2150.42    cu.  in. 

An  Imperial  bushel        contains  2218. 192  cu.  in.^ 
A  quarter  contains  8  Imperial  bu. 

Note. — It  can  be  seen  that  the  dry  quart  contains  673-^ 
cu.  in.,  while  the  liquid  quart  contains  only  57^  cu.  in.  There 
is  therefore  no  royal  road  to  reducing  dry  measures  to  wet 
equivalents,  though  the  ratio  is  about  1  :  IJ  (1. 16364). 

1  Imperial  gal.         =  1 .  20094  U.  S.  gal. 

1  U.  S.  gal.  =  0.83268  Imp.  gal. 

1  Imp.  bu.  =  1.03151  U.  S.  bu. 

1  U.  S.  bu.  =  0.96945  Imp.  bu. 

1  gal.  (ale  or  beer)  =  1 .2208  U.  S.  gal. 

»  Sometimee  given  277.274. 
»  Sometimes  given  2219.28. 


MATHEMATICS 


Grains  per  U.  S.  gal.  X  17. 138  =  parts  per  million 

Grains  per  Imp.  gal.  X  14.285  =  parts  per  million 

Parts  per  million         X  0.0583  =  grains  per  U.  S.  gal. 

Parts  per  million         X  0 .  700  =  grains  per  Imp.  gal. 

Measures  of  Capacity — French 
1000  cu.  mm.  =  1  c.c. 
1000  c.c.  =  1  cu.  dm.  (liter) 

1000  cu.  dm.   =  1  cu.  m. 
In  measuring  wood,  the  cubic  meter  is  called  a  ster. 
10  milliliters   =  1  centiliter 
10  centiliters  =  1  deciliter 
10  deciliters    =  1  liter 
10  liters  =  1  dekaliter 

10  dekaliters  =  1  hectoliter 
10  hectoliters  =  1  kiloliter 

Conversion  Tables,  Cubic  Measiure 
1  cu.  in.    =  16.38720  c.c. 

1  c.c.         =    0.06102338  cu.  in.  =  0.0000353  cu.  ft. 
1  cu.  ft.     =    0.028317  cu.  m. 
1  cu.  m.    =  35.31445  cu.  ft.  =  1 .30794  cu.  yd. 
1  cu.  yd.   =    0.764559  cu.  m. 

Liquid  Equivalents 

1  fl.  oz.  =  29 .  5729  milliliters 

1  milliliter  =  0.3381  fl.  oz.  =  0.061025  cu.  in. 

1  gill  =  1 .  1829  deciliters 

1  deciliter  =  0.8454  gills 

1  quart  =  0.94633  liters 

1  liter  =  1.0567  quarts. 

1  U.  S.  gal.  =  3.78533  liters 

1  dekaliter  =  2.6418  gal. 

Dry  Equivalents 

1  pt.  =  0.550599  liters 

1  deciliter  =  0.18162  pt. 

1  qt.  =  1.10120  liters 

inter       ■  =  0.90810  quarts 

1  pk.  =0.08810  hectoliter 

1  hectoliter  =  2.8378  bu. 

1  bu.  (U.  S.)  =  0.352.38  hectoliter 

1  kiloliter  =  1 .  3079  cu.  yd. 

Circular  and  Angular  Measure 
60  sec.  (")   =>  1  minute  (') 
60  min.  (')  =  1  degree  (°) 
360  deg.  (°)  =  1  circumference 
In  the  higher  mathematics  another  unit  is  used: 
2ir  radians  =  1  circumference 
.-.  1  radian  =  57.2957795°  =  57°  17'  44.806" 


10      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Time 
60  sec.  =  1  min.;  60  min.  =  1  hr.;  24  hr.  =  1  day 
365.242218  solar  days  =  1  year 
29  days  12  hr.  44  min.  =  1  lunar  month 
A  seconds   pendulum  =  39.138  in.  =  0.9958  meters  in  the 
latitude  of  New  York  at  sea  level. 


The  period  of  a  pendulum  is  ta /- 
acceleration  due  to  gravity. 


,  where  I  is  length,  and  g  the 


Miscellaneous 


20  units    =  1  score 
12  units    =  1  dozen 
12  dozen  =  1  gross 
12  gross    =  1  great  gross 
1  atmosphere  =  14.7  lb.  per  sq.  in.  =  29.922  in.  of  mercurv 
33.9  ft.  of  water 


24  sheets     =  1  quire 
20  quires      =  1  ream 
2  reams      =  1  bundle 
5  bundles  =  1  bale 


C.G.S.  Units 

The  unit  of  force  is  the  dyne.  It  is  that  force  which  applied 
to  a  mass  of  one  gram  will  give  it  an  acceleration  of  one  centi- 
meter in  one  second. 

The  unit  of  work  is  the  erg.  This  is  the  work  done  by  one 
erg  acting  through  a  distance  of  one  centimeter.  The  joule 
=10'  ergs. 

A  calorie  is  the  heat  necessary  to  raise  the  temperature  of 
1  gram  of  water  from  0°C.  to  1°C. 

A  great  calorie  (Calorie)  is  the  heat  necessary  to  raise  the 
temperature  of  1  kg.  of  water  from  0°C.  to  1°C. 


Unit 

Erg 

Joule 

Kilogram- 
meter 
(g.  =  981) 

Calorie 

Small 
calorie 

Erg 

1 
10' 

981.0X10' 
418.4X10' 

10-' 
1 

9.81 
4184 

1.019X10-' 
0.1019 

1 
426.5 

2.. 39011 

X10-" 

2.39011 

xio-« 

2.3446 

xio-' 

1 

2.39011 

xio-« 

2.39011 

Kilogram-meter 
(g.=981) 

Calorie 

xio-« 

2.3446 
1000 

The  unit  magnetic  mass  or  pole  is  such  that  placed  at  a 
distance  of  one  centimeter  from  an  identical  mass,  it  exercises 
a  repulsion  equal  to  1  dyne. 

The  permeabilitj-  is  the  ratio  of  flux  density  to  magnetic 
intensity. 

The  unit  of  electric  current  in  the  C.G.S.  system  is  a  current 
that  exerts  a  force  of  one  dyne  on  a  unit  magnetic  pole  placed 
at  the  center  of  an  arc  of  the  circuit,  1  cm.  long,  and  1  cni. 
radius.  The  practical  unit  is  the  ampere  (see  below),  which  is 
one-tenth  the  C.G.S.  unit. 


MATHEMATICS  1 1 

The  C.G.S.  unit  of  quantity  is  the  quantity  which  in  one 
second  is  conveyed  by  a  C.G.S.  unit  of  current.  The  practical 
unit  is  the  coulomb,  the  quantity  of  current  passing  per  second, 
in  a  current  carrying  one  ampere.  It  is  one-tenth  the  C.G.S. 
unit. 

The  C.G.S.  unit  of  potential  difference  or  electromotive 
force  is  the  potential  difference  which  exists  between  two  points 
of  a  conductor  conveying  a  unit  current  when  one  erg  of  work 
is  done  per  second.  The  practical  unit  is  the  volt  (see  below) 
=  108  X  the  C.G.S.  unit. 

The  C.G.S.  unit  of  resistance  is  the  resistance  possessed  by  a 
conductor  through  which  a  unit  e.m.f.  causes  a  unit  current  to 
flow.  The  practical  unit  is  the  ohm  (see  below)  =  10^  X  the 
C.G.S.  unit. 

The  C.G.S.  unit  of  capacity  of  a  condenser  is  that  capacity 
which  gives  a  unit  potential  difference  between  the  coatings 
when  either  coating  has  a  unit  quantity  of  electricity.  The 
farad  is  the  practical  unit  and  equals  10~^  times  the  C.G.S. 
unit. 

A  Gauss  is  the  unit  of  field  strength,  the  intensity  of  field 
which  acts  on  a  unit  pole  with  a  force  of  one  dyne.  A  unit 
magnetic  pole  has  47r  lines  of  force  proceeding  from  it.  It  is 
equal  to  gilberts  per  centimeter  length.  Gausses  =  maxwells 
-j-  area. 

A  Maxwell  is  the  unit  of  magnetic  flux,  the  amount  of  magne- 
tism passing  through  every  square  centimeter  of  a  field  of  unit 
densitJ^  The  weber  is  1,000,000  maxwells.  If  a  conductor 
cuts  a  magnetic  field  so  that  one  volt  is  induced,  100,000,000 
maxwells  are  cut  per  second. 

A  Gilbert  is  the  unit  of  magneto-motive  force,  the  amount 

produced  by  -p-  =  0.7958  ampere  turns.     The  m.m.f.  of  a  coil 
47r 

is  1.2566  times  the  ampere  turns.     <j>  =  flux  in  maxwells. 

Reluctance  is  that  quantity  in  a  magnetic  circuit  which  limits 
the  flux  under  a  given  m.m.f.  It  corresponds  to  the  resistance 
in  the  electric  circuit. 

The  Oersted  is  the  unit  of  magnetic  reluctance,  it  is  the 
reluctance  of  a  cubic  centimeter  of  an  air-pump  vacuum. 

Inductance  is  the  property  of  a  circuit  which  opposes  any 
change  in  current  flowing  by  inducing  a  counter-electromotive 
force  in  the  circuit  at  the  time  the  current  is  changing.  The 
practical  unit  is  the  henry  (see  below)  =  10^  X  the  C.G.S. 
unit. 

PRACTICAL  ELECTRICAL  UNITS 

Ohm — unit  of  resistance.  The  International  Ohm^  is  the 
resistance  offered  to  an  unvarying  electric  current  by  a  column 

'The  true  ohm  (  =  10'  electromagnetic  C.G.S.  units)  is  apparently  the 
resistance  of  106.29  cm.  of  mercury  1  sq.  mm.  in  section.  The  1884  legal 
ohm  =  0.9972  int'l.  ohms.     The  B.A.  ohm  =  0.9866  int'I.  ohm. 

A  joule  is  almost  equal  to  the  energy  expended  in  one  second  by  an 
international  ampere  in  an  international  ohm. 


12      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

of  mercury  at  O'C,  14.4521  grams  ia  mass,  of  a  constant  cross 
section,  and  of  a  length  of  106.3  cm. 

Coulomb — imit  of  quantity.  Equal  to  one  ampere  passinjf 
for  one  second. 

Ampere — unit  of  current.  The  International  Ampere  is 
the  unvarying  electric  current  which,  when  passed  through  a 
solution  of  nitrate  of  silver  in  water,  under  certain  specifications, 
deposits  silver  at  the  rate  of  0.00111800  grams  per  second. 

International  Volt — unit  of  pressure.  It  is  that  electrical 
pressure   which  will   steadily  produce  a  one-ampere  current 

through  a  one-ampere  resistance.     For  practical  use  it  is  y^oA 

of  the  e.m.f.  of  the  Clark  cell  at  15°C. 

International  Watt — unit  of  energj'.  It  is  the  energy  ex- 
pended per  second  by  an  unvarying  electric  current  of  one 
International  Ampere  under  an  electric  pressure  of  an  Inter- 
national Volt. 

International  Farad — unit  of  capacity.  It  is  the  capacity 
of  a  conductor  which  is  charged  to  a  potential  of  one  volt  by 
one  coulomb  of  electricity. 

International  Henry — unit  of  inductance.  It  is  the  induct- 
ance in  the  circuit  when  the  e.m.f.  induced  in  the  circuit  is 
one  international  volt,  while  the  inducing  current  varies  at 
the  rate  of  one  international  ampere  per  second. 

Ohm's  Law. — Current  in  amperes  = 

Pressure  in  volts  ,       E 

or  /  = 


Resistance  in  ohms  R 

Power  in  watts  equals  energy  of  the  current  multiplied  by  the 
voltage. 

Direct  current — P  (watts  =  E  (volts)  X  /  (amperes) 
E^ 

Alternating  current — 
single-phase,  P  =      EI    X  Power  factor 
two-phase,      P  =  \/2EI  X  Power  factor  (line  values;  two 

wire) 

three-phase,  P  =  \/'6EI  X  Power    factor     Gine    values; 

three  wire) 

Units  of  Force 

1  poundal  =     13,825  dynes 

1  gram's  weight     =  981  dynes 

1  pound's  weight  =  444,518  dynes 

Work  and  Energy 

1  foot-pound  =  1.356  X  10' ergs  =  1.356 joules  =  0.1383 kilo- 
gram-meters 
1  watt  =  1  joule  per  second 

1  kilogram-meter  =  7 .  233  foot-pounds 


MATHEMATICS 


13 


Weight,  Force  or  Pressure,  Combined  with  Areas 

1  atmosphere  =  760  mm.  of  mercury  =  29.9212  in.  of  mercurv 
=  10  3329  m.  of  water  =  33 .  9006  ft.  of  water 
=  1 .  03329  kg.  per  sq.  cm.  =  14 .  6969  lb.  per  sq.  in. 

1  barie  =  1  dyne  per  sq.  cm.  =  0.00208870  lb.  per  sq.  ft. 

1  foot-pound  =  13.82.55  kg.  cm.  =  3.306  X  IQ-^cal. 

1  kg.  per  sq.  m.  =  14.2234  lb.  per  sq.  in. 

1  lb.  carbon  oxidized  to  CO2  =  14,544  heat  units. 

Table  of  Equivalent  Values  for  Power  Expressed  in 
Various  English  and  Metric  Units 


Watt        Kw. 


^o. 


per  seel   „  „„„  'per  sec. 
per  sec.; 


1      W  &  t  t     IB   1  I  i 

equal  to.  .  .  I      1.000;0.001000,0.00134;o. 00136 
1  kw.  is  equal 


to 1000.0 

1  English 
(and  Amer- 
ican) h.p. . . 

1  Continen- 
tal h.p 

1  kg.-m.  per 
sec 

1  ft.-lb.  per 
sec 

1  kg.-cal,  per 
sec 

1  B.t.u.  per 
sec 1055.0     1.055      |0.415     |0.422 


746.0 

735.0 

9.81 


1.000       1.34       1.36 


0.746      11.000    il.OlS 

0.735       0.985     ^1.000 

0.00981  0.0131  0.0133 
I 
1.356:0.00136  0.00182  0.00185 

4200.0  4.20    5.61   5.70 


0.102 
102.0 

76.0 
75.0 
1.000 
0.138 
427.0 
107.6 


0.737  0.000238  0.000947 
737.0  0.238   0.947 


550.0 

0.178 

0.707 

541.0 

0.175 

0.696 

7.233'o.00234 

0.00930 

1.000  0.0003240.00129 

3090.0    '1.000 

'3.968 

778.0 

0.252 

1.000 

Light — velocity  of.  299,583  km.  per  sec.  =  186,319  mi.  per  sec. 
Wave  length,  fed  light— 5  line— 0 .  000068702  cm. 
Wave  length,  violet  Ught— i?  line— 0 .  000039338  cm . 
Velocity  of  sound  in  drA-  air  =  1090\/l  -r  0.00367t°C.  ft.  per  sec. 

Some   Foreign   Weights   and   Measures   and   the   U.  S. 
Equivalents^ 

1  almude  f Portugal)  =  4 .  422  gal. 

1  arobe  (Paraguay)  =  25  lb. 

1  arroba,  dry  (Argentine)  =  25.3171  lb. 
1  arroba,  liquid  (Cuba,  Spain, 

Venezuela)  =4.263  gal. 

1  arshine  (Ru.ssia)  =  28  in. 

1  sq.  arshine  (Russia)  =  5.44  sq.  ft. 

1  baril  (Argentine,  Mexico)  =  20.079  gal. 

1  braca  (Brazil)  =  2.407  yards 

1  bu  (Japan)  =  0. 119305  in. 

1  candy  (India)  =  529  lb. 


>  "  Foreign  Weights,  Measures  and  Moneys 


By  John  J.  Macfarlane. 


14       METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


catty  (China.  Str.  Sett.) 

cattj'  (Japan) 

cattv  (Java) 

catty  (P.  1.) 

catty  (Sumatra) 

centaro  (Central  America) 

chih  (China) 

cho  (Japan) 

cuadra  (Argentine) 

dessiatine  (Russia) 

doli  (Russia) 

fanega  (Argentine) 

fen  (China) 

fen  (sq.)  (China) 

frasco  (Aigentine) 

funt  (Rufcsia) 

go  (Japan) 

hao  (China) 
sq.  hao  (China) 
jo  (Japan) 
ken  (Japan) 
kin  (Japan) 
koku  (Japan) 

kwan  (Japan) 
legua  (Brazil) 
h  (China) 
Hang  (China) 
lyi  (China) 

manzana  (Costa  Rica) 
marc  (Bolivia) 
maund  (Bengal) 
maund  (Bombay) 
maund  (Madras) 
meou  (China) 
mil  (Denmark) 
milla  (Nicaragua,  Honduras) 
momme  (Japan) 
pie  (Argentine) 
pie  (Spainj 
pikul  (Borneo,  Java) 
pikul  (China,  Str.  Sett.) 
pikul  (Japan) 
pikul  (F.  1.) 
pipa  (Brazil) 
pood  (Russia) 
pulgada  (Argentine) 
quintal  (Argentina) 
quintal   (Bolivia,   Chile,  Co- 
lombia, Domin.  Rep.,  Spain) 
1  quintal  (Brazil) 


1.3331b. 

1.323  1b. 

1.356  1b. 

1.39  1b. 

2.1181b. 

4.2631  gal. 

1.049867  ft. 

357.916  ft. 

4.2  acres 

2 .  6997  acres 

0 .  685  grains 

3.89  bu. 

0.12598  in. 

0.015181  acres 

2 .  5096  quarts 

0.9028  lb.  =  409  grams 

1.270.506  gill  Uquid  = 

0.0198517  peck  dry 

2.5715  ft. 

0.00015181  acres 

3.31404  yd. 

1.983427  yd. 

1.32277  1b.  Avoir. 

39.7033  gal.  hquid  = 

4.96291  bu.  dry 

8.26733  1b.  Avoir. 

4. 102  miles 

0.012598  in. 

1.31561  oz.  Avoir. 

0.0015181  acres 

1 . 625  acres 

0.507  1b. 

82 .  2855  lb. 

28  1b. 

25  1b. 

0.15181  acres 

4.68  mi. 

1.1493  miles 

2.4123045  dwt. 

0.9478  ft. 

0.91407  ft. 

135 .  63M  lb. 

133H  lb. 

132.277  1b. 

139.485  1b. 

1.648  quarts 

36.11281b. 

0.947  in. 

101.281b. 

101.4  1b. 
129.5261b. 


MATHEMATICS 


15 


1  quintal  (Costa  Rica) 

1  quintal  (Syria,  Turkey) 

1  ri  (Japan) 

1  ri  (marine)  (Japan) 

1  sagene  (Russia) 

1  sashen  (Russia) 

1  shaku  (Japan) 

1  sheng  (China) 

1  sho  (Japan) 

1  sun  (Japan) 

1  tan  (Japan) 

1  tch'e  (China) 

1  tchetvert  (Russia) 

1  to  (Japan) 

1  ts'onen  (China) 

1  tsubo  (Japan) 

1  vara  (Argentine) 

1  verchok  (Russia) 

1  verst  (Russia) 

1  zolotnik  (Russia)  • 


=  101.465  1b. 

=  125  lb. 

=  2.440338  mi. 

=  1 .  1506873  mi. 

=  7  ft. 

=  7  lb. 

=  11.9305424  in. 

=  2.7354  liq.  gal. 

=  1.5881325  qt.  liquid  = 

0.1985166  pecks  drv 
=  1.1930542  in. 
=  0 .  24507  acre 
=  12.598  in. 
=  117,600  sq.  ft. 
=  3.9703313  gal.  liquid 
=  1.2598  in. 
=  3.953829  sq.  yd. 
=  34. 1208  in. 
=  1.75  in. 
=  3,500  ft. 
=  658  grains 


UNITED  STATES  AND  FOREIGN  MONEY 

(The  following  figures  are  based  on  the  gold  standard  only 
and  do  not  include  e.xchange.) 


Argentina  Cgold) 

Argentina  (paper) 

Austria 

Bolivia 

Brazil 

Ceylon 

Chile 

China 

Columbian  Rep'b.    1  peso 

Costa  Rica  1  colon 

Denmark 

Ecuador 

Egypt 


1  peso 
1  peso 
1  krone 
1  boliviano 
1  milreis 
1  rupee 
1  peso 


=  SO. 9648  =  100  centavos 

=    0.4246  =  100  centavos 

=    0.20.3  =  100  holler 

=   0.3893  =  100  centavos 

=   0.5463  =  1000  reis 

=   0.32443  =  100  cents 

0.365  =  100  centavos 


1  Haikwan  tael  =  IW  oz.  avoir,  of  silver    =  10  mace 


=    1.00 
0.4654 
1  krone  =   0.268 

1  Sucre  =    0.4867 

1  pound  (£E)   =    4.943 


=  100  centavos 
=  100  centavos 
=  100  ore 
=  100  centavos 
=  100  piastres 


France 

Germany 

Great  Britain 

Greece 

Guatemala 

Haiti 

Honduras 

Hongkong 

Hungary 

India 

Italy 

Japan 

Mexico 

Netherlands 

Nicaragua 

Norway 

Panama 


1  franc 

1  mark 

1  pound  (£) 

1  drachma 

1  peso 

1  gourde 

1  peso 

1  dollar 

1  krone 

1  rupee  (Rs.) 

1  lira 

1  yen 

1  peso 

1  guilder 

1  peso 

1  krone 

1  balboa 


240  pence! 


1000  milliemes 

0.193  =  100  centimes 

0.238  =  100  pfennig 

4.8665  =  20  shillings   = 

C.193  =100  lepta 

0.965  =  100  centavos 

0.965  =  100  centimes 

0.3979  =  100  centavos 

0.463  =  100  cents  =  1000  cash 

0.2026  =  100  filler 

0.32443  =  16  annas  =  192  pies' 

0.193  =  100  centesimos 

0.498  =  100  sen  =  1000  rin 

0.498  =  100  centavos 

0.0402  =  100  cents 

0.965  =  100  centavos 

0.268  =  100  ore 

1 .  00  =2  silver  pesos 

200  centisinios 

4.8665  =  lOdinero  =  100  centavos 


Peru  1  libra  (£P) 

1  5  shillings  =  1  crown;  21  sh.  =  1  guinea;  4  farthings  = 

2  A  lakh  =  100,000  rupees;  a  crore  =  10,000,000  rupees. 


1  penny  (d.). 


16      MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


0.50  =  100  centavos 

1.08  =  1000  reis 

0.193  =  100  bani 

0.515  =  100  kopecks 

0.3978  =  100  centavo3 

0.193  =  100  centisinios 

0.5C77  =  100  cents 

0.268  =  100  ore 

4.40  =  100  piasters  =  4000  paraa 

1.0.342  =  100  centavos 

0.1930  =  lOOcentimos 


Philippine 

Is. 

1  peso 

Portugal 

1  milreis 

Roumania 

1  leu 

Russia 

1  ruble 

Salvador 

1  peso 

Spain 

1  peseta 

I 


Straits  Settlements  1  dollar 
Sweden  1  krona 

Turkey  1  pound  (£T) 

Uruguay  1  peso 

Veneiuela  1  bolivar 


COINAGE  STANDARDS* 


Country 


Gold 
coin 


Silver 
coin 


Country 


Gold 
coin 


Silver 
coin 


900 
900 
900. 


Abyssinia , 

Argentine 

Austria-Hungary 

Belgium 

Bolivia 

Brazil 

Bulgaria 

Canada 

Cevlon 

Chile 

China |.  .  . 

Colombia ]900 

Congo |900 

Corea 900 

Costa  Rica 1900 

Crete 900 

Curacao 

Cyprus 

Denmark. . . . 
Dominica.  .  . 
Dutch  East  Indies  I .  . . 

Ecuador 900 

Egypt ;875 

Finland j900 

France j900 

Germany 900 

Great  Britain 1916 

Greece |900 

Guatemala 900 

Hayti i900 

Holland 900 


900 


835 

900 

900,835 

900,835 

900 

916.6 

900,835 

925 

800 

500 

,866,820 

900,835 

900,835 

800 

900 

900,835 

640 


900.0,800,600,400 

900,835 

720 

900 

833.3 

868,750 

900,835 

900 

925 

900,835 

900,83.- 

900,835 

945,640 


Honduras 

Honduras  (British) 

Hongkong 

India 

Italy 

Japan 

Mauritius 

Mexico.^ 

Morocco 

Newfoundland. . .  . 

Nicaragua 

Norway 

Panama 

Paraguay 

Persia 

Peru 

Portugal 

Roumania 

Russia 

Salvador 

Servia 

Siam 

South  Africa 

Spain 

Sweden 

Straits  Settlements 

Switzerland 

Turkey 

United  States 

Uruguay 

Venezuela 


916.6 
900.0 
900.0 


916.6 


900 
925 
800 
916.6 
900,835 
800 
800 
902 . 7.800 
900,835 
925 
800 
1900.0  800,600,400 


ALGEBRA 
Powers  and  Roots 
According  to  the  binomial  theorem 

(a  +  6)^  =  a^  +  KaK-^h  +   ^^^  ~  ^^a^-'b'  + 

1  '  ^ 

K(k-l)(k-  2)^^_.^.  ^  ^    _      K(K-l)   .    .    Ja^bf^-' 


1-2-3 


K(K  -  1) 


1-2-3   .    .     .    (K-  1) 

'  T.  K.  Rose,  "Precious  Metals." 


1-2-3   .    .    .(K  -2) 
2  ab^-i  ^  b* 


+ 


MATHEMATICS    ■  17 

This  formula  will  serve  for  the  solution  of  any  power  what- 
ever, and  will,  in  general,  ser\'e  to  indicate  the  process  of  the 
extraction  of  roots.     However,  for  all  practical  work  on  roots 
and  powers,  use  the  table  of  logarithms  on  p.  42. 
log  a"  =  k  log  a 

k  ,~       log  a 
log     Vo   =  -17— 


Permutation,  Choice  and  Chance 

The  number  of  different   arrangements    (or  permutations) 
of  n  different  things  taken  altogether  is  factorial  n. 
{n\  or   n_=  n{n  -  1)  (n  -  2)    ...   3  X  2  X  1) 
The  number  of  different  selections  (or  combinations)  of  n 
different  things  taken  r  at  a  time  is: 

nin  -  1)  (n  -  2)    .    .    .    (n  -  r  +  1) 


The  number  of  selections  of  n  things  taken  r  at  a  time  is  the 
same  as  the  number  of  selections  of  n  things  taken  n  —  r  at  a 
time. 

The  number  of  selection  of  n  things  taken  r  at  a  time  is 
greatest  when :  If  n  is  an  odd  number, 

n  -  1 

if  n  is  an  even  number 

n 

The  chance  of  an  event  happening  is  expressed  by  the  frac- 
tion of  which  the  numerator  is  the  number  of  favorable  ways, 
and  the  denominator  the  whole  number  of  ways,  favorable  and 
unfavorable. 

If  there  are  several  events  of  which  one,  and  only  one  can 
happen,  the  chance  that  one  will  happen  is  the  sum  of  the 
respective  chances  of  happening. 

Progression 
The  chief  "progressions"  are  arithmetical,  geometrical,  and 
harmonic.     They  are  series  of  numbers  in  which  a  common  law 
connects  the  successive  terms. 

Arithmetical  progression  in  a  series  of  numbers  consists  in  a 
constant  difference  between  the  successive  terms,  as 
1,  3,  5,  7,  9,    .    .    . 
Let  a  =  first  term ;^  =  last  term ;rf  =  the  common  difference; 
n  =  the  number  of  terms;  s  =  the  sum  of  the  terms. 

7  1     /  i> J       2s  s     ,   {n  —  l)d  1 J   , 

Z=o-}-  {n  -l)d  =—  -  a  =-  +  i — ^~-  =  --i^d± 
n  n  z  z 


yJ2ds  +  («  -  2) 


18      MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 

5   =  ^[Sa  +  {n  -  l)dj  =  ^{l  +  a)  =  ^[  21-  (n  -  l)d]  = 

I  +  a  (d  +  I  -  a\ 
2     \         d        ) 

1        /  i\  J       2s        ,        8         (n  —  l)d       1  ,   , 


2ds 


d  =  i^^  =  2(g  -  an)  ^      P  -  g'      ^  2(nZ  -  s) 
n  —  1        n{n  —  1)       2s  —  Z  —  a  ~  n(n  —  1) 

2s     _  d  -2a  ±  y/{2a  -  d)'  +  %ds  ^ 

2d      ~ 

2Z  +  d  ±  \/(2Z  +  dy  -  Ms 
2d 
Geometrical  progression  in  a  series  of  numbers  consists  in  a 
constant  ratio  existing  between  the  successive  terms,  as 
4,  8,  16,  32,    .    .    . 
Let  a  =  first  term;  I  =  last  term;  m  =  any  (middle)  term; 
s  =  sum;  r  =  ratio  or  constant  multiplier. 

a  +  {r  -  l)s       (r  -  1)8^-' 

t     =  ar"   1  =  =  — 

r  r"  ' 

m  =  ar'"~^ 

a(r''  —  1)        rl  —  a  -v//"  —       -s/a"  ^J""  ~  ' 


1  r   -   1  n-^-   _   „-l^ 

(r  -  l)s 


r/  -  (r  -  1)8 


=  ""V4  = 


s        ,    s  —  a  8  ,  Z  _ 

r" r  H =  r" ,  r""'  H -,  =  O 

a  a  s  —  I  s  —  I 

Harmonic  series  is  one  in  which  the  numbers  are  the  recipro- 
cals of  those  forming  an  arithmetical  progression.  Such  series 
are  of  small  practical  value,  and  such  questions  as  arise  in  them, 
when  solvable,  are  best  answered  by  inverting  the  series,  and 
solving  as  a  problem  in  arithmetical  progression.  In  ancient 
times  a  fictitious  importance  was  attached  to  them  owing  to  the 
fact  that  a  series  of  rods  of  uniform  cross-section  having  lengths 
in  harmonic  progression  forms  a  musical  scale,  hence  the  name. 

INTEREST,  ANNUITIES,  SINKING  FUNDS 
Simple  Interest 

If  the  principal  be  represented  by  P 

the  interest  on  SI  for  one  year  by  r 

the  amount  of  SI  for  one  year  by  R 

the  number  of  years  by  n 

the  amount  of  P  after  n  years  by  A 


MATHEMATICS  19 

Then  R  =  I  +r 

Simple  interest  on  P  for  one  year  =  Pr 
Amount  of  P  for  one  year  =  PR 

Simple  interest  on  P  for  n  years     =  Pnr 
Amount  P  for  n  years  =  P(l  +  nr) 

that  is  _  A  =  P(l  +  nr) 

When  any  three  of  the  quantities  A,  P,  n,  r,  are  given,  the 
fourth  maj^  be  found  from  this  last  equation. 

Since  P  will  in  n  years  at  r  interest  amount  to  A,  P  may  be 
considered  equivalent  in  value  to  A  at  the  end  of  n  years;  in 
other  words,  P  is  the  "present  worth"  of  A. 

Compound  Interest 
When  compound  interest  is  reckoned  payable  annually. 
The  amount  of  P  dollars  in 

1  year  is  P(l  +  r)       =  PR 

2  years  is  PP(1  +  r)   =  PR^ 
n  years  =  Pi?" 

or  A  =  PR"  or  P  =  4- 

When  compound  interest  is  reckoned  semi-annually. 
The  amount  of  P  dollars  in 

K  year  is        p(l+^) 
1  year  is  p(l+^V 

n  years,  A  =  ^  (  ^  +  o") 
When  the  interest  is  payable  quarterly 

When  the  interest  is  payable  monthly 

(r  \   12n 

And  when  the  interest  is  payable  q  times  a  year 

Sinking  Funds 
If  the  sum  set  apart  at  the  end  of  each  year  to  be  put  at 
compound  interest  be  represented  by  S,  then,  the  sum  at  the 
end  of  the 

first  year       =  S 

second  year  =  S  +  SR 

third  year     =  S  +  SR  +  SR"^ 

nth.  year        =  S  +  SR  +  SR^  .    .    .  57?"-i 

A  =  S  +  SR  +  SR^  .    .    .    +  5i2»-i 
.-.  AR  =  SR  +  SR^  .    .    .    +  SR'^-^  +  SR"' 

:.  AR  -  A  =  SR'^  -  S 

^  ^  5(^^^  ^  ^^  (R"  -  1) 
R  —  1  r 


20      MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


COMPOCND 

Interest  .\xd 

Discount  Tables 

Two  per  cent. 

Two 

and  one- 

half  per 

cent. 

Years 

Am't 
of  $1 

Present 
val.  of 
SI  due 

Am't 

of   SI 

per 

Present 
val.  of 
SI  annu- 

Am't 
of    $1 

Present 
val.  of 
SI  due 

Am't 

of   SI 

per 

Present 
val.  of 
SI  an- 

in n 

>T8. 

in  n 
yre. 

annum 
in  n 
yrs. 

ity  for 
n  yrs. 

in  n 
yrs. 

in  n 
yrs. 

annum 
in  n 
yrs. 

nuity 
for  n 
yrs. 

1 

$1,020 

.9804 

1.02 

1.000 

1.025 

.9756 

1.03 

1.000 

2 

1.040 

.9612 

2.06 

1.9S0 

1.051 

.9518 

2.08 

1.976 

3 

1.061 

.9423 

3.12 

2.942 

1.077 

.9286 

3.15 

2.927 

4 

1.082 

.9238 

4.20 

3.884 

1.104 

.9060 

4.26 

3.856 

5 

1.104 

.9057 

5.31 

4.808 

1.131 

.8839 

5.39 

4.762 

6 

1.126 

.8880 

6.43 

5.713 

1.160 

.8623 

6.55 

5.646 

7 

1.149 

.8706 

7.58 

6.601 

1.189 

.8413 

7.74 

6.508 

8 

1.172 

.8535 

8.75 

7.472 

1.218 

.8207 

8.95 

7.349 

9 

1.195 

.8368 

9.95 

8.325 

1.249 

.8007 

10.20 

8.170 

10 

1.219 

.8203 

11.17 

9.162 

1.280 

.7812 

11.48 

8.971 

11 

1.243 

.8043 

12.41 

9.983 

1.312 

.7621 

12.80 

9.752 

12 

1.268 

.7885 

13.68 

10.787 

1.345 

.7436 

14.14 

10.514 

13 

1.294 

.7730 

14.97 

11.575 

1.379 

.7254 

15.52 

11.258 

14 

1.319 

.7579 

16.29 

12.348 

1.413 

.7077 

16.93 

11.983 

15 

1.346 

.7430 

17.64 

13.106 

1.448 

.6905 

18.38 

12.691 

16 

1.373 

.7284 

19.01 

13.849 

1.485 

.6736 

19.86 

13.381 

17 

1.400 

.7142 

20.41 

14.578 

1.522 

.6572 

21.39 

14.055 

18 

1.428 

.7002 

21.84 

15.292 

1.560 

.6412 

22.95 

14.712 

19 

1.457 

.6864 

23.30 

15.992 

1.599 

.6255 

24.54 

15.353 

20 

1.486 

.6730 

24.78 

16.678 

1.639 

.6103 

26.18 

15.979 

21 

1.516 

.6598 

26. 30 

17.351 

1.680 

.5954 

27.86 

16.589 

22 

1.546 

.6468 

27.84 

18.011 

1.722 

.5809 

29.58 

17.185 

23 

1.577 

.6342 

29.42 

18.658 

1 .  765 

.5667 

31.35 

17.765 

24 

1.608 

.6217 

31.03 

19.292 

1.809 

.5529 

33.16 

18.332 

25 

1.641 

.6095 

32.67 

19.914 

1.854 

.5394 

35.01 

18.885 

26 

1.673 

.5976 

34. 34 

20.523 

1.900 

.5262 

36.91 

19.424 

27 

1.707 

.  5859 

36.05 

21.121 

1.948 

.5134 

38.86 

19.951 

28 

1.741 

.5744 

37.79 

21.707 

1.996 

.5009 

40.86 

20.464 

29 

1.776 

.5631 

39.57 

22.281 

2.046 

.4887 

42.90 

20.965 

30 

1.811 

.5521 

41.38 

22.844 

2.098 

.4767 

45.00 

21.454 

31 

1.848 

.5412 

43.23 

23.396 

2.150 

.4651 

47.15 

21.930 

32 

1.885 

.5306 

45.11 

23.938 

2.204 

.4538 

49.35 

22.395 

33 

1.922 

.5202 

47.03 

24.468 

2.259 

.4427 

51.61 

22.849 

34 

1.961 

.5100 

48.99 

24.989 

2.315 

.4319 

53.93 

23 . 292 

35 

2.000 

.5000 

50.99 

25.499 

2.373 

.4214 

56.30 

23.724 

36 

2.040 

.4902 

53 .  03 

25.999 

2.433 

.4111 

58.73 

24.145 

37 

2.081 

.4802 

55.11 

26.489 

2.493 

.4011 

61.23 

24 . 556 

38 

2.122 

.4712 

57.24 

26.969 

2.556 

.3913 

63.78 

24 . 957 

39 

2.165 

.4619 

59.40 

27.441 

2.620 

.3817 

66.40 

25.349 

40 

2.208 

.4529 

61.61 

27.903 

2. 685 

.3724 

69.09 

25.730 

41 

2.252 

.4440 

63 .  86 

28.355 

2.752 

.3633 

71.84 

26.103 

42 

2.297 

.4353 

66.16 

28.799 

2.821 

.3545 

74.66 

26.466 

43 

2.343 

.4268 

68.50 

29.235 

2.892 

.3458 

77.55 

26.821 

44 

2.390 

.4184 

70.89 

29.662 

2.964 

.3374 

80.52 

27.166 

45 

2.438 

.4102 

73.33 

30.080 

3.038 

.3292 

83.55 

27.504 

46 

2.487 

.4022 

75.82 

30.490 

3.114 

.3211 

86.67 

27.833 

47 

2.536 

.3943 

78.35 

30.892 

3.192 

.3133 

89.86 

28.1.54 

48 

2.. 587 

.3865 

80.94 

31.287 

3.271 

.3057- 

93.13 

28.467 

49 

2.639 

.3790 

83.58 

31.673 

3.353 

.2982 

96.48 

28 . 773 

50 

2.092 

.3715 

86.27 

32.052 

3.437 

.2909 

99.92 

29.071 

For  interest  at  4,  5  and  6  per  cent.,  payable  semi-annually,  use  the  tables 
at  2,  2W  and  3  per  cent.,  di\nding  the  year  numeral  by  2. 

The  fourth  column,  "present  value  of  81  annuity  for  n  years."  is  calcu- 
lated for  an  annuity  payable  at  the  beginning  of  the  vear.  The  data  for 
an  annuity  payable  at  the  end  of  the  year  by  taking  the  next  year's  figure 
and  deducting  SI  from  it. 


MATHEMATICS 


21 


Compound 

Interest  and 

Discount  Tables 

Three  per  cent. 

Three  and  one 

-half  per 

cent. 

Years 

Am't 
of   $1 

Present 
val.  of 
$1  due 

Am't 

of  $1 

per 

Present 

val.   of 

SI  annu- 

Am't 
of  $1 

Present 
val.  of 
$1  due 

Am't 

of   $1 

per 

Present 
val.  of 
$1  an- 

in n 
yrs. 

in  74 
yrs. 

annum 

,  in  11 

yrs. 

ity  for 
n  yrs. 

in  n 

yrs. 

in  n 

yrs. 

annum 
in  n 
yrs. 

nuity 
for  n 
yrs. 

1 

SI. 030 

.9709 

1.03 

1.000 

SI. 035 

.9662 

1.04 

1.000 

2 

1.061 

.9426 

2.09 

1.971 

1.071 

.9335 

2.11 

1.966 

3 

1.093 

.9151 

3.18 

2.913 

1.109 

.9019 

3.21 

2.900 

4 

1.126 

.8885 

4.31 

3.829 

1.148 

.8714 

4.36 

3.802 

5 

1.159 

.8626 

5.47 

4.717 

1.188 

.8420 

5.55 

4.673 

6 

1.194 

.8375 

6.66 

5.580 

1.229 

.8135' 

6.78 

5.515 

7 

1.230 

.8131 

7.89 

6.417 

1.272 

.7860 

8.05 

6.329 

8 

1.267 

.7894 

9.16 

7.230 

1.317 

.7594 

9.37 

7.115 

9 

1.305 

.7664 

10.46 

8.020 

1.363 

.7337 

10.73 

7.874 

10 

1.344 

.7441 

11.81 

8.786 

1.411 

.7089 

12.14 

8.608 

11 

1.384 

.7224 

13.19 

9.530 

1.460 

.6849 

13.60 

9.317 

12 

1.426 

.7014 

14.62 

10.253 

1.511 

.6618 

15.11 

10.002 

13 

1.469 

.6810 

16.09 

10.954 

1.564 

.  6394 

16.68 

10.663 

14 

1.513 

.6611 

17.60 

1 1 . 635 

1.619 

.6178 

18.30 

11.303 

15 

1.558 

.6419 

19.16 

12.296 

1.675 

.5969 

19.97 

11.921 

16 

1.605 

.  6232 

20.76 

12.938 

1.734 

.5767 

21.71 

12,517 

17 

1.653 

.6050 

22.41 

13.561 

1.795 

.5572 

23.50 

13,094 

18 

1.702 

.5874 

24.12 

14.166 

1.857 

.5384 

25.36 

13.651 

19 

1.754 

.5703 

25.87 

14.754 

1.923 

.5202 

27.28 

14,190 

20 

1.806 

.5537 

27.68 

15.324 

1.990 

.5026 

29.27 

14.710 

21 

1.860 

.  5375 

29.54 

15.877 

2.059 

.4856 

31.^ 

15.212 

22 

1.916 

.5219 

31.45 

16.415 

2.132 

.4692 

33.46 

15.698 

23 

1.974 

.5067 

33.43 

16.937 

2.206 

.4533 

35.67 

16.167 

24 

2.033 

.4919 

35.46 

17.444 

2.283 

.4380 

37.95 

16.620 

25 

2.094 

.4776 

37.55 

17.936 

2.363 

.4231 

40.31 

17.058 

26 

2.157 

.4637 

39.71 

18.413 

2.446 

.4088 

42.76 

17.482 

27 

2.221 

.4502 

41,93 

18.877 

2.532 

.3950 

45.29 

17.890 

28 

2.288 

.4371 

44.22 

19.327 

2.620 

.3817 

47.91 

18.285 

29 

2.357 

.4243 

46.58 

19.764 

2.712 

.3687 

50.62 

18.667 

30 

2.427 

.4120 

49.00 

20.188 

2.807 

.3563 

53.43 

19 . 036 

31 

2.500 

.4000 

51.50 

20.600 

2.905 

.3442 

56.33 

19.392 

32 

2.575 

.3883 

54.08 

21.000 

3,007 

.3326 

59.34 

19.736 

33 

2.652 

.3770 

56.73 

21.389 

3.112 

.3213 

62.45 

20 . 069 

34 

2.732 

.3660 

59.46 

21.766 

3.221 

.3105 

65.67 

20 . 390 

35 

2.814 

.3554 

62.28 

22.132 

3.334 

.3000 

69.01 

20 .  701 

36 

2.898 

.3450 

65.17 

22.487 

3.4.50 

.2898 

72.46 

21.001 

37 

2.985 

.3350 

68.16 

22.832 

3.571 

.2800 

76.03 

21.290 

38 

3.075 

.3252- 

71.23 

23.107 

3.696 

.2706 

79.72 

21.571 

39 

3.167 

.3158 

74.40 

23.492 

3.825 

.2614 

83.55 

21.841 

40 

3.262 

.3066 

77.66 

23.808 

3.959 

.2526 

87.51 

22 . 103 

41 

3.360 

.2976 

81.02 

24.115 

4.098 

.2440 

91.61 

22.355 

42 

3.461 

.2890 

84.48 

24.412 

4.241 

.2358 

95 .  85 

22 . 599 

43 

3.565 

.2805 

88.05 

24.701 

4.390 

.2278 

100.24 

22.835 

44 

3.671 

.2724 

91.72 

24.982 

4.543 

.2201 

104.78 

23.063 

45 

3.^82 

.2644 

95.50 

25.254 

4.702 

.2127 

109.48 

23 . 283 

46 

3.895 

.2567 

99.40 

25.519 

4.867 

.  2055 

114.35 

23.495 

47 

4.012 

'.2493 

103.41 

25.775 

5.037 

.1985 

119.39 

23 . 701 

48 

4.132 

.2420 

107.54 

26.025 

5.214 

.1918 

124.60 

23 . 899 

49 

4.256 

.2350 

1 1 1 . 80 

26.267 

5 .  396 

.1853 

1.30.00 

24.091 

50 

4.384 

.2281 

116.18 

26.502 

5,585 

.1791 

135.58 

24 . 277 

22      MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


Compound  Interest  and  Discount  Tables 


Four  per  cent. 

Five  per  cent. 

Years 

Am't 
of  $1 

Present 
val.  of 
SI  due 

Am't 

of  $1 

per 

Present 
val.  of 
$1  annu- 

Am't 
of  $1 

Present 
val.  of 
$1  due 

Am't 

of  $1 

per 

Present 
val.  of 
SI  an- 

in n 
yre. 

in  n 
yrs. 

annum 
in  n 
yrs. 

ity  for  »» 
yrs. 

in  n 
yrs. 

in  n 
yrs. 

annum 
in  n 
yrs. 

nuity 
for  n 
yrs. 

1 

$1,040 

.9615 

1.04 

1.000 

81.050 

.9524 

1.05 

1.000 

2 

1.082 

.9246 

2.12 

1.962 

1.103 

.9070 

2.15 

1.952 

3 

1.125 

.8890 

3.25 

2.886 

1.158 

.8638 

3.31 

2.859 

4 

1.170 

.8548 

4.42 

3.775 

1.216 

.8227 

4.53 

3.723 

5 

1.217 

.8219 

5.63 

4.630 

1.276 

.7835 

5.80 

4.546 

6 

1.265 

.7903 

6.90 

5.452 

1.340 

.7462 

7.14 

5.329 

7 

1.316 

.7599 

8.21 

6.242 

1.407 

.7107 

8.55 

6.076 

8 

1.369 

.7307 

9.58 

7.002 

1.477 

.6768 

10.03 

6.786 

9 

1.423 

.7026 

11.01 

7.733 

1.551 

.6446 

11.58 

7.463 

10 

1.480 

.6756 

12.49 

8.435 

1.629 

.6139 

13.21 

8.108 

11 

1.539 

.6496 

14.03 

9.111 

1.710 

.5847 

14.92 

8.722 

12 

1.601 

.6246 

15.63 

9.760 

1.796 

.5568 

16.71 

9.306 

13 

1.665 

.6006 

17.20 

10.385 

1.886 

.5303 

18.60 

9 .  863 

14 

1.732 

.5775 

19.02 

10.986 

1.980 

.5051 

20.58 

10.394 

15 

1.801 

.5553 

20.82 

11.563 

2.079 

.4810 

22.66 

10.899 

16 

1.873 

.5339 

22.70 

12.118 

2.183 

.4581 

24.84 

11.380 

17 

1.948 

.5134 

24.65 

12.652 

2.292 

.4363 

27.13 

1 1 . 838 

18 

2.026 

.4936 

26.67 

13.166 

2.407 

.4155 

29.54 

12.274 

19 

2.107 

.4746 

28.78 

13.6.i9 

2.527 

.3957 

32.07 

12.690 

20 

2.191 

.4564 

30.97 

14.134 

2.653 

.3769 

34.72 

13.085 

21 

2.i79 

.4388 

33.25 

14 . 590 

2.786 

.3589 

37.51 

13.462 

22 

2.370 

.4220 

35.62 

15.029 

2.925 

.3419 

40.43 

13.821 

23 

2.465 

.4057 

38.08 

15.451 

3.072 

.  3256 

43.50 

14.163 

24 

2.563 

.3901 

40.65 

15.857 

3.225 

.3101 

46.73 

14.489 

25 

2.666 

.3751 

43.31 

16.247 

3.386 

.  2953 

50.11 

14.799 

26 

2.772 

.3607 

46.08 

16.622 

3 . 5.56 

.2812 

53.67 

15.094 

27 

2.883 

.3468 

48.97 

16.983 

3.733 

.2678 

57.40 

15.375 

28 

2.999 

.3335 

51.97 

17.330 

3.920 

.2551 

61.32 

15.643 

29 

3.119 

.3207 

55.08 

17.663 

4.116 

.2429 

65.44 

15.898 

30 

3.243 

.3083 

58.33 

17.984 

4.322 

.2314 

69.76 

16.141 

31 

3.373 

.2965 

61.70 

18.292 

4.538 

.2204 

74.30 

16.372 

32 

3.508 

.2851 

65.21 

18.588 

4.765 

.2099 

79.06 

16.593 

33 

3.648 

.2741 

68.86 

18.874 

5.003 

.  1999 

84.07 

16.803 

34 

3.794 

.  2636 

72.65 

19.148 

5.253 

.1904 

89.32 

17.003 

35 

3.946 

.25.34 

76.60 

19.411 

5.516 

1813 

94.84 

17.193 

36 

4.104 

.2437 

80.70 

19.665 

5.792 

.1727 

100.63 

17.374 

37 

4.268 

.2343 

84 .  97 

19.908 

6.081 

.1644 

106.71 

17.547 

38 

4.439 

.2253 

89.41 

20.143 

6.385 

.1.506 

113.10 

17.711 

39 

4.616 

.2166 

94  .  03 

20.368 

6.705 

.1491 

119.80 

17.868 

40 

4.801 

.2083 

98.83 

20.584 

7.040 

.1420 

126.84 

18.017 

41 

4.993 

.2003 

103.82 

20.793 

7.392 

.1353 

134.23 

18.159 

42 

5.193 

.1926 

109.01 

20.993 

7.762 

.1288 

141.99 

18.294 

43 

5.400 

.18.52 

114.41 

21.186 

8.150 

.1227 

150.14 

18.423 

44 

5.617 

.1781 

120.03 

21.371 

8.5.57 

.1169 

158.70 

18.546 

45 

6.841 

.1712 

125.87 

21.549 

8.985 

.1113 

167.69 

18.663 

46 

6.075 

.1646 

131.95 

21.720 

9.434 

.1060 

a77.12 

18.774 

47 

6.318 

.1583 

138.26 

21.885 

9.906 

.1009 

187.03 

18.880 

48 

6.571 

.1522 

144.83 

22.043 

10.401 

.0961 

197.43 

18.981 

49 

6.833 

.1463 

151.67 

22.195 

10.921 

.0916 

208.35 

19.077 

50 

7.107 

.1407 

158.77 

22.341 

11.467 

.0872 

219.82 

19.169 

MATHEMATICS 


23 


Compound  Interest  and  Discount  Tables 


Six  per  cent. 

Six  per 

cent. 

Am't 

Present 

val.  of 

$1  due 

in  71 

yrs. 

Am't 
of  $1 

Present 
val.  of 

Am't 

Present 

val.  of 

SI  due 

in    n 

yrs. 

Am't 
of   $1 

Present 
val.  of 

2 

OS 

a 

of  $1 
in  n 
yrs. 

per 

annum 

in  n 

$1  an- 
nuity 
for  n 

2 

of    $1 
in  n 
yrs. 

per 

annum 

in  n 

$1  an- 
nuity 
for  n 

>< 

yrs. 

yrs. 

!^ 

yrs. 

yrs. 

1 

$1,060 

.9434 

1.06 

1.000 

26 

4.549 

.2198 

62.71 

13.783 

2 

1.124 

.8900 

2.18 

1.943 

27 

4.822 

.2074 

67.53 

13.003 

3 

1.191 

.8396 

3.37 

2.833 

28 

5.112 

.1956 

72.64 

14.211 

4 

1.262 

.7921 

4.64 

3.673 

29 

5.418 

.1846 

78.06 

14.406 

5 

1.338 

.7473 

5.98 

4.465 

30 

5.743 

.1741 

83.80 

14.591 

6 

1.419 

.7050 

7.39 

5.212 

31 

6.088 

.1643 

89.89 

14.765 

7 

1.504 

.6651 

8.90 

5.917 

32 

6.453 

.1550 

96.34 

14.929 

8 

1.594 

.6274 

10.49 

6.582 

33 

6.841 

.1462 

103.18 

15.084 

9 

1.689 

.5919 

12.18 

7.210 

34 

7.251 

.1379 

110.43 

15.230 

10 

1.791 

.5584 

13.97 

7.802 

35 

7.686 

.1301 

118.12 

15.368 

11 

1.898 

.5268 

15.87 

8.360 

36 

8.147 

.1227 

126.27 

15.498 

12 

2.012 

.4970 

17.88 

8.887 

37 

8.636 

.1158 

134.90 

15.621 

13 

2.133 

.4688 

20.02 

9.384 

38 

9.154 

.1092 

144.06 

15.737 

14 

2.261 

.4423 

22.28 

9.853 

39 

9.704 

.1031 

153.76 

15.846 

15 

2.397 

.4173 

24.67 

10.295 

40 

10.286 

.0972 

164.05 

15.949 

16 

2.540 

.3936 

27.21 

10.712 

41 

10.903 

.0917 

174.95 

16.046 

17 

2.693 

.3714 

29.91 

11.106 

42 

11.557 

.0865 

186.51 

16.138 

18 

2.854 

.3503 

32.76 

11.477 

43 

12.250 

.0816 

198.76 

16.225 

19 

3.026 

.3305 

35.79 

11.828 

44 

12.985 

.0770 

211.74 

16.306 

20 

3.207 

.3118 

38.99 

12.158 

45 

13.765 

.0727 

225.51 

16.383 

21 

3.400 

.2942 

42.39 

12.470 

46 

14.590 

.0685 

240.10 

16.456 

22 

3.604 

.2775 

46.00 

12.764 

47 

15.466 

.0647 

255.56 

16.524 

23 

3.820 

.2618 

49.82 

13.042 

48 

16.394 

.0610 

271.96 

16.589 

24 

4.049 

.2470 

53.86 

13.303 

49 

17.378 

.0575 

289 . 34 

16.650 

25 

4.292 

.2330 

58.16 

13.550 

50 

18.420 

.0543 

307 . 76 

16.708 

These  tables  are  an  abridgement  of  the  seven-place  tables  in  "  Annuaire  pour 
I'an  1913,"  published  for  the  Bureau  of  Longitudes,  by  Gauthier-Villars,  Quai 
des  Grands-Augustins,  55;  Paris,  France. 

Bond  Interest. — ;The  true  return  on  a  bond  is  not  the  interest  rate  di^dded 
by  the  purchase  price,  for  if  the  bond  be  paid  at  par  at  maturity,  the  discount 
is  earned  if  the  bond  was  purchased  below  par,  while  if  it  was  purchased  above 
par,  the  premium  must  be  amortized.  If  P  is  the  price  of  a  bond  with  n  years 
to  run;  .S  the  face  of  the  bond,  g  the  rate  of  interest  current  (expressed  as  a 
decimal) ;  r  the  stipulated'  rate  of  the  bond  (as  a  decimal,  .05,  .06) ;  x  the  in- 
terest on  the  investment, 

for  annual  payments  l+x=  ^^Hq  -  r)  +  r(l  +  g)''}^V„ 


for  semiannual  payments  1  -f-  ^ 


|-.S{(.-.)+r(l  +  |)-}j 


'/. 


24      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Annual  Intestment  Table^ 

The  sum  of  money  which  must  be  invested  at  the  beginning  of  each  year 
for  a  period  of  1  to  50  years  to  amount  to  SIOOO  at  compound  interest. 


Years 

2  Per 

3  Per 

3M  Per 

4  Per 

5  Per 

6  Per 

Years 

cent. 

cent. 

cent. 

cent. 

cent. 

cent. 

1 

S980.39 

970.87 

966.18 

961.55 

952.38 

943.39 

1 

2 

485.43 

478.24 

474.83 

471.25 

464.47 

457.88 

2 

3 

320.31 

314.07 

311.04 

307.98 

302.11 

296.30 

3 

4 

237.87 

232.07 

229 . 20 

226.45 

220.95 

215.66 

4 

5 

188.40 

182.88 

180.18 

177.53 

172.35 

167.36 

5 

6 

155.42 

150.08 

147.51 

144.97 

140.02 

135.24 

6 

7 

131.87 

126.71 

124.19 

121.74 

116.97 

112.39 

7 

S 

114.22 

109.18 

106 . 74 

104.35 

99.73 

95.32 

8 

9 

100 .  50 

95.57 

93.19 

90.86 

86.37 

82.10 

9 

10 

89.53 

84.69 

82.36 

80.09 

75.72 

71.57 

10 

11 

80.57 

75.80 

73.52 

71.30 

67.04 

63.01 

11 

12 

73.10 

68.41 

66.17 

63.99 

59.83 

55.92 

12 

13 

66.78 

62.17 

59.96 

57.83 

53.77 

49.96 

13 

14 

61.38 

56.82 

54.66 

52.57 

48.59 

44.89 

14 

15 

56.69 

52.20 

50.07 

48.02 

44.14 

40.53 

15 

16 

52.60 

48.16 

46.07 

44.06 

40.26 

36.75 

16 

17 

48.99 

44.61 

42.55 

40.58 

36.86 

33.44 

17 

18 

45.79 

41.46 

39.44 

37.49 

33.85 

30.53 

18 

19 

42.92 

38.65 

36.66 

34.75 

31.19 

27.94 

19 

20 

40.35 

36.13 

34.17 

32.29 

28.80 

25.65 

20 

21 

38.02 

33.86 

31.92 

30.08 

26.66 

23.59 

21 

22 

35.91 

31.79 

29.89 

28.08 

24.73 

21.74 

22 

23 

33.99 

29.92 

28.04 

26.26 

22.99 

20.07 

23 

24 

32.23 

28.20 

26.35 

24.60 

21.40 

18.57 

24 

25 

30.61 

26.63 

24.81 

23.09 

19.95 

17.20 

25 

26 

29.12 

25.18 

23.39 

21.70 

18.63 

15.95 

26 

27 

27.74 

23.85 

22.08 

20.42 

17.42 

14.81 

27 

28 

26.46 

22.61 

20.87 

19.24 

16.31 

13.77 

28 

29 

25.27 

21.47 

19.75 

18.15 

15.28 

12.81 

29 

30 

24.17 

20.41 

18.72 

17.14 

14.33 

11.93 

30 

31 

23.13 

19.42 

17.75 

16.21 

13.46 

11.12 

31 

32 

22.17 

18.49 

16.85 

15.34 

12.65 

10.38 

32 

33 

21.26 

17.63 

16.01 

14.52 

11.90 

9.69 

33 

34 

20.41 

16.82 

15.23 

13.76 

11.20 

9.06 

34 

35 

19.61 

16.06 

14.49 

13.06 

10.54 

8.47 

35 

36 

18.86 

15.34 

13.80 

12.39 

9.94 

7.92 

36 

37 

18.14 

14.67 

13.15 

11.77 

9.37 

7.41 

37 

38 

17.47 

14.04 

12.54 

11.18 

8.84 

6.94 

38 

39 

16.83 

13.44 

11.97 

10.64 

8.35 

6.50 

39 

40 

16.23 

12.88 

11.43 

10.12 

7.88 

6.10 

40 

41 

15.66 

12.34 

10.92 

9.63 

7.45 

5.72 

41 

42 

15.11 

11.84 

10.43 

9.17 

7.04 

6.36 

42 

43 

14.60 

11.36 

9.98 

8.74 

6.66 

5.03 

43 

44 

14.11 

10.90 

9.54 

8.33 

6.30 

4.72 

44 

45 

13.64 

10.47 

9.13 

7.94 

5.97 

4.43 

45 

46 

13.20 

10.06 

8.74 

7.57 

5.64 

4.16 

46 

47 

12.78 

9.66 

8.37 

7.23 

5.34 

3.91 

47 

48 

12.37 

9.29 

8.02 

6.90 

5.06 

3.67 

48 

49 

11.97 

8.94 

7.69 

6.59 

4.79 

3.45 

49 

50 

11  CO 

8.61 

7.37 

6.29 

4.55 

3.25 

50 

'  From  "Lefax,"  Philadelphia,  Penn. 


MATHEMATICS  25 

AMORTIZATION  AND  DEPRECIATION  FORMULAS' 

Amount  of  an  annuity  which  at  the  end  of  n  years  will 
amortize  a  capital  of  SI  (interest  on  annuity  payments  and  on 
original  capital  figured  at  the  same  rate). 

j-(l    _|_  j-)n 

Annuity  =  ^  ^  ^^  _  ^-Sl 

Present  value  of  an  annuity  of  SI  per  year,  payable  for  n 
years,  at  the  end  of  the  year. 

Present  value  =  —     1  —  -n — ; — r-     SI 
r  I  (1  +  O-J 

The  sum  produced  at  the  end  of  n  j'ears  by  placing  annually 
$1  at  r  interest,  each  dollar  being  deposited  at  the  beginning  of 
the  year. 

Sum  =  ^— ^-'"[(l  +  r)"  -  1]-S1 
r 

Present  worth  of  SI  payable  at  the  end  of  n  years. 

SI 

Present  worth  =  -jz — ; — r- 
(1  +  r)" 

Value  at  the  end  of  n  vears  of  SI  at  compound  interest. 
Value  =  (1  +  r)»-Sl 

AREAS 

Triangle  =  base  X  K  altitude 

Triangle  (let  a,  b,  and  c  be  the  sides  and  2s  =  a  +  b  +  c) 

Area  =  's/sis  —  a)  {s  —  b)  (s  —  c) 

Trapezoid  =  J^  sum  of  the  bases  X  the  altitude 

Circle  =  irr^ 

Sphere  =  4xr2  =  wd^ 

Cylinder  (total  surface)  =  2irr^  +  2irrh  {h  =  height  or  altitude) 

Cylinder  (cylindrical  surface  only)  =  vdh  =  27rr/i 

Cone  =  7rr2  +  2Tr(}4Vr'-  +  h^) 

Regular  polygons — w'^here  side  =  s,  or  r  =  apothem  (radius  of 

inscribed  circle) 

5  sides  (pentagon)         1 .  720477s2  =  3 .  632717-2 

6  sides  (hexagon)  2.598076s2  =  3.46410r2 

7  sides  (heptagon)         3.633912s2  =  3.37101r2 

8  sides  (octagon)  4.828427s2  =  3.31371^2 

9  sides  (nonagon)  6.181824s2  =  3.27573r2 

10  sides  (decagon)  7. 6942098=  =  3.24920r2 

11  sides  (undecagon)      9.36.5640s2  =  3.22993r2 

12  sides  (duodecagon)  11.196152s2  =  3.21539r2 

for  n  sides,  A  =  -s^  cot =  nr^  tan  

4  n  n 

>  From  "Annuaire  pour  191.5,  Bureau  dea  Longitudes."     See  p.  23  for  bond 
interest  formula. 


26      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


T.\nLE  OF  Regular  Polygons 


Name  of 
polygon 


Area 
side  <=  S 
A  =  cS^ 


Radius  of 

ciroum- 

scribed  circle 


£11 


ca*^  II 


u 


Angle 

at 
center 


Angle 

between 

adjacent 

sides 


Triangle.. . 
Square.  . . . 
Pentagon.. 
Hexagon. . 
Heptagon. 
Octagon.. . 
Nonagon. . 
Decagon . . 
I'ndecagon 
Duodecagon 


0.4330127  2 
1.0000000  1 
1.7204774  1 
2.5980762  1 
3.G339124  1 
4.8284271  1 
6.1818242  1 
7.69420881 
9.3656399  1 
11.1961524  1 
I 


,000  0. 
,414  0. 
,238,0. 
,115  1. 
,110  1. 
,083ll. 
,064|1. 
,051  1. 
,0421. 
.037  1, 


57730. 
7071  0, 
8506  0, 
0000  0 , 
152  4  1. 
3066  1, 
4619  I 
6180  1, 
774711, 
9319  1 
I 


2887 
5000 
6882 
8660 
0383 
2071 
3737 
5388 
7028 
8660 


1.7320  120°  60° 
1.4142  90°  90° 
1.1756  72°  108° 
1.0000  60°  120° 
0.8677  51°26'  128°34' 
0.7653  45°  135° 
0.6840  40°  140° 
0.6180  26°  144° 
0.5634'32°43'  147°16'21' 
0.51761    30°     150° 


T.\BLE  OF  THE  REGULAR  POLYHEDRONS  WHOSE  EdGE  IS 

Unity 


No.  of  faces 

Surface  > 

Volume- 

Tetrahedron' 

Hexahedron  (cube)' .  .  . 

Octahedron' 

Dodecahedron' 

Icosahedron' 

4 

6 

8 

12 

20 

1 . 7320508 

6.0000000 

3.4641016 

20.6457288 

8.6602540 

0.1178513 
1 . 0000000 
0.4717045 
7.6631189 
2.1816950 

'  If  the  edge  is  not  unity,  multiply  the  constant  in  the  table  by  tlie  scjuare 
of  the  side. 

2  If  the  edge  is  not  unity,  multiply  the  constant  in  the  table  by  the  cube  of 
the  side. 

>The  faces  of  the  tetrahedron,  octahedron  and  icosahedron  (20  faces)  are 
triangles;  of  the  hexahedron,  squares;  and  of  the  dodecahedron,  pentagons. 

Circular  Ring. — Area  =  w  {R"^  —  r^)  =  ir{R  —  r) 
(R  +  r)  =  difTerence  in  areas  between  the  inner 
and  outer  circles. 


V  =  0.7854r2  =  0.3927c2. 

4 


Q  uadrant. — Area 

(c  =  chord.) 

Segment. — b  =  length  of  arc.     $  =  angle  in  de- 
grees,    c  =  chord  =  \/4(2/tr  —  /i*) 

Area  =  }^i[br  —  c{r  —  h)] 


c{r  -  h) 


360 


When  d  is  greater  than  180°,  then  -  X  difference 
between  r  and  h  is  added  to  the  fraction  -tt^t.- 


MATHEMATICS  27 

a 

Sector. — Area  =  }4hr  -  i^r-       ^ 
360 

9  =  angle  in  degrees 

h  =  length  of  arc 
Spandrel.— Area  =  0.2146r2  =  O-lOySc^^ 
Parabola. — Area  =  %sh 

I  =  length  of  curved  line  =  periphery  —  «  =  oT 

(Veil  +  c  +  2.0326  X  log  ( V'c  +  Vl+c) 


(<■ — s — *\      where  c  =    I  —  I 

Ellipse. — Area  =  irab 


64 


Circum.  =  Tr(a  +  b) 


\b  +aj 


[close  approximation] 


Sector  of  Sphere. — Total  surface  =  -^  (4/i  +  c) ; 


c  =  2\/{2hr  -  h-'). 

,^  ,  2Trr'^h        2irr- 

Volume  = 


/         •Y/4r2  _  (,2\ 
\ 2—} 


3  3 

Segment  of  Sphere. — Spherical  surface 


Total  surface 


=  2Trrh  +  ~c^  =  |(c2  +  2h^) 


Sh 


Volume  =  ttAm  r  —  n)  =  -n-h-i 

c  =  2\/2hr  -  h^ 

Frustrum  of  Pyramid. — (Area  of  top  and  bottom, 
a  and  a'  respectively). 

Volume  =  ^(o  +  a'  +  ^aa') 

Ellipsoid  of  Revolution. — Volume  =  —  (product 
of  the  three  radii). 


Paraboloid  of  Revolution. — Volume  = 


wr^h 


Curved  surface  =  ^  ^,  [(r^  +  ih^)*  -  r«] 


28      MEIWLLURGISTS  AND  CHEMISTS'  HANDBOOK 


Volumes 
Cylinder  =  irr-h  =  -d-h 

Sphere       =  -r-  =  -xr' 
6         3 

Cone         =  }ri-n-r-h  {^^  the  vol.  of  the  containing  cylinder) 

Pyramid  =  y^  base  X  altitude 

TRIGONOMETRY 

The  following  formulas  refer  to  Fig.  1. 


sin 

,4 

a 
c 

cot 

A 

_  b 
a 

cos 

A 

_  h 
c 

sec 

A 

c 

~  b 

tan 

A 

a 

"  b 

b 
c 

cosec 

A 

c 
a 

vers 

A 

=  1 

covers 

A 

=  1  - 

u 
c 

suvers 

A 

S 

R 

Quad7i\B 

Q 
P 

y<CC 

^ 

\    Quad.3 

C 

Quad.4 

^ 

I 

Fio.  2 

Regarding  the  trigonometric  functions  as  functions  of  the 
arc,  rather  than  of  the  angle  (see  Fig.  2)  we  have : 
sin     a  =  BC  =  OD  cot        a  =  RS 

cos    a  =  OC  =  BD  sec        a  =  OQ 

tan    a  -  PQ  cosec    a  =  OR 

vers  a  =  CP  covers  a  =  SD 

suvers  a  =  P'C 
The  fundamental  trigonometric  formula?  arc: 

sin  a  = 

J _   v/sec'a— 1 


cosec 

a 

V  i  —  COS'  a 

008  a  » 
1 

= 

sec  a 

Vl— sin'  a 

tan  a  ■= 

1 

= 

Sin  a 

cot  a 

Vl  —sin-  a 

Vl+tan^  , 


V^l+cot^  a 


_   "V^l— cos'  a  _      / 

= =»   Vsec'a-l 


Vcosec'  a~i 


cot  a  =» 

= 

1 

ant  a 

Vl-sin2 
sin  a 

a 

sec  or  = 

1 

= 

1 

cos  a 

Vl-sin2 

a 

CSC  a  = 

1 

= 

1 

sin  a 

Vl  —COS' 

a 

MATHEMATICS  29 


~  Vcosec^o  — 1 


\/l  —  cos-  a         \/scc2  a-fl 

/— — ;p-  _   Vl+cofg  _ 

Vl+tan-a  —  7 — 


\/cosec2  a  —  1 

Vl+tan^a  _      /r-r-TT-  -   —'^  " 

VI -foot' or-        / y 

tan  a  Vsec'  a  — 1 

sin  a  COS  a 

sin-  a  +  cos-  or  =  1;  tan  or  =  ;  cot  a  =  -. 

cos  a  sin  a 

Rule  for  signs  of  trigonometric  functions  in  various  quadrants : 

Quadrant    12  3  4 

+  -  - 

-  -  + 

-  +  - 

-  +  - 

-  -  + 
+ 

Any  function  of  0°  or  an  even  multiple  of  90°,   l^j ,  plus  or 

minus  A,  is  the  same  function  of  A,  and  any  function  of  an 
odd  multiple  of  90°  is  the  complementary  function  of  A,  the 
sign  being  determined  for  the  appropriate  quadrant  by  the 
above  table. 

sin  (x  -\-  y)  =  sin  x  cos  y  +  cos  x  sin  y  .'.  sin  2x  =  2  sin  x  cos  x 
cos(x  4-  2/)  =  cos  X  cos  y  —sin  x  sin  y    .' .  cos  2x  =  cos^  x  —  sin^  x 

sin   {x  —  y)  =  sin  x  cos  y  —  cos  x  sin  y 

cos  (x  —  y)  =  cos  X  cos  ?/  -f  sin  x  sin  y 


sm 

+ 

cos 

+ 

tan 

+ 

cot 

+ 

sec 

+ 

cosec 

+ 

'tan  (x  -f  y) 

tan  (x  —  y) 

cot  (x  +  y) 

cot  (x  -  y) 


tan  X  +  tan  y 
1  —  tan  X  tan  y 

tan  X  —  tan  y 
1  +  tan  X  tan  y 

cot  X  cot  y  —  1 

cot  ?/  -+-  cot  X 

cot  X  cot  y  +  1 


cot  y  —  cot  X 

sin   (x  +  y)  _  tan  x  -f  tan  y 

sin  (x  —  y)  tan  x  —  tan  y 

cos  (x  +  y)  _  1  —  tan  x  tan  y 

cos  (x  —  y)  1  +  tan  x  tan  y 


30      MET.\LLURG1STS  AND  CHEMISTS'  HANDB(X)K 


sin  (x  +  y) 

cos  (x  -  y) 

sin  (j  -  y) 

cos  (x  +  y) 

sin  (x  +  y)  sin  (x  —  y) 

cos  (x  +  y)  cos  (x  —  y) 

sin  2x 


tan  2x 
cot  2x 
sin   J^x 

cos  y^x 
tan  >^x 

cot  y^x 

sin  3x 
cos  3x 

tan  3x 


_    t»n  X  +  tan  y 

1  +  tan  X  tan  t/ 
_    tan  X  —  tan  y 

1  —  tan  X  tan  y 
=  sin^x  —  sin^j/  =  cos-  y  —  cos-  x 
=  cos^  X  —  sin-  y-  =  cos*  y  —  sin-  x 
=  2  sin  X  cos  x 

=  2  cos^x  —  1  =  1—2  sin*  x 
2  tan  X 


1  —  tan- X 

cot'  X  —  1 

2  cot  X 


-4 


COS  X 


1  -h  COS  X 


1  +  cos  X 
sin  X 


1  —  cos  X 
=  3  sin    X  —  4  sin'  x 
=  4  cos'  X  —  3  cos  X 
_  3  tan  X  —  tan'  x 
~      1-3  tan*  X 


Solution  of  Triangles 

The  solution  of  the  right  triangle  is  readily  deduced  from  the 
functional  equations  applying  to  Fig.  1, 


The  solution  of  oblique  triangles  is  given  in  the  following 
formula: 

a  +  h  ^  sin  A  +  sin  ^  ^  tan  yj  {A  +  B)  ^         cot  }r^C 

a  -  b  ~  sin  A  -  sin  B  ~  tan  }^  {A  -  B)        tan  }4iA  -  B) 

a»  =  62  4-  c*  -  26c  cos  yl  or  c*  =  o*  +  6*  -  2ac  cos  C 

6*  +  c*  -  a*  „       o*  -f  6*  -  c* 

cos  A  =  —. or  cos  C  = 


26c 


2a6 


MATHEMATICS 


31 


sin  ^A  =  ^^ 


+  b  -  c)  (a  -  b  +  c) 


46c 


'4 


{s  —  g)  (s  —  b) 
6c 


1/  A  his  —  a) 

cos  y,A  =  yj^^ 


tan 


UA   -  *  /(s  -  6)  (s  -  c)      /      6c 


V 


6c 

(s  -  6)  (s' -  c) 
6c 


\      6c 


Area  = 


a6  sin  C  _  be  sin  A  _  ac  sin  5  _  6"  sin  C  sin  ^ 
2         ~        2         ~        2         ~        2  sin  5 

\/s(s  —  a)  {s  —  6)  (s  —  c) 
area 


Radius  of  inscribed  circle  = 


}^  perimeter 

(product  of  the  sides) 
(four  times  area) 


Radius  of  circumscribed  circle 

Exact  Numerical  Value  of  the  Functions  of  Some  Angles 


Angle 

0° 

30° 

45° 

60° 

90° 

120° 

135° 

150° 

180° 

270° 

360° 

Sine 

0 

Vz 

V2 

V3 
2 

1 

V3 
2 

1 

v'2 

ii 

0 

-1 

0 

Cosine 

1 
0 

1 

V3 
2 

1 
V2" 

i2 

0 

-Iri 

1 

~V2 

_V3 
2 

-1 

0 

1 

Tangent 

1 
V3 

1 

V3 

.. 

-V3 

-1 

1 
~V3 

0 

» 

0 

Cotangent 

Vs 

1 

1 
V3 

0 

1 

~V3 

-1 

-V3 

» 

0 

<= 

Secant 

2 
V3 

V2 

2 

CO 

-2 

-V2 

2 

~V3 

-1 

^ 

1 

Cosecant 

2 

^2 

2 
V3 

1 

2 
V3 

V2 

2 

0= 

-1 

» 

0 

1 

2-v'3 

V2"-l 

H 

1 

?i2 

1+^2 

2+V3 

2 

1 

0 

2 

2 

V2 

2 

\i 

V2-I 
V2" 

2- VI 

2 

0 

2-^3 

V2-I 

H 

1 

2 

2 

V2' 

32      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Squares,  Cubes,  Square  akd  Cube  Roots  of  Numbers  from 

I    TO    lOOO 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

No. 

Square 

Cube 

Sq. 

Root 

Cube 
Root 

X 

I 

I 

I.OOOO 

I.OOOO 

Si 

2601 

132651 

7.1414 

3-7084 

3 

4 

8 

I.4I42 

1.2599 

52 

2704 

148877 

7.2111 

3.7325 

3 

9 

37 

1.7321 

1.4422 

S3 

2809 

7.2801 

3.7563 

4 

16 

64 

2.0000 

1.5874 

54 

2916 

157464 

7.3485 

3.7798 

5 

25 

125 

2.2361 

1. 7100 

55 

3025 

166373 

7.4162 

3.8030 

6 

36 

2X6 

2.4495 

1.8171 

S6 

3136 

175616 

7.4833 

3.8259 

7 

49 

343 

2.6458 

1.9129 

57 

3249 

185193 

7.5498 

3.848s 

8 

64 

512 

2.8284 

2.0000 

58 

3364 

195112 

7.6158 

3.8709 

9 

81 

729 

3.0000 

2.0801 

59 

3481 

20S379 

7.6811 

3.8930 

xo 

100 

1000 

3.1623 

2.1544 

60 

36CO 

216000 

7.7460 

3.9149 

II 

131 

133 1 

33166 

3.3240 

61 

3721 

226981 

7.8102 

3.9365 

12 

144 

1728 

34641 

2.2894 

62 

3844 

238328 

7.8740 

3.9579 

13 

160 

3197 

36056 

3.3513 

63 

3969 

350047 

7.9373 

3-9791 

X4 

196 

3744 

3-7417 

3.4101 

64 

4096 

362144 

8.0000 

4.0000 

15 

225 

3375 

3.8730 

2.4662 

6S 

422s 

37462s 

8.0623 

4.0207 

x6 

2S6 

4096 

4.0000 

2.5198 

66 

4356 

387496 

8.1240 

4.0412 

17 

389 

4913 

41231 

2.5713 

67 

4489 

300763 

8.1854 

4.0615 

i8 

324 

5832 

4.2426 

2.6207 

68 

4624 

314432 

8.2462 

4.0817 

19 

361 

6859 

43589 

2.6684 

69 

4-61 

328509 

8.3066 

4.1016 

30 

400 

8000 

4.4721 

3.7144 

70 

4900 

343000 

8.3666 

4.1213 

21 

441 

9261 

4.5826 

3.7589 

71 

S041 

3S7911 

8.4261 

4.1408 

32 

484 

10648 

4.6904 

2.8020 

73 

S184 

373248 

8.4853 

4.1602 

23 

529 

12167 

4.7958 

2.8439 

73 

5329 

389017 

8.5440 

4.1793 

24 

576 

13824 

4 

8990 

2.884s 

74 

5476 

405224 

8.6023 

4.1983 

35 

625 

15625 

5 

0000 

2.9240 

75 

562s 

42187s 

8.6603 

4.2173 

36 

676 

17576 

5 

0990 

2.9625 

76 

5776 

438976 

8.7178 

4.2358 

27 

729 

19683 

S 

1962 

3.0000 

77 

5929 

456533 

8.7750 

4.2543 

28 

784 

21952 

5 

2915 

3.0366 

78 

6084 

474552 

8.8318 

4.2727 

29 

841 

24389 

5 

3852 

3.0723 

79 

6241 

493039 

8.8882 

4.2908 

30 

900 

27000 

5.4772 

3.1072 

80 

6400 

512000 

8.9443 

4.3089 

3t 

961 

29791 

S..5678 

3.1414 

81 

6561 

531441 

9.0000 

4.3267 

33 

1024 

32768 

5.6569 

3.1748 

82 

6724 

.551368 

9.0554 

4-3445 

33 

io8q 

35937 

5.7446 

3.207s 

83 

6889 

571787 

9.1 104 

4.3621 

34 

1156 

39304 

5.8310 

3.2396 

84 

7056 

592704 

9.1652 

4.379s 

35 

1225 

4287s 

5.9161 

3.2711 

85 

7225 

61412s 

9.2195 

4.3968 

36 

I2q6 

46656 

6.0000 

3.3019 

86 

7396 

636056 

9.2736 

4.4140 

37 

1369 

S0653 

6.0828 

3.3322 

87 

7569 

658503 

93276 

4.4310 

38 

1444 

54872 

6.1644 

3.3620 

88 

7744 

681472 

9.3808 

4.4480 

39 

I52I 

59319 

6.2450 

3.3912 

89 

7921 

704969 

9.4340 

4.4647 

40 

1600 

64000 

6.3246 

3-4200 

90 

8100 

729000 

9.4868 

4.4814 

41 

I68I 

68921 

6.4031 

3.4482 

91 

8281 

753571 

9.5394 

4.4979 

42 

1764 

74088 

6.4807 

3.4760 

92 

8464 

778688 

9.5917 

4.5144 

43 

1849 

79507 

6.5574 

3.5034 

93 

8649 

804357 

9.6437 

4.5307 

44 

1936 

85184 

6.6332 

3.5303 

94 

8836 

830584 

96954 

4.5468 

45 

2025 

9112s 

6.7082 

3.5569 

95 

9025 

85737s 

9.7468 

4.5629 

46 

3II6 

97336 

6.7823 

3-5830 

96 

9216 

884736 

9.7980 

4-5789 

47 

2209 

103823 

6.8557 

3.6088 

97 

9409 

912673 

9.8489 

4.5947 

48 

2304 

110592 

6.9282 

3.6342 

98 

9604 

941192 

9.8995 

4.6104 

49 

2401 

117649 

7.0000 

3.6593 

99 

9801 

970299 

9.9199 

4.6261 

SO 

3500 

125000 

7.0711 

3.6840  j 

xoo 

lOOOO 

lOOOOOO 

10.0000 

4.6416 

MATHEMATICS 


33 


Squares,  Cubes,  Square  and  Cube  Roots  of  Numbers  from 

I    TO    lOOO 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

No. 

Square 

Cube 

Sq. 

Root 

Cube 
Root 

lOI 

10201 

1030301 

10.0499 

4.6570 

iSi 

22801 

3442951 

12.2882 

5.3251 

102 

10404 

1061208 

10.0995 

4.6723 

152 

23104 

351 1808 

12.3288 

5 

3368 

103 

10609 

1092727 

10.1489 

4.6875 

153 

23409 

3581577 

12.3693 

5 

348s 

104 

10816 

1124864 

10.1980 

4.7027 

154 

23716 

3652264 

12.4097 

5 

3601 

los 

11023 

1157625 

10.2470 

4.7177 

155 

24025 

372387s 

12-4499 

5 

3717 

106 

11236 

1191016 

10.2956 

4.7326 

156 

24336 

3796416 

12-4900 

5 

3&32 

107 

1 1449 

1225043 

10.3441 

4.747S 

157 

24649 

3869893 

12-5500 

5 

3947 

108 

11664 

1259712 

10.3923 

4.7622 

158 

24964 

3944312 

12.5698 

5 

4061 

109 

11881 

1295029 

10.4403 

4.7769 

159 

252S1 

4019679 

12.6095  5 

4173 

110 

I3IOO 

133 1000 

10.4881 

4.7914 

160 

25600 

4096000 

12.6491 

5 

4288 

III 

I232I 

1367631 

10.S357 

4.80S9 

161 

25921 

4173281 

12.6886 

5.4401 

112 

I2S44 

1404928 

10.5830 

4.8203 

162 

26244 

4251528 

12.7279 

5 

4514 

"3 

12769 

1442897 

10.6301 

4.8346 

163 

26569 

4330747 

12.7671 

5 

4626 

114 

12996 

1481544 

10.6771 

4.8488 

164 

26896 

4410944 

12.8062 

5 

4737 

115 

1322s 

1520875 

10.7238 

4.8629 

165 

27225 

4492125 

12.8452 

5 

4848 

116 

13456 

1560896 

10.7703 

4.8770 

166 

27556 

4574296 

12-8841 

5 

4939 

117 

13689 

1601613 

10.8167 

4.8910 

167 

27889 

4657463 

12.9228 

5 

5069 

118 

13924 

1643032 

10.8628 

4.9049 

168 

28224 

4741632 

12.9615 

5 

3178 

119 

14161 

1685159 

10.9087 

4.9187 

169 

28561 

4826809 

13.0000 

5 

3288 

120 

14400 

1728000 

10.954s 

^•9324 

170 

28900 

4913000 

13.0384 

5 

3397 

121 

1464I 

1771361 

11.0000 

4.9461 

171 

29241 

S000211 

13.0767 

S.5SOS 

122 

14884 

1815848 

11.0454 

4.9597 

172 

29584 

5088448 

13.1149 

5.5613 

123 

15129 

1860867 

11.0905 

4-9732 

173 

29929 

S177717 

13.1529 

5-3721 

124 

15376 

1906624 

11.1355 

4.9866 

174 

30276 

5268024 

13.1909 

S-3828 

125 

1562s 

195312s 

11.1803 

S.oooo 

175 

30625 

S35937S 

13.2288 

5-5934 

126 

15876 

2000376 

11.2250 

S.0133 

176 

30976 

5451776 

13.2665 

5-6041 

127 

16129 

2048383 

11.2694 

5.0265 

177 

31329 

5545233 

13.3041 

S-6147 

128 

16384 

2097152 

11.3137 

S-0397 

178 

31684 

5639752 

13.3417 

5.6252 

129 

1 664 1 

2146689 

11.3578 

5-0528 

179 

32041 

5735339 

13.3791 

56357 

130 

16900 

2197000 

11.4018 

5.0658 

180 

32400 

5832000 

13.4164 

5.6462 

131 

17161 

2248091 

11.4455 

S.0788 

181 

32761 

S929741 

13.4536 

3.6367 

132 

17424 

2  299968 

11.4891 

5.0916 

182 

33124 

6028568 

13.4907 

3.6671 

^ii 

17689 

2352637 

11.5326 

5.1045 

183 

33489 

6128487 

13.5277 

5-6774 

134 

17956 

2406104 

11-5758 

5.1172 

184 

33856 

6229504 

13.5647 

S-6877 

133 

1822s 

246037s 

II. 6190 

5. 1299 

185 

34225 

6331625 

13-6015 

5.6980 

136 

18496 

2515456 

11.6619 

5.1426 

186 

34596 

6434856 

13-6382 

5.7083 

137 

18769 

2571353 

11.7047 

5.1551 

187 

34969 

6339203 

13-6748 

5.718s 

138 

19044 

2628072 

11-7473 

5.1676 

188 

35344 

6644672 

13.7113 

S.7287 

139 

19321 

2685619 

11. 7898 

S.1801 

189 

35721 

6751269 

13.7477 

5.7388 

140 

19600 

2744000 

11.8322 

5.1925 

190 

36100 

6859000 

13.7840 

5.7489 

X41 

1988  X 

2803221 

11.8743 

S.2048 

191 

36481 

6967871 

13.8203 

5  7590 

142 

20164 

2863288 

11.9164 

5.2171 

192 

36864 

7077888 

13-8564 

5 

7690 

143 

20449 

2924207 

11.9583 

5. 2293 

193 

37249 

7189057 

13-8924 

5 

7790 

144 

20736 

2985984 

12.0000 

5.241S 

194 

37636 

7301384 

139284 

5 

7890 

14s 

21025 

3048625 

12.0416 

5.2536 

195 

3802  s 

7414875 

13-9642 

5 

7989 

146 

2I3I6 

3112136 

12.0830 

5.2656 

196 

38416 

7529536 

14.0000 

3 

8088 

147 

21609 

3176523 

12.1244 

5.2776 

197 

38809 

7645373 

14.0357 

5 

8186 

148 

21904 

3241792 

12.1655 

52896 

198 

39204 

7762392 

14.0712 

5 

828s 

149 

22201 

3307049 

12.2066 

S.301S 

199 

39601 

7880599 

14.1067 

5 

8383 

150 

22500 

3375000 

12.2474 

5.3133 

200 

40000 

8000000 

14.1421 

5-8480 

34      .METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

i)yL"AR£S,  Cubes,  Square  akd  Cube  Roots  of  Numbers  from 

I    TO    lOOO 


No 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

20t 

40401 

81 20601 

14-1774 

5-8578 

2SI 

63001 

15813251 

15-8430 

6.30S0 

20  2 

40804 

8242408 

14.2127 

5.8675 

252 

63504 

16003008 

15-8745 

6.3164 

203 

41209 

8365427 

14.2478 

5-S771 

253 

64009 

16194277 

15.9060 

6.3247 

204 

41616 

8489664 

14.2829 

5.8868 

254 

64516 

16387064 

15-9374 

6.3330 

20s 

42025 

8615125 

14.3178 

S-8964 

255 

65025 

1658137s 

15-9687 

6-3413 

206 

42436 

8741816 

14.3527 

S-90SO 

256 

65536 

16777216 

16.0000 

6.349<i 

207 

42849 

8869743 

14-3875 

S-9155 

257 

66049 

16974593 

16.0312 

6-3579 

208 

45264 

8998912 

14.4222 

5-9250 

258 

66564 

17173512 

16.0624 

6.3661 

209 

43681 

9129329 

14-4568 

S-9345 

259 

67081 

17373979 

16.0935 

6.3743 

210 

44100 

9261000 

14.4914 

S-9439 

260 

67600 

17576000 

16.124s 

6.382s 

211 

44521 

9393931 

14-3258 

S-9533 

261 

681 2 1 

17779581 

16.ISSS 

6.3907 

212 

44944 

9528128 

145602 

S-9627 

262 

68644 

17984728 

16.1864 

6.3988 

213 

45369 

9663597 

14-5945 

S-9721 

263 

69169 

18191447 

16.2173 

6.4070 

214 

45796 

9800344 

14.6287 

5.9814 

264 

69696 

18399744 

16.2481 

6.4151 

215 

46225 

9938375 

14.6629 

S-9907 

265 

70225 

18609625 

16.2788 

6.4232 

216 

46656 

10077696 

14.6969 

6.0000 

266 

70756 

18821006 

16.3095 

6.4312 

217 

47089 

10218313 

14-7309 

6.0092 

267 

71289 

19034163 

16.3401 

6.4393 

218 

47524 

10360232 

14-7648 

6.0185 

268 

71824 

19248832 

16.3707 

6.4473 

219 

47961 

10503459 

14-7986 

6.0277 

269 

72361 

19465109 

16.4012 

6.4553 

2iO 

48400 

10648000 

14.8324 

6.0368 

270 

72900 

19683000 

16.4317 

6.4633 

021 

48841 

10793861 

14.8661 

6.04S9 

271 

73441 

19902511 

16.4621 

6.4713 

222 

49284 

10941048 

14-8997 

6.0550 

272 

73984 

20123648 

16.4924 

6.4792 

223 

49729 

11089567 

14-9332 

6.0641 

273 

74529 

20346417 

16.5227 

6.4872 

224 

SOI  76 

11239424 

14.9666 

6.0732 

274 

75076 

20570824 

16.5529 

6-4951 

225 

5062s 

11390625 

15.0000 

6.0822 

275 

7562s 

2079687s 

16.5831 

6.5030 

226 

51076 

11543176 

15-0333 

6.0912 

276 

761,6 

21024576 

16.6132 

6.5108 

227 

51529 

11697083 

15.0665 

6.1002 

277 

76729 

21253933 

16.6433 

6.5187 

228 

51984 

11852352 

15-0997 

6.1091 

278 

77284 

21484952 

16.6733 

6.526s 

229 

52441 

1 2008989 

15-1327 

6.1180 

279 

77841 

21717639 

16.7033 

6.5343 

230 

52900 

12167000 

15-1658 

6.1269 

280 

78400 

21952000 

16.7332 

6.5421 

231 

S3361 

12326391 

1 5- 1987 

6.1358 

281 

78961 

22188041 

16.7631 

6.5499 

232 

53824 

12487168 

15-231S 

6.1446 

282 

79524 

22425768 

16.7929 

6.5577 

233 

54289 

12649337 

iS-2643 

6.1534 

283 

80089 

22665187 

16.8226 

6.5654 

234 

54756 

1 281 2904 

15-2971 

6.1622 

284 

80656 

22906304 

16.8523 

6.5731 

23s 

55225 

12977875 

15-3297 

6.1710 

28s 

81225 

23149125 

16.8819 

6.5808 

236 

55696 

13144256 

15-3623 

6.1797 

286 

81796 

23393656 

16.911S 

6.5885 

237 

56169 

13312053 

15-3948 

6.188s 

287 

82369 

23639903 

16.9411 

6.5962 

238 

56644 

13481272 

15-4272 

6.1972 

288 

82944 

23887872 

16.9706 

6.6039 

239 

S7I2I 

13651919 

15-4,596 

6.2058 

289 

83521 

24137569 

17.0000 

6.611S 

240 

57600 

13824000 

iS-4919 

6.214s 

290 

84100 

24389000 

17.0294 

6.6191 

241 

S8081 

13997521 

IS-S242 

6.2231 

291 

84681 

24642171 

17.0587 

6.6267 

242 

58564 

14172488 

15-5563 

6.2317 

292 

85264 

24897088 

17.0880 

6.6343 

243 

59049 

14348907 

15-S885 

6.2403 

293 

85849 

25153757 

17.1172 

6.6419 

244 

59536 

14526784 

15-6205 

6.2488 

294 

86436 

25412184 

17.1464 

6.6494 

245 

6002  s 

1470612s 

iS-6525 

6.2573 

295 

8702s 

25672375 

17.1756 

6.6569 

246 

60516 

14886936 

iS-6844 

6.2658 

296 

87616 

25934336 

17.2047 

6.6644 

247 

61009 

15069223 

15.7162 

6.2743 

297 

88209 

26198073 

17.2337 

6.6719 

248 

61504 

15252992 

15-7480 

6.2828 

298 

88804 

26463592 

17.2627 

6.6794 

249 

62001 

15438249 

15-7797 

6.2912 

209 

89401 

26730899 

17.2916 

6.6869 

250 

62500 

15625000 

15-8114 

6.2996 

300 

90000 

27000000 

17.320s 

6.6943 

MATHEMATICS 

35 

f  Squares,  Cubes, 

Square 

AND  Cube 

Roots  of  Numbers 

FROM 

I  TO  lOOO 

^-T  J.  Square 

Cube 

Sq. 
Root 

Cube 
Root 

No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

301 j  90601 

27270901 

17-3494 

6.7018 

351 

123201 

43243551 

18.7350 

7.0540 

302  91204 

27543608 

17.3781 

6.7092 

352 

123904 

43614208 

18.7617 

7.0607 

303  91S09 

2781S127 

17.4069 

6.7166 

333 

124609 

43986977 

18.7883 

7.0674 

304  92416 

28094464 

17-4356 

6.7240 

354 

125316 

44361864 

18.8149 

7.0740 

305  93025 

28372625 

17.4642 

6.7313 

355 

126025 

44738875 

18.8414 

7.0807 

306 1  93636 

28652616 

17.4929 

6.7387 

3S6 

126736 

45118016 

18.8680 

7-0873 

307,  94249 

28934443 

17.5214 

6.7460 

357 

127449 

45499293 

18.8944 

7.0940 

30S  94864 

2921S112 

17.5499 

6.7533 

358 

128164 

43882712 

18.9209 

7.1006 

309I  95481 

29503629 

17.5784 

6.7606 

359 

1288S1 

4626S279 

18.9473 

7.1072 

31D  96100 

29791000 

17.6068 

6.7679 

360 

129600 

46656000 

18.9737 

7.1138 

311  96721 

30080231 

17.6352 

6.77S2 

361 

130321 

47045881 

19.0000 

7.1204 

312,  97344 

3037132S 

17.6635 

6.7824 

362 

131044 

47437928 

19.0263 

7.1269 

315 

97969 

30664297 

17.6918 

6-7S97 

363 

131769 

47832147 

19.0526 

7-I33S 

314 

98596 

30959144 

17.7200 

6.7969 

364 

132496 

48228544 

19.078S 

7.1400 

315 

99225 

31255S75 

17.7482 

6.8041 

36s 

133225 

48627125 

19.1050 

7.1466 

316 

99856 

31354496 

17-7764 

6.8113 

366 

133956 

49027896 

19.1311 

7-1531 

317'  100489 

31855013 

17.8045 

6.818s 

367 

134689 

49430863 

19.1572 

7.1596 

31S  101124 

32157432 

17-8326 

6.8256 

[368 

135424 

49836032 

19-1833 

7.1661 

319  101761 

32461759 

17.8606 

6.8328 

369 

136161 

50243409 

19.2094 

7.1726 

320 

102400 

32768000 

17.888s 

6.8399 

j370 

136900 

S0653000 

19.2354 

7.1791 

321 

103041 

33076161 

17.9165 

6.8470 

371 

137641 

S 106481 I 

19.2614 

7-1855 

322 

103684 

33386248 

17.9444 

6.8541 

372 

138384 

51478848 

19.2873 

7.1920 

323 

104329 

33698267 

17.9722 

6.8612 

373 

139129 

51895117 

19.3132 

7.1984 

324 

104976 

34012224 

18.0000 

6.8683 

374 

139S76 

52313624 

19.3391 

7.204S 

325 

105625 

34328125 

18.0278 

6.8753 

375 

140625 

52734375 

19.3649 

7.2112 

326 

106276 

34645976 

18.0555 

6.8824 

376 

141376 

53157376 

19.3907 

7-2177 

327 

106929 

34965783 

18.0831 

6.8894 

377 

142129 

53582633 

19.4165 

7-2240 

328 

107584 

35287552 

18.1108 

6.8964 

378 

142884 

54010152 

19.4422 

7.2304 

329 

108241 

35611289 

1S.1384 

6.9034 

379 

143641 

54439939 

19.4679 

7.2368 

330 

108900 

35937000 

18.1659 

6.9104 

380 

144400 

54872000 

19.4936 

7.2432 

331 

109561 

36264691 

18.1934 

6.9174 

381 

145161 

55306341 

19.5192 

7.249s 

332 

110224 

36594368 

18.2209 

6.9244 

382 

145024 

55742968 

19.5448 

7.2558 

333 

110889 

36926037 

18.2483 

6.9313  ' 

383 

146689 

56181887 

19.5704 

7.2622 

334 

111556 

37259704 

18.2757 

6.9382  , 

384 

147456 

56623104 

19.5959 

7.2685 

335 

112225 

37595375 

18.3030 

6.9451  1 

385 

148225 

57066625 

19.6214 

7.2748 

336 

112896 

37933056 

18.3303 

6.9521  1 

386 

14S996 

57512456 

19.6469 

7.2811 

337 

113569 

38272753 

18.35-76 

6.9589  i 

387 

149769 

57960603 

19.6723 

7.2874 

338 

114244 

38614472 

18.3848 

6.9658 

388 

150544 

58411072 

19.6977 

7.2936 

339 

114921 

38958219 

18.4120 

6.9727 

389 

151321 

58863869 

19-7231 

7.2999 

340 

II5600 

39304000 

18.4391 

6.979s 

390 

152100 

59319000 

19.7484 

7.3061 

341 

I16281 

39651821 

18.4662 

6.9864 

391 

152881 

59776471 

19.7737 

73124 

342 

116964 

40001688 

18.4932 

6.9932 

392 

153664 

60236288 

19.7990 

7.3186 

343 

117649  40353607 

18.5203 

7.0000 

393 

154449 

60698457 

19.8242 

7.3248 

344 

118336 

40707584 

18.5472 

7.0068 

394 

155236 

61162984 

19.8494 

7.3310 

345 

119025 

41063625 

18.5742 

7.0136 

395 

156025 

61629875 

19.8746 

7-3372 

346 

119716 

41421736 

18.6011 

7.0203 

396 

156S16 

62099136 

19.8997 

7-3434 

347 

120409 

41781923 

18.6279 

7.0271 

397 

157609 

62570773 

19.9249 

7-3496 

348 

121104;  42144192 

18.6548 

7.0338 

398 

158404 

63044792 

19.9499 

7-3358 

349 

1 2 1801 

42508549 

18.6815 

7.0406 

399 

159201 

63521199 

19.9750 

7-3619 

350 

122500 

42875000 

18.7083 

7.0473 

400 

160000 

64000000 

20.0000 

7.3681 

30      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Squares,  Cubes,  Square  and  Cube  Roots  of  Numbers  from 
I  TO  looo 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

'no. 

1 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

401 

I 6080 I 

64481201 

20.0250 

7.3742 

451 

203401 

91733S51 

21.2368 

7.6688 

402 

161604 

64964S08 

20.0499 

7.3S03 

452 

204304 

92345408 

21.2603 

7.6744 

403 

162409 

65450827 

20.0749 

7-3864 

433 

205209 

92959677 

21.2838 

7.6800 

404 

163216 

65939264 

20.0998 

7.392s 

454 

2o6n6 

93576664 

21-3073 

7-6857 

40s 

16402s 

6643012s 

20.1246 

7-3986 

4SS 

207025 

94196375 

21.3307 

7.691+ 

406 

164836 

66923416 

20.1494 

7-4047 

4S6 

207936 

94818816 

21.3542 

7.6970 

407 

163649 

67419143 

20.1742 

7.4108 

457 

208849 

95443993 

21.3776 

7.7026 

408 

166464 

67917312 

20.1990 

7.4169 

458 

209764 

96071912 

21.4009 

7.7082 

409 

167281 

68417929 

20.2237 

7.4229 

459 

210681 

96702579 

21.424.5 

7.7138 

410 

168100 

68921000 

30.2485 

7.4290 

460 

311600 

97336000 

21.4476 

7-7194 

411 

168921 

69426531 

20.2731 

7.43SO 

461 

2I2S21 

97972181 

21.4709 

7.7250 

412 

169744 

69934528 

20.2978 

7 

4410 

462 

213444 

98611128 

21.4942 

7.7306 

413 

170569 

70444997 

20.3224 

7 

4470 

463 

214369 

99252847 

21.5174 

7-7362 

414 

171396 

70957944 

20.3470 

7 

4S30 

464 

215296 

99897344 

21.5407 

7-7418 

41S 

172225 

7147337s 

20.3715 

7 

4S90 

46s 

216225 

100544625 

21.5639 

7-7473 

416 

173056 

71991296 

20.3961 

7 

4650 

466 

217156 

101 194696 

21.5870 

7-7529 

417 

173889 

72511713 

20.4206 

7 

4710 

467 

218089 

101847563 

21.6102 

7-7584 

418 

174724 

73034632 

20.4450 

7 

4770 

468 

219024 

102503232 

21.6333 

77639 

419 

175561 

73560059 

20.4695 

7 

4829 

469 

219961 

103161709 

21.6564 

7.769s 

420 

176400 

74088000 

20.4939 

7.4889 

470 

220900 

103823000 

21.679s 

7.7750 

421 

177241 

74618461 

20.5183 

7.4948 

471 

22184I 

104487111 

21.7025 

7.780s 

422 

178084 

75151448 

20.5426 

7.5007 

472 

222784 

105154048 

21.7256 

7.7860 

423 

178929 

75686967 

20.5670 

7-5067 

473 

223729 

105823817 

21.7486 

7.791s 

424 

179776 

76225024 

20.5913 

7.5126 

474 

224676 

106496424 

21.7715 

7.7970 

42s 

18062s 

76765625 

20.6155 

7-5185 

475 

225625 

107171875 

21-7945 

7.802s 

426 

181476 

77308776 

20.6398 

7-5244 

476 

226576 

107850176 

21.8174 

7.8079 

427 

182329 

77854483 

20.6640 

7-5302 

477 

227529 

108531333 

21.8403 

7.8134 

428 

183184 

78402732 

20.6882 

7-5361 

478 

22S484 

109215352 

21.8632 

7.8188 

429 

184041 

78953589 

20.7123 

7.5420 

479 

229441 

109902239 

21.8861 

7.8243 

430 

184900 

79507000 

20.7364 

7.5478 

480 

230400 

110592000 

21.9089 

7.8297 

431 

185761 

80062991 

20.760s 

7.SS37 

481 

23I361 

III284641 

21.9317 

7-8352 

432 

186624 

80621568 

20.7846 

7-5595 

482 

232324 

11198016S 

21.9545 

7-8406 

433 

187489 

81182737 

20.8087 

7-5654 

483 

233289 

112678587 

21.9773 

7.8460 

434 

188356 

81746504 

20.8327 

7-5712 

U84 

234256 

113379904 

22.0000 

7.8314 

435 

18922s 

82312875 

20.8567 

7-5770 

48s 

235225 

114084125 

22.0227 

7.8568 

436 

190096 

82881856 

20.8806 

7.5828 

486 

236196 

114791256 

22.04S4 

7.8622 

437 

190969 

83453453 

20.9045 

7.5886 

487 

237169 

I 15501303 

22.0681 

7.8676 

438 

191844 

84027672 

20.9284 

7.5944 

488 

238144 

116214272 

22.0907 

7-8730 

439 

192721 

84604519 

20.9523 

7.6001 

489 

239121 

116930169 

22.1133 

7-8784 

440 

193600 

85184000 

20.97(^2 

7.6059 

490 

240100 

117649000 

22.1359 

7-8837 

441 

I 9448 I 

85766121 

21.0000 

7.6117 

491 

24I081 

118370771 

22.1585 

7.8891 

442 

195364 

86350888 

21.0238 

7.6174 

492 

242064 

119095488 

22.1811 

7.8944 

443 

196249 

86938307 

21.0476 

7.6232 

493 

243049 

119823157 

22.2036 

7.8998 

444 

197136 

87528384 

21.0713 

7.6289 

494 

244036 

120553784 

22.2261 

7.9051 

445 

198025 

8812112s 

21.0950 

7.6346 

495 

24502s 

12128737s 

22.2486 

7.910S 

446 

198916 

88716536 

21.1187 

7.6403 

496 

246016 

122023936 

22.2711 

7.9158 

447 

199809 

89314623 

21.1424 

7.6460 

497 

247009 

122763473 

22.2935 

7.9211 

448 

200704 

89915392 

21.1660 

7.6517 

498 

248004 

123505992 

22.3159 

7.9264 

449 

201601 

90518849 

21.1896 

7-6574 

409 

249001 

1242S1499 

22.3383 

7-9317 

450 

202500 

91125000 

21.2132 

7.6631 

Soo 

250000 

125000000 

22.3607 

7-9370 

MATHEMATICS 


37 


Squases,  Cubes,  Square  and  Cube  Roots  of  NtrMBERS  from 
I  to  iooo 


Na 

Square 

Cube 

Sq.    Cube 
Root   Root 

No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

SOI 

2SIOOI 

125751501 

22.3830 

7.9423 

551 

303601  167284151 

23.4734 

8.1982 

S02 

252004 

126506008  22.4054 

7.9476 

552 

304704  163196608:23.4947 

8.2031 

S03 

253009 

127263527  22.4277 

7-9328 

533 

305809  169112377123. 5160J  8.2o8t 

504 

254016 

128024064  22.4499 

7-9381 

534 

306916  170031464J23.5372  8.2130 

50s 

25502s 

128787625  22.4722 

7-9634 

333 

308025!  170953875; 23-5584  8.2180 

S06 

256036 

129554216  22.4944 

7.96S6 

i556 

309136.  171879616  23.5797  8.2229 

S07 

257049 

130323843  22.5167 

7-9739 

|537 

310249  172808693123.6008  8.2278 

508 

258064 

131096312  22.5389 

7-9791 

558 

311364  17374II12'23.6220,  8.2327 

S09 

259081 

I3l872229'22.56lO 

7-9843 

l5S9 

312481 

174676S79'23.6432;  8.2377 

510 

260x00 

i326siooo'22.5832 

7-9S96 

:s6o 

313600 

175616000 

23.6643]  8.2426 

S" 

261x21 

133432831  22.6053 

7-9948 

561 

314721 

176558481 

23.68541  8.247s 

512 

262144 

134217728122.6274 

8.0000  . 

562 

313844 

177504328  23.7065!  8.2524 

S13 

263160 

135005697  22.6495 

8.0032 

563 

316969 

178453547  23.7276  8.2573 

514 

264196 

135796744  22.6716 

8.0104 

564 

318096 

179406144  23.7487  8.2621 

SIS 

265225 

136590875  22.6936 

8.0156 

56s 

319225 

180362125 '23.7697  8.2670 

S16 

266256 

i37388o96|22.7is6 

8.0208 

1566 

320356 

181321406  23.790S  8.2719 

517 

267289 

138188413,22.7376 

8.0260 

1567 

321489 

i82284263'23.8iiS,  8.2768 

S18 

268324 

l3899i832;22.7S96 

8.0311 

568 

322624 

183250432123.8328;  8.2816 

S19 

269361 

139798359  22.7816 

8.0363 

569 

323761 

184220009  23.8537  8.2865 

S20 

270400 

140608000  22.8035 

1 

8.041s 

570 

324900 

185193000' 23.8747  8.2913 

S21 

271441 

141420761  22.8254 

8.0466 

571 

326041 

186169411  23.8956I  8.296a 

S22 

272484 

142236648  22.8473 

8.0517 

572 

327184 

187149248123.9165:  8.3010 

523 

273529 

143055667  22.8692 

8.0569 

373 

328329 

188132517  23-9374'  8.303g 

524 

274576 

143877824  22.8910 

8.0620 

374 

329476 

l89ii9224'23.9s83  8.3107 

523 

275625 

144703125  22.9129 

8.0671 

573 

330625 

190109375,23.9792'  8.315s 

526 

276676 

145331576  22.9347 

8.0723 

576 

331776 

I9ii02976|24.oooo  8.3203 

527 

277729 

146363183  22.9565 

8.0774 

577 

332929 

192100033  24.0208  8.3251 

528 

278784 

147197952  22.9783 

8.0825 

578 

334084 

193100552  24.0416  8.3300 

529 

279841 

14803  5889 '23. 0000 

8.0876 

579 

335241 

19410453924-0624  8.3348 

530 

280900 

148877000  23.0217 

1 

8.0927 

580 

336400 

195112000  24.0832  8.3396 
1      1 

S3I 

281961 

1 
149721 291  23.0434 

8.0978 

381 

337561 

1 
196122941  24.1039I  8.3443 

532 

283024 

15056876S  23.0651 

8.1028 

582 

338724 

I97i3736ii  24.1247!  8.3491 

533 

284089 

151419437  23.086S 

8.1079 

^P 

339889 

198155287  24.1454  8.3539 

534 

285156 

152273304  23.1084 

8.1130 

584 

341036 

199176704  24.1661;  8.3587 

535 

286225 

133130373  23-1301 

8.1180 

S8S 

342225 

200201625  24.1868 

8.3624 

536 

287296 

133990656  23.1517 

8.1231  1 

SS6 

343396 

201230056  24.2074 

8.3682 

537 

288369 

154854133  23.1733 

8.1281  i 

587 

344369 

202262003  24.2281 

8.3730 

538 

289444 

155720872  23.1948 

8.1332  . 

588 

343744 

203297472  24.2487 

8.3777 

539 

290521 

156590819  23.2164 

8.1382 

589 

346921 

204336469 '24. 2693 

8.3S2S 

S40 

291600 

157464000  23.2379 

8.1433 

590 

348100 

205379000  24.2899 

8.387a 

541 

292681 

158340421  23.2594 

8.1483 

391 

349281 

2o642507i;24.3ios  8.3910 

542 

293764 

159220088  23.2809 

8.1533 

592 

330464 

207474688  24.33111  8.3967 

543 

294849 

160103007  23.3024 

8.1583 

593 

331649 

208527857124.3516,  8.4014 

544 

295936 

160989184  23.3238 

8.1633 

594 

332836 

209584384  24.3721'  8.4061 

54S 

297025 

161878625  23.3452 

8.1683 

595 

334025 

210644875  24.3926  8.4108 

546 

298116 

162771336  23.3666 

8.1733 

596 

335216 

2il7o8736'24.4i3i  8.4155 

547 

299209 

163667323  23.3880 

8.1783 

597 

336409 

212776173  24.4336  8.4202 

548 

300304 

164366592  23.4094 

8.1833 

598 

357604 

213847192  24.45401  8.4249 

549 

301401 

165469149  23.4307 

8.1882 

599 

338801 

214021799  24.4715  8.4296 

550 

302500 

166375000  23.4521 

8.1932 

600 

360000 

216000000  24.4949  8.4343 

38      MET.AXLURGISTS  AND  CHEMISTS'  HANDBOOK 
Squares,  Cubes,  Square  and  Cube  Roots  of  Numbers   from 

I    TO    lOOO 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

6oi 

361201 

217081801 

24.5153 

8.4390 

631 

423801 

275894451 

25.5147 

8.6663 

602   362404 

218167208:24.5357 

8.4437 

652 

425104 

277167808 

25.5343 

8.6713 

603  363609 

219256227  24.5561 

8.4484 

653 

426409 

278445077 

25S539 

8.6757 

604  364816 

220343864'24.5764 

8.4530 

654 

427716 

279726264 

25.5734 

8.6801 

60s  36602s 

221445125  24.5967 

8.4577 

655 

429025 

28101137s 

25.5930 

8.684s 

606  367236 

222345016  24.6171 

8.4623 

656 

430336 

282300416 

25.6125 

8.6890 

607  36S449 

22364S543  246374 

8.4670 

657 

431649 

283593393 

25.6320 

8.6934 

608  369664 

224-557l2'24.6577 

8.4716 

658 

432964 

284890312 

25.6515 

8.6978 

609  370881 

225S66529  24.6779 

8.4763 

659 

434281 

286191179 

25.67:0 

8.7022 

610  372100 

226981000  24.6982 

8.4809 

660 

435600 

287496000 

25.6905  8.7066 

611  373321 

228099131  24.7184 

8.4836 

661 

436921 

288804781 

1 
25.7099  8.7110 

612  374S44 

229220928  24 

7386 

8.4902 

662 

438244 

290117328 

25.7294!  8.7154 

6i3  375-69 

230346397  24 

7S88 

8.4948 

663 

439569 

291434247 

25.7488 

8.7198 

614  376996 

231475544  24 

7790 

8.4994 

664 

440896 

292754944 

25.7682 

8.7241 

61S  378225 

23260.S375  24 

7992 

8.5040 

,66s 

442225 

29407962s 

25.7876 

8.728s 

6i6  379456 

233744896,24 

8193 

8.5086 

'666 

443556 

293408296 

25.8070 

8.7329 

6i7  3S0689 

234885113  24 

8395 

8.5132 

667 

444889 

296740963 

25.8263 

8.7373 

618  3S1924 

236029032  24 

8596 

8.5178 

668 

446224 

298077632 

25.8457 

8.7416 

619  383161 

237176659  24 

8797 

8.5224 

669 

447561 

299418309 

25.8650 

8.7460 

620  384400 

238328000  24.8998 

8.5270 

670 

448900 

300763000 

25.8844 

8.7503 

621  385641 

239483061  24.9199 

8.3316 

671 

430241 

'3021117H 

25.9037 

8.7547 

622  386884 

240641848  24.9399 

8.5362 

672 

451584 

303464448,23.9230 

8.7590 

623  388129 

241804367  24.9600 

8.5408 

673 

452929 

304821217J25.9422 

8.7634 

624  389376 

242970624  24.9800 

8.5453 

1674 

454276 

306182024125.9615 

8.7677 

625  390625 

244140625  25.0000 

8.5499 

1675 

455625 

307546873125.9808 

8.7721 

626  391876 

245314376  25.0200 

8.5544 

'676 

456976 

308915776126.0000 

8.7764 

627  393129 

246491883  25.0400 

8.5590 

677 

458329 

310288733  26.0192 

8.7807 

628  394384 

247673152  25.0599 

8.563s 

678 

459684 

3x1663732  26.0384 

8.7850 

629  395641 

248858189  23.0709 

8.5681 

679 

461041 

313046839I  26.0576 

8.7893 

630  396900 

250047000  23.0998 

j 

8.5726 

680 

462400 

314432000 

26.0768 

8.7937 

631  398161 

251239591  I2S."97 

8.5772 

681 

463761 

313821241 

26.0960 

8.7980 

632  399424 

252435968;25.1396 

8.5817 

682 

465124 

317214568  26.1151 

8.8oa3 

633  4006S9 

253636137  25.159s 

8.5862 

683 

466489 

318611987  26.1343 

8.8066 

634  401956 

254840104  25.1794 

8.5907 

1684 

467856 

320013504  26.1534 

8.8109 

635'  403225 

256047875  25.1992 

8.5952 

685 

469225 

32141912526.1725 

8.8132 

636  404496 

257259456  25.2190 

8.5997 

^^ 

470596 

322828836  26.1916 

8.8194 

637!  405769 

258474853  25.2389 

8.6043 

687 

471969 

324242703  26.2107 

8.8237 

638 1  407044 

259694072  23.2587 

8.6088 

1688 

473344 

323660672  26.2298 

8.8280 

639!  408321 

260917119  23.2784 

8.6132 

1689 

474721 

327082769  26.2488 

8.8323 

640 

409600 

262144000  25.2982 

8.6177 

690 

476100 

328509000,26.2679 

8.8366 

641 

410881 

263374721  23.3180 

8.6222 

691 

477481 

329939371  26.2869 

8.8408 

642'  412164 

264609288  23.3377 

8.6267 

692 

478864 

331373888,26.3059 

8.8431 

6431  413449 

263847707  25.3574 

8.6312 

693 

480249 

332812357  26.3249 

8.8493 

6441  414736 

267089984  25.3772 

8.6357 

694 

481636 

334235384  26.3439 

8.8536 

64s  41602s 

268336123  25.3969 

8.6401 

695 

48302s 

335702375  26.3629 

8.8578 

646:  417316 

269586136  25.4165 

8.6446 

696 

484416 

337153536,26.3818 

8.8621 

647 1  418609 

270840023  25.4362 

8.6490 

697 

485809 

338608873  26.4008 

8.8663 

648]  419904 

27209-792  25.4558 

8.6535- 

698 

487204 

340068392 '26.4197 

8.S706 

649  421 201 

273359449  25.4755 

8.6579 

699 

488601 

341532099I26.4386 

8.8748 

650  422500 

274623000  25.4951 

8.6624 

700 

490000 

34300000026.4575 

8.8790 

MATHEMATICS 


39 


Squares.  Cubes,  Square  and  Cube  Roots  of  Numbers   from 

I    TO    lOOO 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

Na 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

701 

491401 

344472101 

26.4764 

8.8833 

7SI 

564001 

423564751 

27.4044 

9.0896 

702 

492804 

343948408J  26.4953 

8.887s 

752 

565504 

425259008 

27.4226 

9-0937 

703 

494209'  347428927  26.5141 

8.8917 

753 

567009 

426957777 

27.4408 

9.0977 

704 

495616  34S913664  26.5330 

8.8959 

754 

568516 

428661064  27.4591 

91017 

70s 

497025  350402625  26.5518 

8.9001 

175S 

570025 

43036887527.4773 

9-1057 

706 

49S436 

351895816  26.5707 

8.9043 

756 

571536 

432081216  27.4955 

9.1098 

707 

499S49 

353303243  26.589s 

8.9085 

757 

573049 

433798093  27.5136 

9-1138 

708 

501264 

354894912^26.6083 

8.9127 

7S8 

574564 

435519512:27.53x8 

9.1178 

709 

502681 

356400829I26.6271 

8.9169 

759 

576081 

437245479  27.5500 

9.1218 

710 

504100 

357911000 

26.6458 

8.9211 

760 

577600 

438976000  27.5681 

9.1258 

711 

SOSS21 

3S042S43I 

26.6646 

8.9253 

761 

S79I2I 

440711081  27.5862 

9.1298 

712  S06944 

360944128  26.6S33 

8.9295 

762 

580644 

442450728  27.6043 

9-1338 

713 

508360 

362467097 '26.7021 

8.9337 

763 

582169 

444I94947«27.6225 

9-1378 

714 

509796 

363994344  26.7208 

8.9378 

764 

583696 

443943744  27.6405 

9.1418 

715 

SI1225 

365525875 

26.7395 

8.9420 

765 

585225 

447697125  27.6586 

9-1458 

716  312656 

367061696 

26.7582 

8.9462 

766 

586756 

449455096  27.6767 

9.1498 

717  514089 

368601813 

26.7769  8.9503 

767 

588289 

451217663  27.6948 

91537 

7i3  S15524 

370146232 

26.795s 

8.954s 

768 

589824 

452984832  27.7128 

9-1577 

719  516961 

371694959 

26.8142 

8.95S7 

769 

591361 

454756609 

27.7308 

9.1617 

720 

518400 

373248000 

26.8328 

8.9628 

770 

592900 

456533000 

27.7489 

9.1657 

721 

S19841 

374805361 

26.8514 

8.9670 

771 

594441 

458314011 

27.7669 

9.1696 

722 

521284 

376367048 

26.8701 

8.9711 

772 

595984 

460099648  27.7849 

9-1736 

723 

522729 

377933067 

26.8887 

8.9752 

773 

597529 

461889917  27.8029 

9-177S 

724 

524176 

379503424 

26.9072 

8.9794 

774 

599076 

463684824  27.8209 

9-181S 

72s 

525625 

381078125 

26.9258 

8.983s 

775 

600625 

465484375  27.8388 

9-185S 

726 

527076]  382657176 

26.9444 

8.9876 

776 

602176 

467288576  27.8568 

9-1894 

727 

528529'  384240583 

26.9629 

8.9918 

777 

603729 

469097433 '2  7-8747 

9-1933 

728  529984  385828332 

26.9815 

8.9959 

778 

605284 

470910952  27.8927 

9-1973 

729  531441 

387420489 

27.0000 

9.0000 

7-9 

606841 

472729139  27.9106 

9.2012 

730  532900 

389017000 

27.0185 

9.0041 

780 

608400 

474552000 

27.9285 

9.2052 

731  334361 

390617891 

27.0370 

9.0082 

781 

609961 

476379541 

27.9464 

9.2091 

7321  535824'  392223168:27.0555 

9.0123 

782 

611524 

47S211768 

27.9643 

9-2i.?o 

733'  537289  393832837  27.0740 

9.0164 

783 

613089 

480048687 

27.9821 

9.2170 

734!  538756,  395446904  27.0924 

9.020s 

7S4 

614656 

481890304 

28.0000 

9.2209 

735  540225;  397o65373|27-ii09 

9.0246 

78s 

616225 

483736625 

28.0179 

9.2248 

736^  541696  398688256^27.1293 

9.0287 

786 

617796 

485387656 

28.0357 

9.2287 

737;  543169'  400315553  27.147.7 

9.0328 

787 

619369 

487443403 

28.0533 

9-2326 

738;  544644'  401947272  27.1662 

9.0369 

788 

620944 

489303872 

28.0713 

9-2365 

739I  S46121 

•403583419I27.1846 

9.0410 

,789 

622521 

491169069 

28.0891 

9-2404 

740 

547600 

405224000  27.2029 

9.0450 

]790 

624100 

493039000 

28.1069 

9-2443 

741 

S49801 

406869021  27.2213 

9.0491 

791 

625681 

494913671 

28.1247 

9.2482 

742 

S50564I  408518488127.2397 

90532 

792 

627264 

496793088 

28.1425 

9.2521 

743 

552049'  410172407127.2580 

9.0572 

703 

6288.19 

498677257 

28.1603 

9.2560 

744 

533536  4ii830784'27.2764 

9.0613 

794 

630436 

500366184 

28.1780 

9- 2 599 

745 

555025  41349362527.2947 

9.0654 

795 

632025 

50245987s 

28.1957 

9-2638 

746 

556516I  415160936  27.3130 

9.0694 

796 

633616 

SO4358336 

28.2135 

9.2677 

747 

558009'  416832723  27.3313 

9073s 

797 

635209 

S06261573 

28.2312 

9.2716 

748 

559504'  418508992  27.3496 

9.077s 

798 

636804 

508169592 

28.2489 

9-2754 

749 

561001!  42018974927.3679 

9.0816 

799 

638401 

510082399 

28.2666 

9-2793 

7SOJ  562500!  421875000^27.3861 

9.0856 

800 

640000 

512000000 

28.2843 

9-2832 

40      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Squares,  Cubes,  Square  and  Cube  Roots  of  NtrMBERs  from 
1  to  iooo 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

Na 

Square 

Cube 

Sq.  1  Cube 
Root  ]  Root 

8oi 

641601 

513922401 

28.3019 

9.2870 

851 

724201 

616295051 

29.1719 

9.4764 

802  643204 

S15849608  28.3196 

9.2909 

852 

725904 

618470208!  29.1890 

9.4801 

803  644809 

517781627  28.3373 

9.2948 

853 

727609 

620650477129.2062 

9.4838 

804 1  646416 

519718464  28.3549 

9.2986 

854 

729316 

622835864  29.2233 

9.4875 

80s'  648025 

521660125  28.3725 

9-3025 

85s 

731025 

625026375129.2404 

9.4912 

8061  649636 

523606616  28.3901 

9-3063 

856 

732736 

6272220l6|29.257S 

9.4949 

8071  651249 

525557943  28.4077 

9.3102 

857 

734449 

629422793  29.2746 

9.4986 

808.  652864 

52751JI12  28.4253 

9-3140 

858 

736164 

631628712  29.2916 

95023 

809  654481 

529475129  28.4429 

9.3179 

859 

7378S1 

633839779  29.3087 

95060 

810 

656100 

531441000 

28.4605 

9-3217 

860 

739600 

636056000 

29-3258 

9-5097 

811 

657721 

533411731 

28.4781 

9-32SS 

86i 

741321 

638277381 

29.3428 

95134 

812 

659344 

535387328 

28.4956 

93294 

862 

743044 

640503928 

29.3598 

9-5171 

813 

660969 

537J67797 

28.5132 

9-3332 

863 

744769 

642735647 

29.3769 

9-5207 

814 

662596 

539353144 

28.5307 

9-3370 

864 

746496 

644972544 

29.3939 

9-5244 

815 

664225 

.541343375 

28.5482 

9-3408 

865 

748225 

647214625 

29.4109 

9-5281 

816  665856 

543338496 

28.5657 

9-3447 

866 

749956 

649461896 

29.4279 

95317 

817  667489 

545338513 

28.5832 

9-348S 

867 

751689 

651714363 

29.4449 

9-5354 

818  669124 

547343432  28.6007 

9-3523 

868 

753424 

653972032 

29.4618 

9-5391 

819 

670761 

549353259  2S.6182 

9-3561 

869 

755161 

656234909 

29.4788 

95427 

820 

672400 

551368000 

28.6356 

9-3599 

870 

756900 

658503000 

29.4958 

9-5464 

821 

674041 

SS3387661 

28.6531 

9.3637 

871 

758641 

660776311 

29.S127 

9-S501 

822  675684 

555412248 

28.6705 

9-367S 

872 

760384 

663054848 

29.5296 

9.5537 

823 

677329 

557441767 

28.6880 

9-3713 

873 

762129 

665338617 

29.5466 

9-5574 

824 

678976 

559476224 

28.7054 

9'3751 

874 

763876 

667627624  29.5635 

9.5610 

825 

680625 

561515625 

28.7228 

9-3789 

875 

765625 

669921875  29.5804 

9.5647 

826 

682276 

563559976 

28.7402 

9-3827 

876 

767376 

672221376129.5973 

9.5683 

827 

683929 

565609283 

28.7576 

0.386s 

877 

769129 

674526133 

29.6142 

9-5719 

828 

685584 

567663552 

28.7750 

9.3902 

878 

770884 

676836152 

29.6311 

9-5756 

829  687241 

569722789  28.7924 

9-3940 

879 

772641 

679IS14.?9 

29.6479 

^H^l 

830  688900 

571787000  28.8097 

9-3978 

880 

774400 

681472000 

29.6648 

9-5828 

831  690561 

573856191  28.8271 

9^016 

881 

776161 

683797841 

29.6816 

0-s86s 

832'  692224 

575930368,28.8444 

9-4053 

882 

777924 

6861 28968 1 29.698s 

9-S901 

833 

693889 

578009537 

28.8617 

9-4091 

883 

779689 

688465387  29.7153 

9-. 593  7 

834 

693556 

580093704 

28.8791 

9-4129 

884 

781456 

690807104  29.7321 

9-5973 

835 

697225 

582182875 

28.8964 

9.4166 

88s 

783225 

693154125I29.7489 

9.6010 

836 

698896 

584277056 

28.9137 

9-4204 

886 

784996 

695506456,29.7658 

9.6046 

837 

700569 

586376253 

28.9310 

9.4241 

887 

786769 

697864103  29.782s 

9.6082 

838 

702244 

588480472 

28.9482 

94279 

888 

788544 

700227072  29.7993 

9.6118 

83g 

703921 

590589719 

28.9655 

9-4316 

889 

790321 

702505369  29.8161 

9-6154 

840 

705600 

592704000 

28.9828 

9-4354 

890 

792100 

704969000  29.8329 

9.6190 

841 

707281 

594823321 

29.0000 

0-4391 

891 

793881 

707347971  29.8496 

9.6226 

842 

708964 

596947688129.0172 

9-4429 

892 

795664 

709732288  29.8664 

9.6262 

843 

710649 

599077107129.0345 

9.4466 

893 

797449 

712121957129.8831 

9.6298 

844 

712336 

60121x584  29.0517 

9.4503 

894 

799236 

714516984I29.8908 

96334 

84s 

714025 

6o335ii25'29.o6S9 

9.4541 

89s 

801025 

716917375  29.9166 

96370 

846 

715716 

605495736  29.0861 

9.4578 

896 

802816 

719323136  29.9333 

9.6406 

847 

717409 

607645423  29.1033 

9.461S 

897 

804609 

72173427329.9500 

9.6442 

848 

719104 

609800192  29.1204 

9-4652 

898 

806404 

724150792  29.9666 

96477 

849 

720801 

61 1960049  29.137^ 

9.4690 

890  808201 

7  265  7  2699!  299833 

9.6513 

850 

722500 

614125000  29.1548 

9.4727 

900  810000 

729000000:30.0000 

9.6S49 

MATHEMATICS 


41 


Squares,  Cubes,  Square  and  Cube  Roots  of  Numbers  from 

I    TO    lOOO 


No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

No. 

Square 

Cube 

Sq. 
Root 

Cube 
Root 

901 

8n8oi 

731432701 

30.0167 

9.6585 

951 

904401 

860085351 

30.8383 

9-8339 

902 

813604 

733870808  30.0333 

9.662a!  952 

906304 

86280140830.8545 

9-8374 

903 

815409 

736314327  30.0500 

9.6656  953 

908209 

865523177  30.8707 

9.8408 

904 

817216 

738763264  30.0666 

9.6692  954 

910116 

868250664  30.8869 

9-8443 

905 

819025 

74i2i7625'30.o832 

9.6727,  955 

912025 

870983875  30.9031 

9-8477 

906 

820836 

743677416  30.0998 

9.6763  956 

913936 

873722816  30.9192 

9-8511 

907 

822649 

746i42643'30.ll64 

9.6799  957 

915S49 

876467493 '30.9354 

9-8546 

908 

824464!  748613312  30.1330 

9.6834  958 

917764 

879217912  30.9316 

9-8580 

909 

826281!  75 1089429 '30. 1496 

9.6870,;  9^9 

919681 

8S1974079  30.9677 

9.8614 

910 

828100 

753571000:30.1662 

9.6905  960 

921600 

884736000I30.9839 

9-8648 

QH 

829921 

736058031 '30.1828 

9.6941'  961 

923521 

887503681  31.0000 

9.8683 

912 

831744 

758550528,30.1993 

9.6976  962 

925444 

890277128  31.0161 

9.8717 

913 

833569 

76104849-30.2159 

9.7012  963 

927369I  893056347  31-0322 

9-8751 

914 

835396 

76355194430.2324 

9.7047  964 

9292961  89584i344'3l-0483 

9.8783 

915" 

83722s 

766060875  30.2490 

9.7082  965 

931225'  89S632125  31.0644 

9.8819 

916 

839056 

76857529630.2655 

9.7118  966 

933156  90142S696  31.0805 

9-8854 

917 

840889 

771095213  30.2820 

9.7153  967 

935089'  904231063  31.0966 

9-8888 

918 

842724 

773620632 '30.2985 

9.7188  968 

Q37024;  907039232  31.1127 

9.8922 

919 

844561 

776151559  30.3150 

9.7224  969 

938961  909853209  31. 128S 

9-8956 

930 

846400 

778688000 

iO-33i5 

9.7259  970 

940900 

91267300031.1448 

9.8990 

921 

848241 

781229961 

30.3480 

9.7294  971 

942841 

915498611  31.1609 

9.9024 

922 

850084 

783777448 

30.3645 

9.7329;  972 

944784'  918330048  31.1769 

99058 

923 

851929 

786330467 

30.3809 

9.7364,  973 

946729'  921167317  31.1929 

9.9092 

924 

853776 

788889024 

30.3974 

9.740<:^:  974 

948676  924010424  31.2090 

9.9126 

92s 

855625 

791453125  30.4138 

9-7435  975 

930625 

926859375  31.2250 

9.9160 

926 

857476 

79402277630. 4302 

9.7470  976 

952376 

929714176  31.2410 

9.9194 

927 

859329 

796597983 '30.4467 

9-7505  977 

954529 

932574833'3i-2570 

9.9227 

928 

861 184 

799178752  30.4631 

9.7540  978  j  956484 

933441352  31-2730:  9.9261 

929 

863041 

8017650S9  30.4795 

9-7575  979 !  958441 

938313739  31-2S90 

9-9295 

930 

864900 

804357000  30.4959 

9.761O1  980 

960400 

94119200031.3050 

9-9329 

931 

866761 

806954491  30.5123 

9.7645  981 

962361 

944076141 131.3209 

99363 

932 

868624 

809557568  30.5287 

9.7680  982 

964324 

946966168  31.3369 

9-9396 

933 

870489  8i2i66237|3o.545o 

9-7715  983  966289 

949862087  31.3528!  9-9430 

934 

8723561  8i47So504'30.56i4 

9-7750  984 

968256 

952763904 

31.3688  9.9464 

93S 

874225,  81740037530.5778 

9.7785  985 

970225 

955671625 

31.384-  9.9497 

936 

876096  82002585630.5941 

9.7819  986 

972196 

958585256 

3i.40o6j  9-9531 

937 

877969 

822656953  30.6105 

9-7854  987 

974169 

961504803 

31.4166  9.9565 

938 

879844 

825293672  30.6268 

9.7889,  9S8 

976144 

964430272 

31-4325 

9-9598 

939 

881721 

827936019  30.6431 

9.7924:  989 

978121 

967361669 

31-4484 

9.9632 

940 

883600 

830584000  30-6594 

9-7959  990 

980100 

970299000 

31-4643 

9.9666 

941 

885481 

833237621  30.6757 

i 
9-7993  991 

982081 

973242271 

31.4802 

9.9699 

942 

887364 

83589688830.6920 

9.8028  992 

984064 

976191488J31.4960 

9-9733 

943 

889249 

838561807I30.7083 

9.8063  993 

986049 

979146657  31.5119 

9.9766 

944 

891 136 

841232384  30.7246 

9.8097  994 

988036 

982107784  31.5278  9.9800 

945 

893025  843908625  30.7409 

9-8132!  995 

990025 

985074875I31.S436  9-9833 

946 

8949:6,  846590536  30.7571 

9.8167  996 

992016 

988o47936|3i-5505  9-9866 

947 

896809 

84927812330.773.1 

9.8201  997 

994009 

991026973 I3I-5753  9-9900 

948 

898704 

85197139230.7896 

9.8236  998 

996004 

994011992131-5911  9-9933 

949 

900601 

85467034930.8058 

9.8270  999 

998001 

997002999I31.6070  9-9967 

9SO 

902500 

85737SOOOJ30.8221 

9.8305  1000  1000000 

ll    1 

100000000031.6228  10.0000 

42      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

LOGAKITHMS    OF    NuMIJEHS 


\ 

0  j   1 

*■ 

3 

4 

.5 

0 

7 

8 

9 

10 

0000 

0043 

0080 

0128 

0170 

0212 

0253 

0294 

0334 

0374 

11 

0414 

0453 

0492 

0531 

0509 

0007 

0045 

0082 

0719 

0755 

12 

0792 

0828 

0864 

0899 

0934 

0909 

1004 

1038 

1072 

1106 

13 

1139 

1173 

1200 

1239 

1271 

1.303 

1335 

1367 

1399 

1430 

14 

1401 

1492 

1523 

1553 

15&4 

1014 

1644 

1073 

1703 

1732 

15 

1701 

1790 

1818 

1847 

1875 

1903 

1931 

19.59 

1987 

2014 

16 

2041 

2008 

2095 

2122 

2148 

2175 

2201 

2227 

22.53 

2279 

17 

2304 

2330 

2;555 

23S0 

2405 

24:«) 

2455 

2480 

2504 

2529 

18 

2.-53 

2577 

2001 

2025 

2048 

2072 

2095 

2718 

2742 

2705 

19 

2788 

2810 

2833 

28r6 

2878 

2900 

2923 

2945 

2967 

2989 

20 

3010 

3032 

3054 

3075 

3096 

3118 

3139 

3160 

3181 

3201 

21 

3222 

3243 

3203 

3284 

3304 

3324 

3345 

3305 

3385 

3404 

22 

3424 

3444 

340-1 

3483 

3502 

3522 

3.541 

3500 

3579 

3598 

23 

3017 

30:J6 

3055 

3074 

3092 

3711 

3729 

3747 

3766 

3784 

24 

3802 

3820 

3838 

3856 

3874 

3892 

3909 

3927 

3945 

3962 

25 

3979 

3997 

4014 

4031 

4048 

4065 

4082 

4099 

4116 

4133 

26 

4150 

4106 

4183 

4200 

4216 

4232 

4249 

4205 

4281 

4298 

27 

4314 

4330 

4346 

4362 

4378 

4393 

4409 

4425 

4440 

4450 

28 

4472 

4487 

4502 

4518 

45.33 

4548 

4504 

4579 

4594 

4609 

29 

4624 

4039 

4654 

4669 

4683 

4698 

4713 

4728 

4742 

4757 

30 

4771 

47SG 

4800 

4814 

4829 

4843 

4857 

4871 

4886 

4900 

31 

4014 

492S 

4942 

4955 

4909 

4983 

4097 

5011 

5024 

5038 

32 

5051 

5005 

5079 

5092 

5105 

5119 

5132 

5145 

51.59 

5172 

33 

5185 

5198 

5211 

.5224 

5237 

5250 

5203 

5270 

5289 

5302 

34 

5315 

5328 

5340 

5353 

5360 

5378 

5391 

5403 

5410 

5428 

35 

5441 

5453 

5465 

5478 

5490 

5502 

5514 

•  5527 

5539 

5551 

36 

5503 

5575 

.5587 

5599 

.5011 

5023 

5035 

5647 

5058 

5(J70 

37 

5C82 

5094 

5705 

5717 

5729 

5740 

5752 

5763 

5775 

5780 

38 

5798 

5809 

.5,821 

5832 

5843 

5855 

5806 

5877 

5888 

5899 

39 

5911 

5922 

5933 

5944 

5955 

5900 

5977 

5988 

5999 

6010 

40 

6021 

6031 

C042 

6053 

0004 

6075 

6085 

0096 

0107 

0117 

41 

6128 

CI. {8 

0149 

01  CO 

0170 

0180 

0191 

0201 

6212 

0222 

42 

6232 

0243 

0253 

0203 

0274 

0284 

0294 

0304 

6314 

0325 

43 

6335 

6345 

6355 

6365 

6375 

6385 

6395 

6405 

6415 

6425 

44 

6435 

6444 

6454 

6464 

0474 

6484 

6493 

6503 

6513 

6522 

45 

6532 

6542 

6551 

6561 

6571 

6580 

6.590 

0599 

6009 

6618 

46 

6628 

6037 

6646 

6656 

6065 

6075 

6684 

0693 

6702 

6712 

47 

6721 

6730 

6739 

6749 

6758 

6707 

6776 

6785 

6794 

6803 

48 

6812 

6821 

6830 

6839 

6848 

6857 

6866 

6875 

6884 

0893 

49 

6902 

6911 

6920 

6928 

6937 

6946 

6955 

6964 

6972 

6981 

50 

6990 

C99S 

7007 

7016 

7024 

7033 

7042 

7050 

7059 

7007 

51 

7070 

7084 

7093 

7101 

7110 

7118 

7126 

7135 

7143 

7152 

52 

7160 

7108 

7177 

7185 

7193 

7202 

7210 

7218 

7226 

7235 

53 

7243 

7251 

7250 

7207 

7275 

7284 

7292 

7300 

7308 

7310 

51 

7324 

7332 

7340 

7348 

7350 

7304 

7372 

7380 

7388 

7390 

MATHEMATICS 
Logarithms  of  Numbers. — Concluded 


43 


X 

0 

1 

3 

4 

- 

G 

8 

9 

55 

7404 

7412 

7419 

7427 

7435 

7443 

7451 

7459 

7466 

7474 

56 

7482 

7490 

7497 

7505 

7513 

7520 

7528 

7536 

7543 

7551 

57 

7559 

7566 

7574 

7582 

7589 

7597 

7604 

7612 

7619 

7627 

58 

7634 

7642 

7649 

7657 

7664 

7672 

7679 

7686 

7694 

7701 

59 

7709 

7716 

7723 

7731 

7738 

7745 

7752 

7760 

7767 

7774 

60 

7782 

7789 

7796 

7803 

7810 

7818 

7825 

7832 

7839 

7846 

61 

7853 

7860 

7868 

7875 

7882 

7889 

7896 

7903 

7910 

7917 

62 

7924 

7931 

7938 

7945 

7952 

7959 

7966 

7973 

7980 

7987 

63 

7993 

8000 

8007 

8014 

8021 

8028 

8035 

8041 

8048 

8055 

64 

8062 

8069 

8075 

8082 

8089 

8096 

8102 

8109 

8116 

8122 

65 

8129 

8136 

8142 

8149 

8156 

8162 

8169 

8176 

8182 

8189 

66 

8195 

8202 

8209 

8215 

8222 

8228 

8235 

8241 

8248 

8254 

67 

8261 

8267 

8274 

8280 

8287 

8293 

8209 

8306 

8312 

8319 

68 

8325 

8331 

8338 

8344 

8351 

8357 

83G3 

8370 

8376 

8382 

69 

8388 

8395 

8401 

8407 

8414 

8420 

8426 

8432 

8439 

8445 

70 

8451 

8457 

8463 

8470 

8476 

8482 

8488 

8494 

8500 

8506 

71 

8513 

8519 

8525 

8531 

8537 

8543 

8549 

8555 

8561 

8567 

72 

8573 

8579 

8585 

8591 

8597 

8603 

8609 

8615 

8621 

8627 

73 

8633 

8639 

8645 

8651 

8657 

8663 

8669 

8675 

8681 

8686 

74 

8692 

8698 

8704 

8710 

8716 

8722 

8727 

8733 

8739 

8745 

75 

8751 

8456 

8762 

8768 

8774 

8779 

8785 

8791 

8797 

8802 

76 

8808 

8814 

8820 

8825 

8831 

8837 

8842 

8S48 

8854 

8859 

77 

8865 

8871 

8876 

8882 

8887 

8893 

8899 

8904 

8910 

8915 

78 

8921 

8927 

8932 

8938 

8943 

8949 

8954 

8960 

8965 

8971 

79 

8976 

8982 

8987 

8993 

8998 

9004 

9009 

9015 

9020 

9025 

80 

9031 

9036 

9042 

9047 

9053 

9058 

9063 

9069 

9074 

9079 

81 

9085 

9090 

9096 

9101 

9106 

9112 

9117 

9122 

9128 

9133 

82 

9138 

9143 

9149 

9154 

9159 

91G5 

9170 

9175 

9180 

9186 

83 

9191 

9196 

9201 

9206 

9212 

9217 

9222 

9227 

9232 

9238 

84 

9243 

9248 

9253 

9258 

9263 

9269 

9274 

9279 

9284 

9289 

85 

9294 

9299 

9304 

9309 

9315 

9320 

9325 

9330 

9335 

9340 

86 

9345 

9350 

9355 

93G0 

9365 

9370 

9375 

9380 

9385 

9390 

87 

9395 

9400 

9405 

9410 

9415 

9420 

9425 

9430 

9435 

9140 

88 

9445 

9450 

9455 

9460 

9465 

9469 

9474 

9479 

9484 

9489 

89 

9494 

9499 

9504 

9509 

9513 

9518 

9523 

9528 

9533 

9538 

90 

9542 

9547 

9552 

9557 

9562 

9566 

9571 

9576 

9581 

9586 

91 

9590 

9595 

9600 

9605 

9609 

9614 

9619 

9624 

9628 

9633 

92 

9638 

9643 

9647 

9652 

9657 

9661 

9666 

9671 

9675 

9680 

93 

9685 

9089 

9694 

9699 

9703 

9708 

9713 

9717 

9722 

9727 

94 

9731 

9736 

9741 

9745 

9750 

9754 

9759 

9763 

9768 

9773 

95 

9777 

9782 

9786 

9791 

9795 

9800 

9805 

9809 

9814 

9818 

96 

9823 

9827 

9832 

9S36 

9841 

9845 

9850 

98.54 

9859 

9863 

97 

9868 

9872 

9877 

98S1 

9886 

9890 

9894 

9S99 

9903 

9908 

98 

9912 

9917 

9921 

9926 

9930 

9934 

9939 

9943 

9941 

9952 

99 

9956 

9961 

9965 

9969 

9974 

9978 

9983 

9987 

9998 

9996 

44      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Natural  Sines  and  Cosines 

Note. — For  cosines  use  right-hand  column  of  degrees  and  lower  line  of  tenths. 


Deg.    "0 .0      "0 .1  I  "0 .2     "0 .3     "0 .4     "0 .5     "0 .6     "0 .7     "0 .8      '0 .9 


0°     0.0000  0.0017  0.0035 '0.0052  0.007C  0.0087  0.0105  0.0122  0.0140  0.0157 


0 .0175  0 .0192  0 .0209  0 .0227  0 .0244  0 .0262  0 .0279  0 .0297  0 .0314  0 .0332 
0 .0349  0 .0366  0 .038410 .0401  ;0 .0419  0 .0436  0 .0454  0 .0471 10 .0488  0 .0506 
0 .0523  0 .0541  0 .0558:0 .0576  0 .0593  0 .0610  0  .0628  0 .0645  0 .0663  0 .0680 
0 .0698.0 .0715  0 .0732.0 .0750'0 .0767^0 .0785  0 .0802  0 .0819.0 .0837  0 .0854 

0 .0872  0 .0889  0 .0906  0.0924  0 .0941  0 .0958  0 .0976  0 .0993  0 .1011  0 .1028 
0.1045  0.1063  0.1080  0.1097  0.1115  0.1132  0.1149  0.1167:0.1184'0.1201 
0.1219  0.1236  0.1253  0.1271  0.1288  0.1305  0.1323  O.l'340'0.1357:0. 1374 
0.1392  0.1409  0.1426  0.1444  0.1461  0.1478  0.1495  0.1513  0.1530  0.1547 
0.1564  0. 1582  0.1599  0.1616  0.1633  0.1650  0.1668  0.1685  0. 1702^0 .1719 


0.1736  0.1754  0 
0.1908  0.1925  0 
0 .2079  0 .2096  0 
0 .2250  0 .2267  0 
0.2419  0.2436  0 

0.2588  0.2605  0. 
0 .2756  0 .2773  0 . 
0 .2924  0 .2940  0 
0.3090  0.3107  0, 
0.3256!  0.3272  0, 


,1771  0.1788  0.1805 
,1942  0.1959  0.1977 
,2113  0.21.30  0.2147 
2284  0.23r0  0.2317 
,2453  0.2470  0.2487 

I  I 

2622  0 .2639  0 .2656 
2790  0 .2807  0 .2823 
2957,0.2974  0.2990 
3123  0.3140  0.3156 
3289  0.3305  0.3322 


0.1822  0.1840  0.1857,0.1874  0.1891 
0.1994  0.2011  0.2028  0.2045  0.2062 
0.2164  0.2181,0.2198  0.2215  0.2232 
0 .2334  0 .2351  0  J2368  0 .23850 .2402 
0.2504  0.2521  0.2538  0.2554!o. 2571 

III 
0 .2672  0 .2689,0 .2706  0 .2723  0 .2740 
0 .2840  0 .2857  0 .2874  0 .2890  0 .2907 
0 .3007  0 .3024  0 .3040  0 .3057  J  0 .3074 
0.3173  0.3190  0.3206  0.3223  0.3239 
0 .3338  0 .3355:0 .3371  0 .3387|0 .3404 


0.3420  0.3437  0.3453  0.3469  0.3486  0.3502  0.3518,0.3535  0.3551  0.3567 
0.3584  0.3600,0.3616  0.3633  0.3649,0.3665  0.3681,0. 3697, 0.3714!o. 3730 
0.3746  0.3762  0.3778  0.3795  0.3811  0.3827  0.3843;0. 38.59  0.38750. 3891 
0.3907  0.3923  0.3939  0.3955  0.3071  0.3987  0.4003  0.4019  0.40.35,0.4051 
0.4067,0.4083:0.4099,0.4115  0.4131  0.4147,0.4163  0.4179  0.4195!o. 4210 


0.5000  0.5015 
0.5150  0.5165 
0.5299  0.5314 
0.5446  0.5461 
0.5592  0.5606 

I 
0.5736  0.5750 
0  .5878  0 .5892 
0.6018  0.6032 
0.61570.6170 
0.6293  0.6307 


0.5030  0.5045 
0.5180  0.5195 
0 .5329  0 .5.344 
0.5476  0.5490 
0.5621,0.56.35 

I 
0.576410.5779 
0.5906,0.5920, 
0.6046  0.6060, 
0.6184  0.6198, 
0.6320  0.6334, 


0.5060  0.5075 
0.5210,0.5225 
0.5358  0.5373 
0.5.505  0.5519 
0.5650  0.5664 

! 
0 .5793  0 .5807 
0 .5934  0 .5948 
0.6074  0.6088 
0.6211  0.6225 1 
0.63470.63611 


0.5090  0 
0 .5240  0 
0.5388  0 
0.55.34  0 
0 .5678  0 

0.582l'o 
0 .596210 
0.6101  0 
0.6239  0 
0.6374  0 


.5105  0 
.5255  0 
.5402  0 
.5548  0 
.5693  0 

.5835,0 
.5976  0 
.61150 
.6252  0 
.6388 :0 


.51200 
.5270  0 
.5417  0 
.5563  0 
.5707  0 

.5850,0 
.5990  0 
.61290 
.6266  0 
.6401  0 


.5135 
.5284 
.5432 
..5577 
.5721 

.5864 
.60C4 
.6143 
.6280 
.6414 


0.6428  0.6441 '0.6455, 0.6468  0 .6481  0 .6494  0 .6508  0.6521,0.6534  0.6547 
0 .6561  0 .6574  0 .6587,0 .6600;o .6613  0 .6626,0 .6639,0 .6652  0 .6665  0 .6678 
0  .6691  0 .6704  0 .6717  0 .6730,0 .6743  0 .67.56,0 .6769,0 .6782  0 .6794,0 .6807 
0  .6820  0 .6833  0 .6845  0 .6858  0 .6871  0 .6.884  0 .6896  0 .6909  0 .6921  0 .6934 
0.6947  0.695910.6972  0.6984  0.6997  0.7009  0.7022  0.7034  0 .7046  0 .7059 


'1.0 


"0.9 


"0.8  "0.7 


"0.6 


"0^     "0.4  '0.3 


'0.2 


°0 .1  Deg. 


MATHEMATICS 

Natural  Sines  and  Cosines. — Concluded 


45 


Deg.   °0 .0      "0 .1      °0 .2     "0 .3     "0 .4     "0 .5     °0 .6     °0 .7     ''0 .8      "0 


0 .7071  0 .7083  0 .7096,0 .7108  0 .7120  0 .7133:0 .7145  0 .7157  0 .7169  0 .7181 
0 .7193;0 .7206  0 .7218,0 .7230  0 .7242  0 .7254  0 .7266lo  .7278  0 .7290  0 .7302 
0 .7314;0 .7325,0 .7337  0 .7349  0 .7361  0 .7373  0 .7385  0  .7396  0 .7408  0 .7420 
0 .7431  0 .74430 .7455  0 .7466' 0 .7478:0 .7490:0 .7501  lO  .7513  0 .7524!0  .7536 
0 .7547  0 .7559  0 .7570  0 .7581  iO .7593,0 .7604  0 .7615,0 .7627iO .7638[0 .7649 

0 .7660  0 .767210 .768310 .7694]o  .770510 .7716;9 .7727iO  .7738  0 .7749  0 .7760 
0 .7771 10 .7782,0 .7793.0 .7804  0 .7815  0 .7826,0 .783710 .7848  0 .7859  0 .7869 
0 .7880,0 .7891  0 .7902  0 .7912;o .7923;0 .7934,0 .7944  0 .7955  0 .7965  0 .7976 
0 .7986 , 0 .7997 , 0 .8007 , 0 .801 8 , 0 .8028 , 0 .8039 , 0 .8049  0 .8059  0 .8070  0 .8080 
0 .8090:0 .8100  0 .8111  0 .8121J0 .8131  0 .8141  0 .8151  0 .8161  0 .8171  0 .8181 

0.8192  0.8202'o.8211  0.822110.8231  0.8241,0 .825l!0. 82610.8271  0.8281 
0. 8290'0. 8300  0.8310  0.8320  0.8329'0. 8339  0.8348'0. 8358  0.8368'0. 8377 
0 .8387 '  0 .8396  0 .8406  0 .8415 , 0 .8425 !  0 .8434  0 .8443 '  0 .8453  0 .8462 !  0 .8471 
0 .848C'0 .8490:0 .8499  0 .8508  0 .8517  0 .8526:0 .8536  0 .8545  0 .8554:0 .8563 
0 .8572'0 .8581  0 .8590  0 .8599  0 .8607i0 .8616,0 .8625|0 .8634  0 .864310 .8652 

III 
0 .8660  0 .8669  0 .8678,0 .8686  0 .8695:0 .8704:0 .8712,0 .8721  0 .8729  0 .8738 
0  .8746  0 .8755,0 .8763,0 .8771 ,0 .8780  0 .8788,0 .8796  0 .880510 .881310 .8821 
0 .8829  0 .8838,0 .8846  0 .885410 .8862  0 .8870,0 .8878:0 .8886,0 .88940 .8902 
0 .8910,0 .8918,0 .8926,0 .89341 0 .8942,0 .8949,0 .895710 .8965  0 .8973' 0 .8980 
0 .8988  0 .8996,0 .9003  0 .9011  0 .9018  0 .9026  0 .9033  0 .9041  0 .9048l0 .9056 

0 .9063  0 .9070  0 .9078  0 .9085' 0 .9092,0 .9100  0 .9107|0 .911410 .9121 'o  .9128 
0 .9135I0 .9143  0 .9150  0  .9157:0 .9164  0 .9171  0 .9178  0 .9184!o  .9191,0  .9198 
0 .9205'0 .9212  0 .9219  0 .9225:0 .9232  0 .9239,0 .9245  0 .925210 .9259  0 .9265 
0 .9272^0 .9278  0 .9285:0 .9291  ]0 .9298  0 .9304  0 .931 1 10 . 9317,0 .9323  0 .9330 
0 .9336  0 .9342IO .9348  0 .9354  0 .936r0 .9367,0 .9373  0 .9379  0 .9385  0 .9391 

0.9397  0.9403  0.940910.9415  0.9421  0.9426,0.9432,0.9438,0.9444  0.9449 
0 .9455  0 .9461  0 .9466;0 .9472  0 .9478,0 .9483  0 .9489  0 .9494  0 .9500  9 .9505 
0 .951 1 ,0 .9516  0 .9521  0 .9527  0 .9532,0 .9537  0 .9542  0 .9548  0 .9553' 0 .9558 
0 .9563  0 .95681 0 .9573 , 0 .9578 , 0 .9583  0 .9588  0 .9593 , 0 .9598 '  0 .9603  0 .9608 
0.9613'0.9617  0.9622  0.9627  0.9632  0.963610.9641  0.9646  0.9650  0.9655 

I  I  I 

0 .9659  0 .9664: 0 .9668  0 .967310 .9677  0 .9681  0 .9686  0 .9690,0 .9694  0 .9699 
0.9703  0. 97070. 9711 10. 9715, 0.9720,0. 9724, 0.9728|0. 97320. 9736  0.9740 
0.9744  0.9748  0.975l!0.9755;0.9759  0.9763  0.976710.9770,0.9774  0.9778 
0 .9781  0 .9785  0 .9789  0 .9792  0 .9796,0 .9799  0 .9803,0 .9806,0 .9810  0 .9813 
0 .9816  0 .9820  0 .9823,0 .9826,0 .98290 .9833,0 .9836  0 .9839  0 .9842  0 .9845 

0 .9848  0 .9851  0 .9854  0 .9857  0 .9860  0 .9863  0 .98660 .9869*0 .9871  0 .9874 
0 .9877 , 0 .9880 1 0 .9882  0 .9885 , 0 .9888 1 0 .9890  0 .9893 : 0 .9895 '  0 .9898  0 .9900 
0 .9903,0 .990510 .9907l0'.9910:0 .9912  0 .9914  0 .9917:0 .9919  0 .9921  0 .9923 
0 .9925,0 .9928: 0 .9930  0 .9932  0 .9934  0 .993610 .9938  0 .9940  0 .9942  0 .9943 
0 .9945  0 .9947:0 .994910 .9951|0 .9952J0 .9954  0 .9956] 0 .9957 jO  .9959  0 .9960 

0 .9962  0  .9963'o  .9965  0 .9966  0 .9968!o  .9969  0 .9971  0 .9972,0 .9973  0 .9974 
0  .9976,0 .9977,0 .9978! 0 .997910 .9980:0 .9981  0  .9982  0 .998310  .9984  0 .9985 
0  .9986 : 0 .9987  0  .9988 1 0 .9989  i  0 .9990 1 0 .9990 , 0 .999 1 ;  0 .9992  0 .9993  0 .9993 
0  .9994:0 .9995  0 .999510 .9996,0 .999610 .9997,0 .9997  0 .9997  0  .9998,0 .9998 
0.9998  0.9999  0.9999  0.9999:0.9999  1.000    1.000    1.000    1.000    1  .OCO 


1 .0     '0 .9     "0 .8     "0 .7     "0 .6     "0 .5     °0 .4     "0 .3     "0 .2      °0 .1     Deg 


Note. — For  cosines  use  right-hand  column  of  degrees  and  lower  line  of  tenths. 


40      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Natural  Tangents  and  Cotangents 

Note. — For  cotangents  use  right-hand  column  of  degrees  and  lower  line  of 

tenths 


Deg     °0.0     °0.1      °0.2     °0.3      °0.4      °0.5     "O.G     "0.7     °0.8      °0 .9 


0  .OOOO'0 .0017  0 .0035  0 .0052  0 .0070 
0.0175  0.C192  0.0209  0.0227,0.0244 
0  .0349  0 .0367  0 .03S4  0 .0402  0 .0419 
0 .0524  0 .0542  0 .0559  0 .0577  0 .0594 


0 .008710 .0105  0 .0122  0 .0140  0 .0157 
0 .0262i0 .0279,0 .0297  0 .0314  0 .0332 
0 .0437  0 .0454  0 .0472  0 .0489|0 .0507 
0 .0612J0 .0629  0 .0647  0 .0664  0 .06^:2 


0  !0699,0 !0717  0 .'0734  0  !o752,0 !o769,0  ."0787J0  !oS05|0  !o822  0  !oS40!o  !0857 

0.0875  0.0892  0.0910  0.0928  0.0945  0.0963'o. 0981 'o  0998  0.101  GO. 1033 
0.10510.1069  0. 1086  0.1104  0.1122,0.1139  0.1157,0.1175  0.1192:0.1210 
0.1228  0.1246  0.1263  0.12S1  0.1299  O.1317i0  .1334  0.1352  0.13700.1388 
0.1405  0.1423  0.1441  0.1459  0.1477  0.1495  0.1512  0.1530  0.1548  0.1566 
0 .1584|0 .1602  0 .1620,0 .1638^0 . 1655^0 .1673  0 .1691  0 .1709  0 .1727,0 .1745 

0 .1 763  0 .1781  'o  .1799  0 .1817  0 .1835'o  .1853'o  .1871  0 .1890  0 .1908'o  .1926 
0 .1944  0 .1962  0 .1980  0 .1998:0 .2016  0 .2035,0 .2053  0 .2071  0 .2089,0 .2107 
0.2126  0.2144  0.2162  0.2180  0.2199  0.22I7;0.2235  0.2254  0.2272  0.2290 
0.2309  0.2327  0.2345  0.2364  0.2382  0.2401,0.2419  0.243S  0.2456  0.2475 
0 .2493  0 .2512  0 .2530  0 .2549,0 .2568,0 .2586  0 .2605  0 .2623  0 .2642  0 .2661 

0 .2679'o  .2698  0 .2717,0 .2736,0 .2754  0 .2773  0 .2792  0 .2811  0 .2830  0 .2849 
0 .2867 , 0 .2886 , 0 .2905 , 0 .2924 ;  0 .2943  0 .2962 , 0 .298 1 , 0 .3000  0 .301 9 , 0 .3038 
0 .3057  0 .3076,0 .3096  0 .3115  0 .3134  0 .3153  0 .3172  0 .3191  0 .321 1 10 .3230 
0.3249  0.3269  0.3288  0.3307  0.3327  0.3346,0.3365  0.33S5  0.3404  0.3424 
0 .3443,0 .3463  0 .3482  0 .3502  0 .3522  0 .3541 ,0 .3561  ^0 .3581^0 .SGOOjO .3620 

0.3640  0.3659,0.3679  0.3699  0.3719  0.3739  0.3759  0.3779  0.3799  0.3819 
0 .3839  0 .3859  0 .3879 ,0 .3899 , 0 .391 9  i  0 .3939 , 0 .3959  0 .3979  0 .4000  0 .4020 
0.40400. 4061  0.4081  0.4101  0.4122  0.4142  0.4163  0.41S3  0  .4204  0.4224 
0 .4245  0 .4265  0 .4286  0 .4307,0 .432710 .4348,0 .4369  0 .4390  0 .441 1  0 .4431 
0 .4452  0 .4473  0 .4494  0 .4515  0 .4536,0 .4557,0 .4578  0 .4599  0 .4621  0 .4642 

0 .4663  0 .4684  0 .4706  0 .4727  0 .4748  0 .4770,0 .4791  0 .4813  0 .4834  0 .4856 
0 .4877  0 .4899  0 .4921 ,0 .4942  0 .4964.0 .4986; 0 .5008,0 .5029,0 .5051 ,0 .5073 
0  .5095  0 .5117  0 .5139  0 .5161  0 .5184  0 .5206  0 .5228  0 .5250  0  .5272  0 .5295 
0  .5317  0  .5340  0 .5362  0 .53.S4  0 .5407i0 .5430,0 .5452  0 .5475  0 .5498,0 .5520 
0 .5543,0 .5566  0 .5589,0 .501210 .5635,0 .5658,0 .5681 ,0 .5704  0 .5727,0 .5750 

0 .5774  0 .5797,0 .5820  0 .5844  0 .5867:0 .5890,0 .5914  0 .5938 'o .5961 10 .5985 
0 .600910 .6032  0 .6056  0 .6080  0 .6104  0 .6128,0 .6152;o .6176  0 .6200  0 .6224 
0.6249  0.6273  0.6297  0.6322  0.6346  0.6371  [0.6395,0.6420  0.6445  0.6469 
0 .6494  0 .6519  0 .6544|0 .6569  0 .6594  0 .6619,0 .6644  0 .6669  0 .6694'0 .6720 
0 .6745  0 .6771  0  .6796^0 .6822,0 .6847j0  .6873  0 .6899  0 .6924^0 .6950  0 .6976 

0 .7002  0 .7028,0 .7054  0 .7080'0 .7107  0 .7133 ,0 .7159,0 .7186  0 .7212!o .7239 
0 .7265  0 .7292  0 .7319  0 .7346  0 .7373  0 .7400;  0 .742710 .7454  0 .7481  0 .7508 
0.7536  0.7563  0.7590  0.7618  0.7646  0.7673  0.7701:0.7729  0.7757  0.7785 
0.7813  0.7841  0.7869  0.7898  0.7926  0.7954  0.7983  0.8012  0.8040,0.8069 
0.8098  0.8127  0.8156,0.8185  0.8214  0.824310.8273  0.8302  0.8332  0.8361 

I     I  I     I  I     I     I 

0.8391  0.8421  0.8451  0.8481  0.8511  0.8541,0.8571  0.8601,0.8632  0.8662 
0 .8693  0 .8724  0 .8754  0  .8785  0 .8816  0 .8847iO  .8878  0 .8910  0 .8941! 0 .8972 
0.9004  0.9036  0.9067  0.9099  0.9131  0.9163  0.9195  0.9228  0.9260,0.9293 
0  .9325  0  .9358,0 .9391  0  .9424  0 .9457  0 .9490  0  .9523  0 .9556  0 .9590,0 .9623 
0 .9657,0 .9691,0 .9725  0 .9759,0 .9793,0 .9827  0 .9861  0 .9896  0 .9930  0 .9965 


"1.0 


"0.9 


"=0.8 


"0.7 


oQ.e 


°0.5 


"0.4 


"0.3 


°0.2 


"0.1 


MATHEMATICS  47 

Natural  Tangents  and  Cotangents. — Coricluded 


Deg. 

°0:0 

"0.1 

°0.2 

°0.3 

°0.4 

°0.5 

°0.6 

°0.7 

°0.8    °o:9 

45 

1. 0000 '  1.0035 

1.0070  1.0105 

1            1            1            1            1 
1 .0141  1 .0176  1 .0212  1 .0247  1 .0283:1 .0319 

44 

46 

1 .0355  1  .0392 

1 .0428  1 .0464 

1 .0501  1 .0538  1 .0575  1 .0612' 1  .0649  1  .0686 

43 

47 

1 .0724  1 .0761 

1 .0799  1 .0837 

1 .0875  1 .0913  1 .0951  1 .0990  1 .1028  1  .1067 

42 

48 

1.1106  l.lUo 

1.1184  1.1224 

1 .1263  1 .1303  1 .1343  1 .1383  1 .1423  1  .1463 

41 

49 

1 .1504|  1 .1544 

1.15S5  1.1626 

1 .1667  1 .1708  1 .1750  1 .1792  1 .1833  1 .1875 

1            1            1                        1 

40° 

50° 

1.191S  1.1960 

1.2002  1.2045 

1 .2088  1 .2131  1 .2174  1 .2218  1 .2261  1 .2305 

39 

51 

1 .2349  1  .2393 

1 .2437  1 .2452 

1  .2527  1 .2572  1 .2017  1 .2662  1 .2708  1 .2753 

38 

52 

1.2799  1.2846 

1.2892  1.2938 

1 .39851 .3032  1 .3079  1 .31271 .3175  1  .3222 

37 

53 

1 .3270  1 .3319 

1 .3367  1 .3416 

1 .3465  1 .3514  1 .3564  1 .3013  1 .3663  1 .3713 

36 

54 

1 .3764  1 .3814 

1 

1.3865  1.3916 

1 .3968  1 .4019  1 .4071  1 .4124  1 .4176  1 .4229 

35 

55 

1.4281  1.4335 

1 .4388  1 .4442 

1 .4496  1 .4550  1 .4605  1 .4659  1 .4715  1 .4770 

34 

56 

1.482611.4882 

1. 4938' 1.4994 

1 .5051  1 .5108  1 .5166  1 .5224  1 .5282  1 .5340 

33 

57 

1.5399  1.5458 

1 .5517  1 .5577 

1 .5637  1 .5697  1 .5757,1 .5818  1 .5880  1 .5941 

32 

58 

1.6003  1.6066 

1.6128  1.6191 

1.6255  1.6319  1.6383  1.6447  1.6512:1.6577 

31 

59 

1.6643  1.6709 

1 .6775  1 .6842 

1 .6909  1 .6977  1 .7045  1 .7113,1 .7182  1 .7251 

III 

30° 

60° 

1 .7321  1 .7391 

1 .7461  1 .7532 

1 .7603  1 .7675  1 .7747  1 .7820  1 .7893  1 .7966 

29 

61 

1.8040  1.8115 

1 .8190  1 .8265 

1 .8341  1 .8418  1 .8495,1 .8572,1 .8650:1 .8728 

28 

62 

1 .8807  1 .8887 

1. 8907 1 1.9047 

1 .9128  1 .9210  1 .9292  1 .9375  1 .9458  1 .9542 

27 

63 

1.9626  1.9711 

1 .9797  1 .9883 

1 .9970  2 .0057  2 .0145  2 .0233  2  .0323  2  .0413 

26 

64 

2 .0503  2 .4059 

1 

2.0686  2.0778 

2.0872  2.0965  2.1060  2.1155  2. 1251 '2  .1348 

III 

25 

65 

2 .1445  2 .1543 

2.1642  2.1742 

2 .1842  2 .1943  2 .2045  2  .2148  2  .2251  2 .2355 

24 

66 

2 .2460  2  .2566 

2.2673  2.2781 

3 .2889  2 .2998  2  .3109  2  .3220  2 .3332  2  .3445 

23 

67 

2  .3559  2 .3673 

2 .3789  2 .3906 

2 .4023  2 .4142  2 .4262  2  .43,83  2  .4504  2  .4627 

22 

68 

2  .4751  2 .4876 

2.5002  2.5129 

2 .5257  2 .5386  2 .5517  2  .5649  2  .5782  2  .5916 

21 

69 

2.6051  2.6187 

2 .6325  2 .6464 

1 

2 .6605,2 .6746  2 .6889,2 .7034  2  .7179,2  .7326 

1                        1 

20° 

70° 

2.7475  2.7625 

2.7776  2.7929 

2 .8083  2 .8239  2 .8397  2 .8556  2 .8716  2 .8878 

19 

71 

2  .9042  2 .9208 

2 .9375  2 .9544 

2.9714,2.9887,3.0061,3.0237  2.0415  3.0595 

18 

72 

3  .0777  3 .0961 

3.1146  3.1334 

3.1524  2.1716  3.1910  3.2106  3  .2305  3  .2506 

17 

73 

3  .2709  3 .2914 

3 .3122,3 .3332  3  .3544  3 .3759  3 .3977  3 .4197  3  .4420  3  .4646 

16 

74 

3 .4874  3 .5105 

1 

3.5339  3.5576 

j 

3 .5816,3 .6059,3 .6305  3 .6554  3  .6806  3 .7062 
II 

15 

75 

3.7321  3.7583 

3.7848  3.8118 

3.8391,3.8667  3.8947  3.9232  3.9520,3  .9812 

14 

76 

4.0 108  4.0408 

4.0713,4.1022 

4.1335  4.1053  4. 19764. 2303'4. 2635:4  .2972 

13 

77 

4.3315  4.3662 

4 .4015  4 .4374 

4.4737  4.5107  4.5483  4.5864  4.6252,4.6646 

12 

78 

4.7046  4.7453 

4.786714.8288 

4 .8716  4 .9152  4 .9594  5 .0045  5 .0504  5  .0970 

11 

79 

5.1446  5.1929 

5 .2422  o  .2924 

5 .3435  5 .3955  5 .4486  5 .5026  5 .5578^5  .6140 

10° 

80° 

5.6713  5.7297 

5.7894'5.8502 

5.9124  5. 975S  6. 04C5'6. 1066  6.1742  6.2432 

9 

81 

6.313816.3859 

6.4596,6.5350 

6.6122  6. 6912, 6. 7720 '6. 8548  6.9395  7.0264 

8 

82 

7.11547.2066 

7.3002,7.3962 

7.4947  7.5958  7.6996  7. 8062 '7. 9158  8.0285 

7 

83 

8  .1443  8 .2636 

8 .3863  8 .5126 

8 .6427  8 .7769  8 .9152  9 .0579  9  .2052  9  .3572 

6 

84 

9.5144 

9.677 

9.845    10.02 

10.20,  10.39    10.58 

10.78 

10.99    11.20 

5 

85 

11.43 

11.66 

11.91    12.16 

12.43    12.71    13.00 

13.30 

13.62    13.95 

4 

86 

14.30 

14.67 

15.06    15.46 

15.89    16.35'  16.83 

17.34 

17.89    18.46 

3 

87 

19.08 

19.74 

20.45|  21.20 

22.02    22.90'  23.86 

24.90 

26.03    27.27 

2 

88 

28.64 

30.14 

31.82;  33.69 

35.80    38.19,  40.92 

44.07 

47.74    52.08 

1 

89 

57.29 

63.66 

71.62 

81.85 

95.49 

114.6    143.2 

191.0 

286.5 

573.0 

0° 

°1.0 

"0.9 

°0.8 

°0.7 

°0.6 

°0.5      °0.4 

°0.3 

°0.2 

°0.1 

Deg. 

Note. — For  cotangents  use  right-hand  column  of  degrees  and  lower  line  of 
tenths. 


48      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

ANALYTIC  GEOMETRY 

The  Straight  Line. — The  equation  of  the  straight  Hne  iu  its 
X      y 
simplest  form  is — h  r  =  1,  where  a  and  6  are  the  intercepts 

of  the  Hne  on  the  axes  of  A'  and  }'  respectively. 

The  other  useful  equations  of  the  straight  line  are:  ?/  =  w.r  -|- 
b,  where  m  is  the  tangent  which  the  line  makes  with  the  axis  of 
X.  The  equation  of  a  line  passing  through  a  given  point 
(xi,  yi)  is  y  —  ?/i  =  m{x  —  Xi)  where  m  is  entirely  indetermi- 
nate, since  any  number  of  lines  may  pass  through  a  point.  The 
equation  of  a  line  passing  through  two  points  is 

yi  —  Vi,  s 

y  -  Ui  =- -i^  -  ^i) 

Xi    —   Xi 

The  distance  between  two  points  Xi,  j/i  and  Xj,  yi  is": 

D  =  V(X2  -  xi)=  +  {y,  -  y,)' 
Distance  from  a  point  Xi,  i/i  to  a  line  ax  -f  6i/  +  c  =  0  is: 
^^  ^  axi  +  byi  +  c 
Va-  +  b- 
The  equation  of  an  angle  4>  between  two  lines  y  =  mx  +  b 
and  y  =  m'x  -j-  b'  is: 

.        -         m'  -  m 

tan  *  =  -T— , 

1  -f  mm 

The  Circle. — The  circle  is  the  locus  of  all  points  in  a  plane 
equidistant  from  a  given  point. 

The  equation  of  a  circle  whose  center  lies  at  the  origin  is. 

X-  +  y-  =  r'. 
If  its  center  lies  at  (a,  6): 

(x  -  ay  +  (y  -  by  =  r* 
If  the  origin  lies  on  the  left  extremity  of  the  diameter,  the 
equation  is: 

(x  —  ry  +  iy  —  Oy  =  r-  (as  above) 
or  simplifying 

y-  =  2rx  —  X- 
The  Ellipse. — The  ellipse  is  the  locus  of  a  point  moving  in  a 
plane  so  that  the  sum  of  its  distances  from  two  points  in  the 
plane  is  a  constant.  The  ratio  of  the  constant  sum  (the  major 
diameter)  to  the  distance  between  the  foci  is  known  as  the 
eccentricity,  e. 

The  area  of  an  ellipse  =  r  times  the  product  of  the  semi-diam- 
eters. 

The  equation  of  the  ellipse  is 

x^      t/^ 

— t  -|-  r:;  =  1  (center  at  the  origin) 

a^      0^ 

The  tangent  to  the  above  ellipse  through  the  point  of  tan- 

gency  Xi,  j/i  is 

xxi      yyi  _ 

a'-   ^  b-'    ~ 


MATHEMATICS  49 

The  Parabola. — The  parabola  is  the  locus  of  a  point  moving 
in  a  plane  so  that  its  distance  from  a  point  (the  focus)  in  the 
plane  is  always  equal  to  its  distance  from  a  line  (the  directrix) 
in  the  plane.  Its  equation,  the  curve  passing  through  the 
origin  and  its  focus  lying  on  the  axis  of  X  ia  y^  =  4px,  polar 

ro5rdinates  p  =  p  sec^  — ,  where    4p    is    the    double    ordinate 

through  the  focus.  A  tangent  to  a  parabola  through  the  point 
of  tangency  Xi,yi,  is  yyi  =  p{x  +  Xi). 

The  tangent  at  any  point  makes  equal  angles  with  the  axis 
and  a  Hne  from  the  point  of  tangency  to  the  focus.  The  parab- 
ola has  no  finite  asymptotes. 

The  Hyperbola. — The  hyperbola  is  the  locus  of  a  point  mov- 
ing in  a  plane  so  that  the  differences  of  its  distances  from  two 
fixed  points  in  the  plane  is  a  constant.  Its  equation,  with  its 
center  at  the  origin  and  its  foci  on  the  axis  of  x  is 

£!  _  ^  =  1 
a'-       b"- 

Equilateral  hyperbola:  x-  —  y'^  =  a^. 

Equilateral  hyperbola  referred  to  its  axes  as  asymptotes: 
xii  =  c-  (This  is  the  isothermal  curve  of  pressure  and  volume 
in  gases). 

Equation  of  the  asymptotes 

X  _y    X    _        y 
a      b  '  a  b 

The  tangent  to  a  hyperbola  bisects  the  angle  formed  by  the 
two  lines  drawm  from  the  point  of  tangency  to  the  foci. 

The  Cycloid. — The  cycloid  is  the  curve  generated  by  a  point 
in  the  circumference  of  a  circle  roUing  on  a  straight  line.  It 
consists  of  an  infinite  number  of  equal  arches. 

_,a  -  y  AS ;      x  =  a{d  -  sin  6)   ] 

X  =  a  cos   ' —  v2a?/  —  u^ot  ),  \    '> 

a  -^       ^        y  =  a{l  -  cos  d)  j 

The  Epicycloid  and  Hypocycloid. — The  epicycloid  is  generated 
by  a  point  in  the  circumference  of  a  circle  rolling  upon  another 
circle.  The  hj^jocycloid  is  the  curve  generated  by  a  point  on 
the  circumference  of  a,  circle  rolling  inside  another  circle. 


Epicycloid 


Hypocycloid 


/      .    I.N  /,  1,  a  +  b 

X  =  (a  -f-  o)  cos  d  —  b  cos  — r — -  I 

o 

/      ,    I      ■      ^  I    •     (1  -\-  b 

y  =  [a  +  b)  sm  6  —  b  sm 

X  =  (a  —  b)  cos  d  +  b  cos 

y  =  (a  ~  b)  sin  $  —  b  sin 


b 
-  b 


where  a  is  the  radius  of  the  main  circle,  and  6  of  the  generat- 
ing circle. 

Cubical  Parabola. — Formula,  a'^y  =  x^. 
Semicubical  Parabola. — Formula,  ay-  =  x^. 
4 


50      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

80' 


Witch  of  Agnesi.— Formula,  y  = 


+  4a-' 
x3 


Cissoid  of  Diodes. — Formula,  ij-  =  .^ 

p  =  2a  tan  0  sin  6. 
This  and  the  conchoid  were  invented  to  solve  the  problems 
of  the  duplication  of  the  cube,  i.e.,  given  a  cube,  a',  whose  side 
is  11.  to  construct  tlie  side  of  a  cube,  2a'. 

Lemniscate  of  Bernouilli. — Formula,  (x'  +  y^)^  =  a'^{x-  —  y-) 

p^  =  a^  cos  0. 
This  and  the  following  have  a  singular  point  at  0,  0. 

Strophoid. — Formula,  ;/"  =  -i^M    — ; — I 

\a  +  x] 

p    =  a  (cos  d  —  sin  0  tan  0). 

Cardioid. — Formula,  x-  +  y^  +  ax  =  aV'x'^  +  y^ 
I  X  =  a  cos  d  {I  —  cos  0) 
\y  =  a  sin  $  {I  —  cos  6) 
p  =  a(l  —  cos  0) 
This  is  a  special  case  of  the  epicycloid  in  wliich  the  generating 
circles  are  equal. 

The  Probability  Curve. — Formula,  y  =  e~*^. 
The   Caternary. — The   caternary  is  the  curve  assumed  by 
a  uniform,  completely  flcxil)le  cord  supported  at  its  two  ends. 
Its  equation  is 

y  =  2  (e<»  +  e  ") 

where  e  is  the  base  of  the  Napierian  system  of  logarithms. 

The  Involute. — The  involute  is  the  curve  described  by  a  point 
in  a  string  which  is  being  kept  taut  and  unwound  from -a 
cylinder. 

=  o(cos  9  +  9  sin  9) 
y  =  a  (sin  d  -\-  6  cos  9) 

or  \/p^~^=^       ^     _,Vp^  -  o' 

9  = —  tan  ' 

a  a 

The  Spiral  of  Archimedes  is  a  curve  described  by  the  extrem- 
ity of  a  radius  vector  which  lengthens  in  proportion  to  the  angle 
traversed.     That  is,  the  turns  are  equidistant  from  each  other. 
p  =  a9 
Hyperbolic  Spiral. — Formula,  pO  =  a. 
Logarithmic  Spiral. — Formula,  p  =  e"^. 
Lituus. — Formula,  p'-9  =  a-. 

CALCULUS 
Elementary  Differentials 


d(c) 

- 

0 

d{x) 

= 

1 

d(cu) 

= 

cdu 

d{cx) 

= 

c 

MATHEMATICS  51 

d{u  +  V  ±  w   .    .    .   )  =  du  ±  dv  ±  dw   .    .    . 

d{uv)  =  vdu  +  udv 

d(uvw)  =  vwdu  +  vwdv  +  uvdw 

d(uvw)  _  du       dv       dw 

uvw  u         V         w 

d{u")  =  nW'^du;  d{x")  =  rix''"^ 

,   u       vdu  —  udv 
a   —  = 

V 

(/(sin  x)  =  cos  X  .d(tan  x)  =  sec^x 

d{sec  x)  =  sec  x  tan  x  d(cos  x)  =  —  sin  x 

d{cot  x)  =  —  csc^x  d{csc  x)  =  —  esc  x  cot  x 

a  sin   ^u   = — .  a  tan   '«  = 


^^©=$^^©  =  4 


Vl  -  u^  1  +  w2 

a  sec  'u  = ;—  a  cos  '  « 


Vl  -  u^ 

d  COt~'M    =     —  ; , d  CSC~'  U   = ;— 

1  +  w^  mV«^  -  1 

d  logo  w  =  logo  e-  — ;  d  logo  x  =  logo  e  =  — 

a  loge  M   =  — 
u 

da"  =  a"  loge  adu 
de"  =  e"du 

Fundamental  Integrals' 

J'adx  =  ax 
J'af{x)dx  =  aJ'J{x)dx 

f^  =  logx 

fx'^dx   =  -— ,  when  /«  is  different  from    —  1 

TO  +  1' 

fe'dx  =  e* 

ya'  log  arfz  =  a* 

y^ — i — 0  =  tan~i  X 


. =  vers"'  X 

V2x  -x2 

'  For  the  more  complicated  integrals,  see  B.  O.  Pierces'  "Short  Table 
of  Integrals"  and  the  various  works  on  integral  calculus. 


52      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

yco3  xdx  =  sin  x 
J'ain  xdx  =  —  cos  x 
J'cot  xdx  =  log  sin  x 
ytan  xdx  =  —  log  sin  x 
ytan  X  sec  xdx  =  sec  x 
J'sec-  xdx  =  tan  x 
/  csc^  xdjc  ^  ^  cot  X 

f\S{x)    •^<e{x)    +  ^(X)]dx    =    ff{x)dx   +   y^(x)£/x   + 

fxp{x)dx 
Sudv  =  uv  —  J'vdu     where  '/  and  ;•  are  functions  of  x 

^    dv    ,  du 

fuj-^dx==uv-  fv-^-^dx 

ff{y)dy 

ff{y)dx  =        dy_ 

dx 

Ss'm'^  xdx  =  —  ^•^  cos  x-sin  ;r  +  ^ix 

J'sin^xdx  =  —  H  cosxCsin^x  +  2) 

/,  .   „     ,  sin"~'  X  cos  X    ,   n  —  1  C   .       „     , 

y  sin"  xdx  = 1 ■ — —  I  SHI""-  xdx 

n  n     J 

J'cos^  xdx  =  }i  sin  x  cos  x  +  yi-""- 
ycos'  xdx  =  I'i  sin  x(cos*  x  +  2) 

/»      „    J         cos"~i  .r  sin  x   ,   n  —  1  T 

J  cos"  xdx  = 1 I  cos""- 

n  n     J 

J'sin  X  cos  xdx  =  ^^  sin^  x 
ytan-  xdx  =  tan  x  —  x 

ytan"  xdx  =  —-  —   j  tan»~-  xdx 

n  —  1         J 

J'cot^  xdx  =  —  cot  X  —  X 

ycot"  xdx  = — ~  —   I  cot""^  xdx 

71   —   1  J 

ysin~i  xdx  =  X  sin~i  X  +  Vl  —  x^ 
Xcos'^  xdx  =  X  cos"' X  —  ^/l  —  x* 
ytan~i  xdx  =  x  tan"'  a;  —  H  log  (1  +  x^) 
ycot"'  xdx  =  X  cot"'  X  +  ^  log  (1  +  X-) 

fe^'dx  =  — 
a 

e   =  2.718281828459 
log.x  =  2.3025851  logio  a; 


II 


xdx 


SECTION  II 

METALLURGICAL  PRICE  AND  PRODUCTION 
STATISTICS 


Metal  Prices 


For  the  current  figures  on  metal  prices  it  is,  of  course,  neces- 
sary to  refer  to  the  "Engineering  and  Mining  Journal."  But  it 
is  often  convenient  to  have  the  figures  for  some  years  back,  for 
instance  in  computing  mine  valuations,  or  in  calculations  on 
metallurgical  processes  where  the  value  of  a  metal  over  a  term 
of  years  enters  into  the  problem.  For  that  reason  I  have 
introduced  the  following  tables. 


Monthly  Prices  of  Electrolytic  Copper  at  New  York 
FOR  THE  Last  10  Years 

(In  Conts  pr-r  Pound) 


1908      1909 


1910 


1911      1912      1913      1914      1915      1916      1917 


.Ian '13.726  13.893  13.620  12.295,14.094 


16.488  14.223  13.641 


24.008  28.673 


Feb ,12. 905.12. 949ll3.332il2. 256, 14. 084  14.971  14.491:14.394 


26.440 


31.750 


March 12. 704il2. 387  13.255,12.139,14.698  14.713  14.131114.787 


26.310 


31.481 


April 12. 743,12.562:12. 733,12. 019  15.741 


15.291  14.211  16.811 


27.895 


27.935 


May. 


12.598112.893,12.550,11.989  16.031 


15.436,13.996  18.506 


June. 


12.675,13.214  12.404  12.385  17.2.34 


14.672  13.603  19.477 


26.601 


29.962 


July 12.702,12.880,12.215,12.463  17.190 


14.190,13.223  18.796 


23.865  26.620 


Aug 13.462il3.007  12.490  12.405  17.498 


16.941 


26.120,25.380 


Sept Il3.388!l2.870;i2.379  12.201  17.508 


16.328 


17.502 


26.855  25.073 


Oct '13.35412. 700  12.553  12.189  17.314  16.337 


17.686 


27.193  23.500 


Nov. 


14.1.30,13.125  12.742  12.616  17.326:15.182111.739  18.627 


30.625,23.500 


Dec. 


14.11l!l3.298,12.581  13.552  17. 376114.224112.801120. 133 


31.89023.500 


Year's  aver-   13.208'l2.982  12.738  12. 376:16.341  15.269  13.602'l7.275 
age I  I  I  I 


27.202127.180 


These  figures  from  the  Engineering  and  Mining  Journal. 
•  No  quotations. 

63 


54   METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Average  Monthly  Prices  of  Copper  Manufactures 

(In  Cents  per  Pound) 


1911 


1913 


Jan.. . . 
Feb 
M  rch. 
April. .  . 
^lay.  . 
June.  . 
July .  . 
Aug. .  . 
Sept. . . 
Oct. . . . 
Nov.. . 
Dec... 

Vear 


Copper 
wire 


14.06 
13.50 
13.25 
13.75 
13.75 
13.75 
13  90 
13.81 
13.75 
13.50 
13.75 
14.94 


Sheet 
copper 


18.50 
18.50 
18.50 
18.50 
18.50 
18.50 
18.50 
18.50 
18.50 
18.50 
18.63 
19.13 


13.81         18.56 


Copijer 
wire 


15.75 
15.25 
16.03 
17.06 
17.30 
18.68 
19.13 
19.13 
19.13 
19.13 
19.13 
19.13 


17.96 


Sheet 
copper 


19.50 
19.50 
20.30 
21.50 
21.63 
22.50 
22.50 
22.75 
23.50 
23.50 
23.50 
23.50 


22.02 


Coppe 
wire 


19.09 
16.38 
16.39 
16.50 
16.50 
16.18 
15.88 
16.60 
17.84 
17.75 
17.28 
15.79 


Sheet 
copper 


23 .  50 
22.50 
21.50 
21.50 

21 .  50 
21.10 

20  .  50 

21  .  50 

22 .  50 
22 .  50 
21.15 
20 .  50 


16.85   21.69 


1914 

1915 

1916 

Copper 
wire 

Sheet 
copper 

Copper 
wire 

Sheet 
copper 

Copper 
wire 

Sheet 
copper 

Jan 

Feb 

15.94 
15.88 
15.60 
15.25 
15.23 
15.03 
14.88 
14   03 
14.34 
13.34 
12.50 
14.25 

20.75 
20.50 
20.35 
20.25 
19.90 
19.56 
19.38 
18.80 
18.00 
17.38 
17.50 
18.88 

14.80 
15.19 
16.09 
18.03 
19.95 
21.13 
21.63 
19.25 
19.34 
19.28 
19.84 
21.81 

19.50 
20.25 
20.63 
22 .  38 
24.50 
25.25 
25.50 
23.90 
23.50 
23.50 
24.44 
26.00 

25.70 
28.66 
29.13 
31.10 
33.75 
32.50 
30.25 
31.38 
32.00 
32.35 
35.56 
37.00 

31.00 
34  50 
34 .  50 

April 

36.00 
37.88 

June 

July 

38.00 
38  00 

37.00 

Sept 

38.00 

Oct 

38.00 

Nov 

40.37 

Dec 

42.00 

Year 

14.74 

19.24 

19.21 

22.93 

31.01 

37.10 

Monthly  Pripes  of  Lead  at  New  York  foh  the  Last  10 
Years 

(In  Cents  per  Pound) 


1908   I   1909|   1910|   191lj   1912|   1913|    1914|   1915|   1916|   1917 


Jan..  .  . 
Feb.... 
March. 
April.. . 
May.. . 
June. . . 
July.... 

Aug 

Sept.... 

Oct 

Nov. . . . 
Dec... . 


3.691  4 
3 . 725  4 
3.838  3 
3.993  4 
4 . 253  4 
t.4f.O  4 
4.447  4 
4 .  580  4 
4.515  4 
4.351  4 
4 . 330  4 
4.213  4 


.1754. 

.018  4. 
.  980  4 , 
.168  4. 
.287  4. 
.  3.50  4 . 
.321  4. 
.  30.3  4 . 
.342  4. 
.341  4. 
.  370  4 . 
.560  4, 


70D4 
013  4, 
459  4, 
370  4 . 
31."j  4, 
3t.J  4, 
4at  4, 
400  4. 
400  4, 
400  4, 
422I4, 
500  4, 


483  4. 

440  4. 
304  4. 
412  4. 
37.'5  4 . 
43.')  4 . 

499  4. 

500  4. 
485  5. 
205  5 . 
298  4. 
450  4. 


435  4, 
02*i  4 , 
073  4, 
200  4, 
191  4, 
392  4 . 
720  4 , 
509  4 , 
048  4, 
071  4, 
615  4, 
303  4, 


321  4 
325  4 
327,3 
381  3 
342  3 
325  3 
353  3 
624  3 
698  3 
402  3 
293  3 
047  3 


,11113 
04Si3 
970,4 


729  5 

827  6 


810 
900 
900 
891 


.875  4 


828 
528 
083 
800 


Year's  av-  I  I  I  I  I  I 

erage. ...  4 .  200  4 .  273  4 .  446'4 .  420  4 .471  ^4 .  370  3 .  862 


053 

221 

274 

932 

659 

656 

610;6 

600  7 

155:7 

355  7 


921  7.626 
246  8.636 
136  9.199 
630  9.288 
463  10.207 
936' 11. 171 
352  10.710 
244  10.594 
810i  8.680 
6.710 
6.249 
6.375 


000 
042 
513 


4.6286.858    8.787 


These  figures  from  the  Enyineeriag  and  Mining  Journal. 


PRICE  AND  PRODICTIOX  STATISTICS  55 

-Monthly  Phices  of  Silver  at  New  York  for  10  Years 

(In  Cents  per  Fine  Ounce) 


1908      1909      1910      1911      1912  '  1913      1914      1915      1916 


-March. 


April 
-Mav 


June. 


55. 678, 51. 75o'52.375'53. 795  56.260  62.938  57.572  48.855  .56.775!  75.630 


56.000  51.472  51.534  52.222  59.043  61.642  57.506  48  477  56.755|  77.585 
55.365  50.468  51.454  52.745  58.375  57.870  58.067  .50.241  57.935    73.861 


54.505  51.428  53.221  .53.325  .59.207  59.490  58.519  50.250  64.415    73.875 


52.795  .52.905  .53.870  53.308  60.880  60.361  58.175  49.915  74.269    74.745 


.53.663  52.538  .53.462  53.043  61.290  .58.990  56.471  49.034  65.024    76.971 


.53.115  51.043  .54.150  .52.6.30  60.654  .58.721  54.678  47.510  62.940,  79.010 


51.683  51.125  52.912  .52.171  61.606  .59.293  .54.344  47.163  66.0S3    85.407 


51.720  51.440  53.295  52.440  63.078  60.640  53.290  48.680  68.515  100.740 


51.431  50.923  .55.490  53.340  63.471  60.793  50.654  49.385  67. 855 i  87.332 


49.647  50.703  55.6.35  55.719  62.792  58.995  49.082  51.714  71.604,  85.891 


48. 769152. 226,54. 428  54.905  63. 365l57.760|49.375|54. 971  75.765    85.960 


V'-ar'.s  aver- 


age   52.864  51.502  53.486  53.304  60.835  59.791  54.811  49.684  65.661'  81.417 

Note. — Silver  in  New  York  is  sold  by  the  fine  ounce,  999,  in  London  by  the 
standard  ounce,  925  fine. 


Average  Prices  of  Alvmixum,  Quicksilver,  Antimony  and 
Pl.\ti.\u-m  for  the  Last  12  Years 


-\lumi- 

num, 

cents  per 

pound 

Quicksilver, 
dollars  per  flask 
(flask  =  75  lb.) 

Antimony,  cents 
per  pound 

Plati- 
num, 
dollars 

per 

No.  1 

.San            ^-    Y 
Francisco      *  " 

Cook- 

Hal- 

Ordi- 

ounce 

son's 

letts' 

naries 

1906 

35.75 

39.46 

40.90 

22.78 

21.94 

21.73 

28.04 

1907 

41.51 

39.60 

41.50 

16.97 

15 .  53 

14.84 

26.18 

1908 

31.00 

44.17 

44.84 

8.70 

8.42 

8.00 

22.62 

1909 

22.40 

45.45 

46.30 

8.30 

8.02 

7.47 

24.87 

1910' 

22,85 

46.51 

47.06 

8.25 

7.88 

7.39 

32.70 

1911 

20  07 

46.01 

46.54 

8.59 

8.16 

7.54 

43.12 

1912 

22.01 

42.05 

42.49 

8.90 

8.26 

7.76 

45.55 

1913 

23.64 

39.28 

39.54 

8.73 

8.22 

7.52 

44.88 

1914 

18.63 

48.68 

48.31 

10.732 

8.76 

45.14 

1915 

33 .  98 
60.71 
51.59 

81.23 

87  01 

40.06 
25.37 
20.69 

47.13 

1916 

125.25    125.49 
104.36    106  .30 

83.40 

1917 

102.82 

These  figures  from  the  Engineering  and  Mining  Journal. 


o()     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Monthly  Prices  of  Spelter  at  St.  Louis  for  tub  Last  10 
Years 

(In  Cents  por  Pound) 


1908 

1909 

1910 

1911 

1912 

1913 

1914 

1915 

1916 

1917 

.Ian 

4.363 

4.991 

5".  951 

5.302 

6.292 

6.854 

5.112   6.211 

16.745 

9.449 

Feb 

4.638 

4.739 

5.419 

5.368 

6.349 

6.089 

5.228   8.255 

18.260 

9.875 

Mar 

4.527 

4.607 

5.487 

5.413 

6.476 

5.926 

5.100    8.366 

16.676  10.1.30 

Apr 

4.495 

4.815 

"5.289 

5.249 

6.48i; 

5.491 

4.963    9.837 

16.525 

9.289 

May 

4.458 

4.974 

5.041 

5.198 

6.529 

5.256 

4.924  14.610 

14.106 

9.192 

Juno 

4.393 

5.252 

4.978 

5.370 

6.727 

4.974 

4.850  21.038 

11.582 

9.201 

July 

4.338 

5.252 

5.002 

5.545 

6.966 

5.128 

4.770 

18.8.56 

8.7.55 

8.473 

Aug 

4.556 

5.579 

5.129 

5.803 

6.878 

5.508 

5.418 

12.611 

8.560 

8.190 

Sept 

4.619 

5.646 

5.364 

5.719 

7.313 

5.444 

5.230 

13.270 

8.820 

7.966 

Oct 

4.651 

6.043 

5.478 

5.951 

7.276 

5.188 

4.750 

12.596 

9.6.59 

7.813 

Nov 

4.909 

6.231 

5.826 

6.223 

7.221 

5.083 

4.962J15.792J11.422 

7.672 

Dec 

4.987 

6.099 

5.474 

6.151 

7.081 

5.004 

5.430 

15.211  10.495 

7.510 

Year's  avcr- 
flKo 

4.578 

5.352 

5.370 

5.608 

6.799 

5.504 

5.061 

13. 054 [12. 634 

8.730 

Monthly  Prices  of  Tin  at  New  York  for  the  La.st  10 
Years 


1908  1909  1910   1911   1912   1913   1914   1915   1916   1917 


Jan. 


27.380  28.060  .32.700  41.255  42.529,50.298  37.779  34.200  41.825  44.175 


Feb. 


28.978,28.290,32.920:41.614  42.962'48.766 


37.415  42.717  51.420 


Mar. 


30.577:28.727  32.403  40.157  42.577  46.832 


Apr. 


May . 


31. 702129. 445  32.976  42.185 


30.015  29.225  33.125  43.115 


38.038 


.426  50.741  54.388 


43.923  49.115  36.154  47.884  51. 230|55. 910 


46.0.53  49.038  33.360  38.790  49.125  63.173 


June. 


28.024:29.322 


32.769,44.605 


45.815  44.8201.30.577  40.288 


42.231:62.053 


July. 


29.207  29.125 


32.695  42.406 


44.519  40. 2G0'31. 707  37.423 


38.510  62.570 


Aug 


29.942  29.966  33.972  43.319  45.857,41.582     (a) 


34.389 


38.565 


62.681 


Sept 28.815  30.293  34.982  .39.755  49.135  42.410  32.675  33.125  38.830  61.542 


Oct 29.444,30.475  36.190  41.185  50.077  40.462,30.284  33.080  41.241  61.581 


Nov. 


30.348  30.869 


36.547  43. 125149. 891  39. 810l33. 304 


39.224 


44.109  74.740 


Dec. 


28.144  32.913  38.199  44.655  49.815  37.635:33. 601 


38.779 


42.635i87.120 


Year's  aver-  I 

age 29.465  29.725|34.123!42.281  46. 096144.252  34.300  38.590  43.480  61.802 


I [  I 

These  figures  frcn  the  Engineering  and  Mining  Journal 
(n)   No  quotations. 


PRICE  AND  PRODUCTION  STATISTICS 


57 


Metal  Production  Figures 

For  the  latest  production  figures  the  reader  is  referred  to  the 
annual  statistical  number  of  the  Engineering  and  Mining  Jour- 
nal and  to  the  "  Mineral  Industry."  However,  despite  the  fact 
that  the  following  figures  are  somewhat  out  of  date  they  are 
offered  as  useful  guides. 

Production'  of  Metals  in  the  United  States^ 


Metal 


Unit 


1916 


1917 


Copper  (a) Pounds 

Ferromanganese,  Long  tons 

Gold  (6) Dollars 

Iron Long  tons 

Lead  (c) I  .Short  tons 

Nickel  (e) Pounds 

Quicksilver Flasks 

Silver  (6) Troy  ounces 

Zinc  ((i) :  Short  tons 


1,423,608.160'    1.942,776,309 

226,957, 

101,035,700! 

29,916,213 

535,922 

44,139,826 

(/)     21,033 

67,485,600 

492,495, 


92,590,300 

39,434,797 

592,241 

72,611,492 


74,414,802 
680,018 


1,888,395,945 


84,456,600 

38,367,853 

580,464 

56,807.613 


74,244,500 
685,436 


fa)  Production  from  ore  originating  in  the  United  States,  (h)  The  statistics 
for  1915  and  1916-  are  the  final  and  those  for  1917  are  the  preliminary  sta- 
tistics reported  jointly  by  the  directors  of  the  Mint  and  the  U.  S.  Geological 
Survey,  (c)  Production  of  refined  lead  ore  and  scrap  originating  in  the 
United  States:  antimonial  lead  is  included,  (rf)  Total  production  of  smelters, 
except  those  treating  dross  and  junk  exclusively;  includes  spelter  derived 
from  imported  ore.  (e)  Imports;  for  1917,  first  10  months  only.  This 
nickel  is  refined  in  the  United  States  for  the  production  of  metal,  oxide  and 
salts.     (/)  As  reported  by  U.  S.  Geological  Survey. 


Production  of  Mineral  and  Chemical  Substances 


Substance 

Unit                1914                 1915 

1916 

Pounds              8,651,940' 

Coal,  anth.  (a) 

Coal,  bitu.  fa) 

Coke  (a) 

Short  tons       90,821,507      88,912,000 
Short  tons     422,703,970    432,500,000 
Short  tons  i     34,555,914      41,600,000 
Long  tons  '     31,776,670  .    . 

88,500,000 

509,000,000 

54,300,000 

Iron  ores 

Long  tons        42,911,897      58,843,804 

81,095,000 

(a)  The  coal  and  coke  statistics  are  the  estimates  of  Coal  Age. 
I  As  tabulated  in  the  Engineering  and  Mining  Journal. 


World's  Production  of  Nickel 

fin  Metric  Tons) 


1912 


1913 


United  States  and  Canada .  .  I  15,000 

England I  4,500 

Germany 5,000 

France I  1,200 

Others j  1,000 

Totals !  26,700 


21,000 
5,200 
4,000 
1,700 
1,200 


23,000 
5,500 
4,500 
1,500 
2,500 


33,100     I     37,000 


58      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
World's  Production  of  Quicksilver 

(In  Metric  Tons^ 

1911  I         1912  i         1913 


United  States: 

a.  California  («) 

b.  Texas 

c.  Other  states  . . 


United  States 

Spain  (6) 

Austria-Hungarv. . . 

Italy " 

Mexico  (estimated). 

Total 


578 

701 

578 

116V 
37/ 

154 

136 

731 

855 

714 

1486 

1256 

1246 

793 

783 

855 

931 

986 

1004 

150 

150 

150 

4100 


4030 


3969 


(a)  Eng.  and  Min.  Journ.      (b)  Exports. 

World's  Consumption  of  Aluminum 

(In  Metric  Tons) 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am  Main') 

1913 


United  States  (a) . 

France 

England 

Italy 

Other  countries. . . 
Totals 


20,900 

5,000 

3,000 

900 

17,000 

46,800 


29,800 
6,000 
4,000 
1,000 

22,100 


62,900 


32,800 
7,000 
5,000 
1,000 

21,000 


66,800 


(a)  U.  S.  Geological  .Survey. 

World's  Production'  ok  Aluminum 

(In  Metric  Tons) 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am   Main) 


1911 


1912 


1913 


United  States 18,000 

Canada  (exports) 2,300 

Germany  | 

Austria-Hungarj'  \  8,000 

Switzerland  j 

France i  10,000 

England '<  5,000 

Italy I  800 

Xorwav 900 


Totals 45,000 


19,500 
8,300 

12,000 

13,000 

7,500 

800 

1,500 


62,600 


22,, 500 
5,900 

12,000 

18,000 

7,500 

800 

1,500 


68,200 


Xo  reliable  foreign  statistica  for  1914  et  seq. 


PRICE  AND  PRODUCTION  STATISTICS 


59 


World's  Production  of  Pig  Lead 

(In  Metric  Tons) 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am  Main) 


1911 


1912 


1913 


Spain  (o) 

Germany 

France 

Great  Britain 

Belgium 

Italy 

Austria-Hungary .... 

Greece 

Sweden  and  Norway 

Russia 

Asiatic  Turkey 


Total  Europe  (6). 

United  States 

Mexico 

Canada 


Total  North  America. 

Japan 

Australia 

Other  countries 


175,100 

164,400 

23,600 

26,000 

44,300 

16,700 

19,600 

14,300 

1,100 

1,000 

12,400 


186,700 

176,600 

31,100 

29,200 

51,200 

21,500 

21,400 

14,500 

1,300 

(c)  1,000 

12,500 


203,000 

181,100 

(c)28,000 

30,500 

50,800 

21,700 

24,100 

18,400 

1,500 

(c)  1,000 

13,900 


498,500 

377,900 

124,600 

10,700 


547,000 

387,300 

(c)  108,000 

16,300 


574,000 

407,800 

(c)62,000 

17,100 


513,200 

4,200 

99,600 

20,500 


511,600 

3,600 

107,400 

12,200 


486,900 

(c)3,600 

116,000 

6,200 


Total  world's  production    1,136,000       1,181,800   1,186,700 


(o)  Exports.      (6)  Including  Asiatic  Turkey,      (c)  Estimated. 


Production  of  Le 

(In 

AD  (Refinery  Statistics)^ 

Tons  of  2000  Lb.) 

(a) 

Domestic:          '        1913 

1914 

1915 

1916 

1917 

Desilverized.  . . 
Antlmonial.  .  .  . 
S.  E.  Missouri  . 
S.  W.  Missouri . 

261,616 
16,345 

133,203 
22,312 

318,697 

17,177 

177,413 

25,448 

.305,160    .330,189 
24,601  !     22,819 

185,849    206,105 
20,312  i    33,128 

317,952 
17,068 

204,869 
40,575 

Totals 

Foreign : 

Desilverized .  .  . 
Antimonial  .  .  . 

433,476 

54,774 
2,300 

538,735 

28,475 
1,119 

535,922 

43,301 

2,883 

592,241 

17,832 
3,304 

580,464 

49,213 

1,858 

Totals 

Grand  totals 

57,074      29,594      46,184  j    21,136 
490,550    568,329    582,106,613,377 

51,071 
631,535 

'  As  reported  by  the  Engineering  and  Mining  Journal. 
(a)  These  figures  include  the  lead  derived  from  scrap  and  junk  by  primary 
smelters. 


60      MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 
World's  Consumption  of  Lead 

(In  Metric  Tons) 
(From  statistical  report  of  the  Metallgoselischaft,  Frankfurt  am  Main) 


1911 


1012 


1913 


Germany 

Great  Britain 

France 

Russia 

Belgium 

Italy 

Austria-Hungary 

Holland  (a)....'. 

Switzerland 

Other  European  countries, 

Total  Europe 

United  States 

Canada 

Japan 

Australia 

Other  countries 


232,900 

193,300 

99,600 

42,900 

43,000 

36,300 

36,200 

6,800 

5,000 

3,500 


704,500 

364,400 

21,100 

18,900 

9,100 

31,200 


Total  world's  consumption,  1,149,200 


232,100 

196,300 

104,700 

45,600 

44,900 

33,000 

37,800 

6,300 

6,400 

4,400 


711,500 
398,400 
30,000 
21,800 
10,100 
30,000 


1,201,800 


223,500 

191,400 

107,600 

58,800 

42,900 

32,600 

35,500 

9,500 

5,800 

6,300 


713,900 

401,300 

22,900 

(a) 18, 500 

9,600 

(a)30,000 


1,196,200 


(o)  Estimated. 

World's  Production  of  Spelter 

(In  Metric  Tons) 
(From  statistical  report  of  the  MetallResellschaft,  Frankfurt  am  Main) 


1911 


1912 


1913 


Germany 

Rheinland- Westphalia. 

Silesia 

Other  districts 

Belgium 

Holland 

Great  Britain 

France  and  Spain 

Austria  and  Italy , . 

Russia 

Norway 

Sweden 


81,458 

156,174 

12,761 

195,092 

22,733 

66,956 

64,221 

16,876 

9,936 

6,680 


86,619 

169,088 

15,357 

200,198 

23,932 

57,231 

72,161 

19,604 

8,763 

8,128 


Europe !  632,887 

United  States j  267,472 

Australia 1,727 


661,081 

314,512 

2,296 


Total 902,100  j  977,900 


92,852 

170,119 

20,142 

197,703 

24,323 

59,146 

71,023 

21,707 

7,610 

9,287 


673,912      , 
320,283 
3,724 


997,900 


PRICE  AND  PRODUCTION  STATISTICS 


61 


ZlNC-SAIELTING   CAPACITY   OF   THE    UnITED    StATES^ 
(Number  of  Retorts  at  End  of  Years) 


Name 


Situation 


1916 


1917 


American  Spelter  Co.  (a) 

American  Steel  &  Wire  Co 

American  Zinc  and  Chem.  Co.  (a) .  .  .  . 

American  Zinc  Co.  of  111 

American  Zinc,  Lead  and  Smg.  Co.  (a) 
American  Zinc,  Lead  and  Smg.  Co.  (a) 
American  Zinc,  Lead  and  Smg.   Co. 

W  (a) 

American  Zinc,  Lead  and  Smg.  Co.  (c). 
Arkansas  Zinc  and  Smelting  Corpn. .  . 

Athletic  Min.  and  Smelting  Co 

Bartlesville  Zinc  Co 

Bartlesville  Zinc  Co 

Bartlesville  Zinc  Co 

Bartlesville  Zinc   Co.,  Lanyon-Starr 

Branch 

Chanute  Spelter  Co.  (a) 

Collinsville  Zinc  Co.  (a) 

Eagle-Picher  Lead  Co 

Edgar  Zinc  Co 

Edgar  Zinc  Co 

Fort  Smith  Spelter  Co 

Grasselli  Chemical  Co 

Grasselli  Chemical  Co 

Grasselli  Chemical  Co 

Hegeler  Zinc  Co 

Henryetta  Spelter  Co 

Illinois  Zinc  Co 

lola  Zinc  Co.  (h) 

Joplin  Ore  and  Spelter  Co 

J.  B.  Kirk  Gas  and  Acid  Co.  (o) 

Kusa  Spelter  Co 

La  Harpe  Spelter  Co 

Lanyon  Smelting  Co 

Robert  Lanyon  Zinc  and  Acid  Co. . . . 

Lanyon-Starr  Smelting  Co.  (e) 

Matthiessen  &  Hegeler  Zinc  Co 

Mineral  Point  Zinc  Co 

Missouri  Zinc  Smelting  Co  (a) 

National  Zinc  Co 

National  Zinc  Co 

Nevada  Smelting  Co 

New  Jersey  Zinc  Co.  of  Penn 

Oklahoma  Spelter  Co 

Owen  Spelter  Co v 

Pittsburg  Zinc  Co 

Prime  Western  Spelter  Co 

Quinton  Spelter  Co 

Sandoval  Zinc  Co 

Tulsa  Fuel  and  Manufacturing  Co.  .  . 

United  States  Smelting  Co.  (a) 

United  States  Smelting  Co 

United  States  Smelting  Co 

United  States  Zinc  Co.  (l) 

United  States  Zinc  Co 

United  States  Zinc  Co 

United  Zinc  Smelting  Corpn 

United  Zinc  Smelting  Corpn.  (0 

Weir  Smelting  Co 


Pittsburg,  Kan. 
Donora,  Penn. 
Langeloth,  Penn. 
Hillsboro,  111. 
Dearing,  Kan. 
Caney,  Kan. 

Neodesha,  Kan. 
E.  St.  Louis,  111. 
Van  Buren,  Ark. 
Fort  Smith,  Ark. 
Bartlesville,  Okla. 
Blackwell,  Okla. 
Collinsville,  Okla. 

Bartlesville,  Okla. 
Chanute,  Kan. 
Collinsville,  111. 
Henryetta,  Okla. 
Carondelet,  Mo. 
Cherryvale,  Kan. 
Forth  Smith,  Ark. 
Clarksburg,  W.  Va. 
Meadowbrook,  W.  Va. 
Terre  Haute,  Ind. 
Danville,  111. 
Henryetta,  Okla. 
Peru,  lU. 
Concreto,  Kan. 
Pittsburg,  Kan. 
lola,  Kan. 
Kusa,  Okla. 
Kusa,  Okla. 
Pittsburg,  Kan. 
Hillsboro,  111. 


La  Salle,  111. 
Depue,  111. 
Rich  Hill,  Mo. 
Bartlesville,  Okla. 
Springfield,  111. 
Nevada,  ^lo. 
Palmerton,  Penn. 
Kusa,  Okla. 
Caney,  Kan. 
Pittsburg,  Kan. 
Gas  City,  Kan. 
Quinton,  Okla. 
Sandoval,  111. 
Collinsville,  Okla. 
Altoona,  Kan. 
Checotah,  Okla. 
La  Harpe,  Kan. 
Henryetta,  Okla.   , 
Sand  Springs,  "Okla. 
Pueblo,  Colo. 
Moundsville,  W.  Va. 
Clarksburg,  W.  Va. 
Weir,  Kan. 


Totals 212,614 


(6)  896 
9,120 
7,296 
4,864 
4,480 
6,080 

3,760 
4,864 
2,400 
(rf) 
7,488 
8,800 
13,440 

3,456 
1,280 
1,984 
3,000 
2,000 
4,800 
2,560 
5,760 
8,544 
(d) 
5,400 
3,000 
4,640 
(6)  660 
(J)  1,792 
3,440 
3,720 
4,000 
448 
3,200 


(6)  896 
9,120 
7,296 
4,864 
4,480 
6,080 

3,760 
5,620 
3,200 
1,664 
5,184 
9,600 
13,440 

3,456 

(ff) 

(6)1,984 

(6)3,000 

1,982 

5,040 

2,560 

5,760 

8,520 

3,360 

5,400 

(a)  3,000 

(6)4,640 

(6)  660 

(g) 

3,440 
7,520 

(k) 
(h)    448 
(6)  3,200 


6,168 
9,068 
(j)  448 
4,970 
3,800 

672 

7,200 

(j)  1,600 

1,920 

910 
4,866 
1,340 

672 
6,232 
4,600 
4,480 
1,926 
1,200 
8,000 
1,984 
(d) 
3,648 

448 


6,168 

9,068 

(ff)448 

4,256 

4,480 

(6)     672 

7,200 

(A)  1,600 

1,920 

(h)  910 

4,866 

2,016 

(a) 

6,232 

4,640 

5,120 

(9) 

2,400 
8,000 
2,200 
(m)  1,728 
3,648 
(a)    448 


217,194 


'  As  reported  by  the  Engineering  and  Mining  Journal. 

(a)  Closed  during  latter  part  of  1917.  (6)  No  report  received;  entered  the 
same  as  previous  year,  (c)  Formerly  Granby  Mining  and  Smelting  Co.  (d) 
Under  construction,  (e)  See  Bartlesville  Zinc  Co.  (g)  Dismantled,  end  of  1917. 
(h)  Idle  all  of  1917.     (i)  Formerly  Clarksburg  Zinc  Co.     (;)  Idle  latter  part  of 


62    METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Production  of  Spelter' 

(In  Tons  of  2000  Lb.) 
(By  Ore  .'^moltcrs  Only  (M) 


States 

I9i3r 

1914 

1915 

1916 

1917 

7,637 
8,908 
181,495 
154, .390 
109,004 
10.903 
147.555 

25,715 

8.637 
111,551 

85,1.57 
83,230 

8.152 

130.587 

.53.424 

92,407 

8,984 
161.605 
111.052 
111,405 

8,488 

176.106 

86,227 

204.720 

29.451 

69.087 

85,082 

114.036 

154.729 

Totals     

358,202 

370.312 

507.142 

680.018  0S5.43fi 

Id)  Includes  some  works  that  smelt  dross  and  scrap  as  well  as  ore,  but 
does  not  include  works  that  smelt  dross  and  scrap  only.  Discrepancies 
among  statistical  reports  of  the  spelter  production  of  the  United  States  arise 
larcely  on  account  of  the  difference  in  the  dividing  line  that  is  drawn  in  this 
respect. 


A.MERICAX    SlLVER-LE.\D   SmELTING   WoRKS' 


Company 


Place 


Fur- 
naces 


Annual 
capacity 

(a) 


American  Smelting  and  Refining  Co.. . 
American  Smelting  and  Refining  Co... 
American  Smelting  and  Refining  Co... 
American  Smelting  and  Refining  Co... 
American  Smelting  and  Refining  Co... 
American  Smelting  and  Refining  Co... 
American  .Smelting  anfl  Refining  Co... 
American  .Smelting  and  Refining  Co... 
Cons.  Kansas  City  Sm.  and  Ref.  Co.. . 
Bunker  Hill  &  Sullivan  Min.  and  Con- 
centrating Co 

Selby  Smelting  and  Lead  Co 

Ohio  &  Colorado  Smelting  Co 

Ignited  States  ."^melting  Co 

Nortliport  ."^melting  and  Refining  Co. 
Penn.sylvania  Smelting  Co. . . 
International  Smelting  Co 


Totals,  United  States. 


American  Smelting  and  Refining  Co.. . 
American  Smelting  and  Refinitig  Co... 
American  .Smelting  and  Refining  Co.. . 

American  .Smelters  .Securities  Co 

Compafiia  Metalurgica  Mexicana.  .  .  . 
Compaf5ia  Metalurgica  do  Torreon.  .  . 
Compafiia  Mincra-de  fefioles 


Denver 
Pueblo 
Durango 
Lead  villa 
Murray 
East  Helena 
Omaha  (h) 
Perth  Amboy  (b) 
El  Paso 

Kellogg.  Ida. 
Selby,  Calif. 
.Salida.  Colo. 
Midvale.  Utah 
Northport,  Wash. 
Carnegie,  Penn. 
Tooele,  Utah 


Totals,  Mexico 

Consolidated  Mining  and  Smelting  Co. 


Monterrey 

Aguascalientes 

Chihuahua 

Velardena 

.San  Luis  Potosi  (f) 

Torreon 

Mapimi 


Trail,  B.  C. 


7 
7 
4 
10 
8 
4 
2 
4 
6 

3 
3 
4 
7 
2 
2 
5 


78 

10 
1 
7 
3 

10 
8 
6 

45 

4 


510,000 
380,000 
210,000 
510,000 
657,000 
306,000 
82,000 
170.000 
380,000 

600,000 
210,000 
345,000 
530,000 
216,000 
60,000 
600,000 


5,766,000 

584,000 
40,000 
400,000 
150.000 
250.000 
360.000 
325,000 


2,109,000 
140,000 


(a)  Tons  of  charge.     (6)  .Smelt  chiefly  refinery  between-products. 
being  operated,  but  plant  is  expected  to  start  in  the  near  future. 
'  Engineering  and  Alining  Journal,  Jan.  12,  1918. 


(c)  Not 


PRICE  AND  PRODUCTION  STATISTICS 


63 


World's  Consumption  of  Copper 

(In  Metric  Tons) 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am  Main) 


Europe 


1911 


1912 


1913 


Germany 

Great  Britain 

France 

Austria-Hungary 

Russia 

Italy 

Belgium 

Netherlands. 

Other  European  countries ... 

Total  consumption  in  Europe 
America 

United  States 

Others  in  America 


222,500 
159,100 
95,700 
38,500 
32,800 
29,400 
13,500 
1,000 
10,000 


Total,consumption  in  America 

Asia,  Australia,  Africa 
Production    Japan    and   Aus- 
tralia  

Imports  from  Europe 

Imports  from  America 


602,500 

321,900 
3,000 


324,900 


95,000 
500 


Total 

Exports  to  Europe  and  Amer- 
ica  


Consumption    in    Asia,    Aus- 
tralia and  Africa 


World's  consumption . 
World's  production. 


95,500 

68,800 


26,700 


954,100 

893,800 


231,700 
144,700 
98,500 
48,200 
40,000 
34,200 
15,000 
1,000 
10,200 


623,500 

371,800 
3.000 


374,800 

111,900 

1,400 

500 

113,800 

73,400 


40,400 


259,300 

140,300 

103,600 

39,200 

40,200 

31,200 

15,000 

1,000 

(o) 13,300 


643,100 

348,100 
3,000 


351,100 


119,000 

1,000 

80 


1,038,700 

1,018,600 


120,100 
69,800 

50,300 
11,044,500 
;  1,005,900 


(a)  Estimated. 


04    MET.\LLL'RGISTS  AND  CHEMISTS'  HANDBOOK 
World's  Production  of  Copper  (a) 

(In  Metric  Tons) 


ir 


Country 


191C 


United  States 

Mexico 

Canada 

Cuba 

Australasia 

Peru 

Chile 

Bolivia 

Japan 

Russia 

Germany 

Africa 

Spain  and  Portugal 
Other  Countries 

Totals 


525.529 

36.337 

34.027 

6.251 

37,592 

27.090 

40,876 

1.306 

(c)  71,046 

32.262 

(6)  30.480 

24.578 

(6)  37.099 

(6)25,176 


929.649 


646.212 

30.969 

47.202 

8.836 

32.512 

(f)  32.410 

47,142 

(e)    3,000 

(c)  76.039 

25.881 

(e)  35,000 

27.327 

(e)  40.200 

(e)  25.000 


881.237 

■     55,128 

47,985 

7,816 

35,000 

(f)  41,625 

64,636 

(f)     4,000 

(c)  101,467 

20.887 

(e)  45.000 

34.572 

(«)  42.000 

(e)  25.000 


856. 

43 

50. 

9, 

38. 

(/)  45, 

(g)  75, 

(e)     4, 

(ff)124. 

(e)  16, 

(e)  45, 

(e)37 

(c)4 

(e)  25 


570 
827 
351 
622 
100 
620 
345 
000 
306 
000 
000 
315 
.000 
000 


1,083.730      l,t00.353   .   1.413,056 


iff 


(d)  The  statistics  in  this  table  are  Engineering  and  Mining  Journal  com- 
pilations, except  where  specially  noted  to  the  contrary,  (h)  As  reported  by 
Henry  R.  Merton  &  Co.  (c)  .\s  officially  reported,  (rf)  Privately  com- 
municated to  us  from  Japan,  (y)  Estimated  on  basis  of  nearly  complete 
reports. 


Smelters'  Production  of  Copper  in  the  IJjiiTED  States^ 

(In  Pounds) 


1014 


1915 


1010 


1917 


Alaska 

24,2S.S,OO0 

72.621,844 

115,933,315 

91,918.000 

Arizona 

387,978.852 

444,089,147 

092,630,286 

692,923.722 

California. ... 

29,51.0,488 

37.935.893 

51.358,.334 

46.881.089 

Colorado 

10.104.579 

8.126,000 

9,802,183 

12,028,000 

Idaho 

4.856,460 

5,603.000 

6,741,001 

5,020.000 

Michigan 

157.089.705 

211,123,404 

270,058.601 

273.4 1 5,747 

Montana 

243,139,737 

268,027,5.57 

351,995,0.58 

274,790,.545 

Nevada 

60,078,095 

66,. 39  4, 900 

100.143,431 

103,719.442 

New  Mexico..  . 

64,338.892 

75,515.1.38 

83.013,805 

101.951.598 

Utah 

153.555.902 

180,951.174 

225,396.808 

244.398.684 

Washington.  .  . 

165.023 

(a) 

(a) 

(a) 

East  and  South 

19.213.965 

18.8.58,677 

20.018,261 

23.692.274 

Other  States..  . 

4.257.088 

(b)    4.4.52,420 

(6)     15,685,226 

(6)    17.617,844 

Totals. 


1,158,581.870,     1,423.698.100     1.042,770,.309'    1,888,395.945 


'  As  reported  by  the  Engineering  and  Mining  Journal. 

(a)  Included  in  "Other  States."  (6)  Includes  copper  originating  in  states 
other  than  those  enumerated  and  also  copper  whose  origin  could  not  be  cor- 
rectly distributed  at  this  early  date.  Indeed,  the  distribution  for  1916  in 
several  cases  in  this  table  must  be  regarded  as  merely  provisional.  Thus. 
Utah  is  undoubtedly  credited  with  more  or  less  copper  that  belongs  to  Idaho 
and  Nevada. 


PRICE  AND  PRODUCTION  STATISTICS 


65 


Smelters'  Production — (Continued) 


Source 


American  ore. . 
1  ore 


Totals 

3  foreign  refiners. 


3  American  refiners.  .  . 
rude  copper  imported. 


1,327,488,479 
50,101,.308 
20,894,559 


1,398,484,346 
36,765,920 


1,361,718,426 
131,125,076 


crude  copper. .  . ;  1.492,843,502 


1,612.4.50,828 
44,749,105 
29,827,203 


1,687,027,136 
39,734,120 


1,647,293,016 
140,4 1.5,.341 


1,787,708,357 


2,187,328,864  2,117,235,708 
73,.391,517  76,078,047 
37,380,759  ;       38,854,053 


2^98,101,140,  2,219,066,922 
38.423,577  j       33,266,348 


2,259,677.563  !    2,198,901.460 
152,770,5.36    !(a)281.211,588 


1,412,448,099     2,480,113.048 


{a)  Estimated  on  basis  of  nine  months'  returns. 


World's  Production  of  Silver 

Smelters'  Production — In  Metric  Tons 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am  Main) 


1911 


1912 


1913 


reat  Britain 

■ermany 

elgium 

pain  and  Portugal. 


ustria-Hungary . 

:aly 

Norway 

lussia 

'urkey  (a) 

weden 


Total  Europe . 


Wted  States '. 

lexico 

lentral  and  South  America  (a) . 
Canada 


Total  America. 
Asia  (Japan) . . 

Australia 

"otal  production . 


536.1 1 

420.0 

264. 7| 

134.9 

53.0 

63.1 

14.2 

7.2 

4.9 

1.5 


499. 

476, 

252. 

117. 

47. 

61. 

12. 

7. 

(a)  5. 

1. 

1. 


395.1 

537.9 

280.0 

(a) 130.0 

(a)47.0 

58.9 

14.4 

(a)8.0 

(o)5.0 

1.5 

0.9 


1055.6  61063.2 

200.01  200.0 

509.2  593.4 


1499.6    1481.2'     1478.7 

3891.9  4073.0  4059.1 
61159.2 
200.0 
546.5 

5974.8 

148.9 

143.0 

7427.0  7685.3  7745.4 


5656.7  5929.6 

141.6  138.1 
129.1   136.4 

(a)  Estimated.     (6)  Fiscal  years  1910-1911  and  1911-1912. 
5 


66    METALLURGISTS  AND  CHEMLSTS"  HANDBOOK 


SiLVEH    PkODUCTION    IN    THE    UnITED    StATES 
(In  Fine  Ounces) 


1915 


Alaska 

Arizona 

California 

Colorado 

Georgia 

Idaho 

Illinois 

Maryland 

•Mic'hi}:;an 

Missouri 

Montana 

Nevada 

New  Hamp.shire. 
New  Mexico .... 
North  Carolina. . 

Oklahoma 

Oregon 

South  Carolina. . 
South  Dakota. . . 

Tennessee 

Texas 

Utah 

Virginia 

Vermont 

Washington 

Wyoming 


Continental  U.  S. 

Pliilippines 

Porto  Rico 

Total 


1,0.54.634 

5,66o,G72 

1,689,924 

7,199,745 

141 

13,042,466 

3,892 

100 

581,874 

55.534 

14,423,173  I 

14,453,085 


1.266,317 
6,680.252 
1,936,910 
7,551,761 


2,337,064 
1,496 


125,499 


197,569 

99,171 

724,580 

13.073,471 


11,570.399 

5.782 

153 

759,068 

128,860 

14.046,054 

13,682,067 

935 

1,729,917 

1,738 

606 

221,887 


150 

213,877 

2,910 


210,100 

93,837 

664,319 

13,545,802 

508 

1,964 

294,516 

3,407 


1,351,100 
8,183,200 
1,989.800 
8,163,600 


11,683,100 

3,300 

1,100 

686,700 

21.100 

13,711.100 

11,441.000 


1,313.700 
2,800 


215,700 


191,100 

99,300 

583,200 

14,315,300 

9,400 

400 

257.000 

4,900 


74,945,927  |  74,397,159  I  74,227,900 
15,148     17,643  |    16,600 


74,961,075  ;  74,414,802  74,244.500 


As  reported  by  the  Director  of  the  Mint  and  the  U.  S.  Geological  Survey.     B' 


PRICE  AND  PRODUCTION  STATISTICS 


Gold  Production  of  the  World  for  21  Years^ 


1^95 S198,99o.741 

1S96 211,242,081 

1S97 237,833,984 

1898 287,327.833 

1899 311,505,947 

1900 258,829,703 

1901 260,877,429 

1002 298.812,493 

1903 329.475,401 

1904 349,088,293 

1915. . . 


1905 8378,411,054 

1906 405,551,022 

1907 411.294,458 

1908 443,434,527 

1909 459,927,482 

1910 454,213,649 

1911 459.377.300 

1912 474,333.268 

1913 462.669.658 

1914 451,582,129 

.473,124,590 


*  A3  tabulated  in  the  Engineering  and  Mining  Journal. 


Gold  PRonucTiox  of  the  World 


Transvaal .  §188,599,260  8181.889,012  §173,176,133 


Rhodesia . 

West  Africa 

Madagascar,  etc. 


Total  Africa 

United  States 

Mexico 

Canada 

Central  America,  etc. . . 

Total  North  America . 
Russia,  inc.  Siberia. . . . 

France 

Other  Europe 


13,166,2.30  13,935,681  17,745.980 
7,386,028'  7,846,560  8,671.-371 
2,925,000!   2,044,600   1,980,000 


8212,076,518  8205,715,6.53  8201,573,484 

893,451, .500  888.884,400'  94,-531.800 

22,500,000   20.-500,000   18.185.000 

12,.559,288   16,216.131   15,925.044 

3,632,500|   3,030,400   3,500,000 


Total  Europe 

British  India 

British  and  Dutch  E. 

Indies 

Japan  and  Chosen 

China  and  others 

Total    Asia,    not  inc. 
Siberia , 


South  America. 
Australasia .... 


8132,143,288  8128,630,931  8132,141,844 


827,635,500 
1,847,000 
3,615,000 


829,-500.000  26,763,000 
1,812,  lOOi  1,4-50,000 
2,950,000   2,350,000 


8-33,097,500  834,262,100  830,-563,000 
812,11-5,162  812,176,783  812,327,980 


4,925,000 
7,165,000' 


4,739,100! 
7,394,300' 


4,690,000 
7,476,.500 


3,750,000   3,658,900,   3,625,000 


827,955, 162j  $27,969,083:  $28,119,480 

812,425.000  813,058,400  813,52-5,000 
56,635,800   53,033,-391   45,695,271 


Total  for  the  world..  .  8474,333,268  8462,669,558  8451,582,129 


Official  returns  of  the  various  countries  and  reports  of  the  Director  of  the 
U.S.  Mint. 


68    METALLURGISTS  AND  CHEMISTS'   HANDBOOK 
Gold  PiioDrcTiox  i\  the  United  States 

(Values) 


1910 


1917 


Alabama 

Alaska , 

Arizona 

California 

Colorado 

Georgia 

Idaho 

Maryland 

Montana 

Nevada 

New  Mexico . . . 
North  Carolina. 

Oregon 

South  Carolina. 
South  Dakota. . 

Tennessee 

Texas 

Utah 

Vermont 

Virginia 

Washington .  .  .  . 
Wyoming 


Continental  U.  S. 

Philippines 

Porto  Rico 


S5,100 

16.710,000 

4,555,900 

22,547,400 

22,530,800 

34,800 

1,170,600 


S7,400 

16,124,800 

4,092,800 

21,980.400 

19,185,000 

20,400 

1,058,300 


4,978,300 
11,883.700 

1,460,100 
170,700 

1,867,100 
3,600 

7,403,500 
6,800 
1,800 

3,907,900 


500 

461,600 

13,900 


4,328,400 

9,064.700 

1,350,000 

23,000 

1,901,500 

300 

7,471,700 

5,700 

500 

3,859,000 

300 

500 

580,600 

20,200 


$4,200 

15.171,300 

5,. 533, 800 

20.815,900 

15,955,100 

6,000 

711,500 

100 

3,756,500 

6,922,900 

1,025,100 

15,700 

1,677,400 

1,100 

7,392,600 

5,300 

900 

3,620,300 


$99,714,100 

1,320,900 

700 


$91,075,500 
1,514,200 
600 


Totals $101,035,700    $92,590,300   $84,456,600 


1,700 

434,900 

200 


$83,052,500 

1,404,000 

100 


As  reported  by  the  Director  of  the  Mint  and  the  U.  S.  Geological  Survey. 


E.STIMATE     OF     WoKLD's     PRODUCTION     OF     CuUDE     PlATINUM  ' 


Country 

1912 

191.3 

1914 

191.5 

Borneo  and  Sumatra.  . 

Canada 

Colombia 

New  South  Wales 

Ru.ssia 

200 

30 

12,000 

778 

300,000 

721 

200 

50 

15,000 

1,275 

250,000 

483 

* 

30 

17,500 

1,248 

241,200 

570 

* 

100 

19,000 

t56 

124,000 

United  States 

742 

313,729 

267,008 

260,548 

143,898 

•  No  basis  for  estimate',     t  Mo  figures  from  Tasmania  available. 
1  Estimates  by  U.  .S.  Geological  .Survey. 


PRICE  AND  PRODUCTION  STATISTICS 


69 


U.  S.  Pig  Iron*  Production  for  15  Years' 

(In  Long  Tons) 


1903. 
1904. 
1905. 
1906. 
1907. 


18,009,252 
16,497,003 
22,992,380 
25,307,391 
25,781,381 


1908. 
1909. 
1910. 
1911. 
1912. 


15,936,918 
25,795,471 
27,303,567 
23,649,547 
29.726,937 


1913. 
1914. 
1915. 
1916. 
1917. 


30,966,162 
23,332,244 
29,916,213 
39,434,797 
38,367,853 


U.  S.  Iron  Ore  Production  and  Consumption' 

(In  Long  Tons) 


Lake  Superior  shipments. .  . 

Southern  ore  mined 

Eastern  and  other  local  ores 

Total  production 

Imports 

Total  supplies 

Exports 

Approximate  consumption . 


48,211,778;  49,947,116  33,721,897 
7,500,000i  7,950,000  6,175,000 
3,485,000j    3,950,000    3,015,000 


59,196,778  61,847,116 
2,104,576    2,594,876 


42,911,897 
1,455,000 


61,301.354 
1,195,742 


64,441,992 
1,042,151 


60,105,612j  63,399,841 


44,366,897 
660.000 


43,706,897 


Production  of  Crude  Petroleum  in  the  United  States' 

(In  Barrels  of  42  Gal.) 


Field 

1912 

191.3 

1914 

California 

•  84,823,992 

200,000 

11,778,324 

9,791,896 

28,400,000 

1,200,000 

3,000,000 

52,771,603 

500,000 

26,000,000 

500,000 

5,000 

96,881,967 

220,000 

15,544,046 

12,901,703 

(6)23,893,899 

1    4,750,000 

64,556,000 

500,000 

25,673,000 

2,354,000 

50,000 

100,093,568 

Colorado 

(/)200,000 

Texas  (a) 

20,586,377 

Louisiana 

16,860,235 

Illinois 

21,500,000 

T  ;^„  /  Indiana 

L'^MOhio 

Mid-continental  (6) . 
Kentucky-Tennessee 

Appalachian  (c) 

Wyoming 

2,900,000 

(rf)  97, 400. 000 

580,000 

23,800,000 

4,100,000 

Others 

(/)50,000 

Total 

218,970,815 

247,321,615 

288,070,180 

(a)  Includes  Panhandle  field  of  Texas.  _  (6)  Kansas  and  Oklahoma,  only, 
(c)  Pennsylvania,  New  York,  West  Virginia  and  eastern  Ohio,  (rf)  Estimate 
of  Db.  D.wid  T.  D.\y,  in  "Oil,  Paint  and  Drug  Reporter,"  Jan.  2,  1915. 
(e)  U.  S.  Geol.  Survey.     (/)  Estimated. 

'  As  reported  by  the  Engineering  and  Mining  Journal. 


7U      METALLnU'.LSTS  AND  CHEMISTS'  HANDBOOK 
Tin'  Productio.v  and  Consumption 

(In  LonK  Tons) 


19i: 


Exports,  Straits  and  Malay  Peninsula. 

Exports,  Australian 

Banka  and  Billiton  sales 

Chinese  exports  and  production' 

Bolivian  exports' 

South  African  production' 

Nigerian  production' 

Cornwall  production' 


62,242 
3,253 

17,142 
8,200 

22,719 
1,900 


4,900 


61,986 
1,771 

10,975 
8,255 

24,844 
2,276 
1,962 
4.500 


66,760 
2,275 

15,093 
7,097 

18,800 
2.158 
1.899 
4,000 


Total 120,356 

U.  S.  imports  and  consumption I   45,900 

Great  Britain,  imports  and  consumption j   28,736 

Holland,  imports I    16,573 

-  21,250 

1,000 
6,500 


Other  Europe,  imports. 

Australian  consumption 

China  and  India  consumption. 


Totals 

Visible  stocks,  Dec.  1 . 


116,569 

42,995 
30,531 
15,810 
18,633 
1,050 
6,400 


119,959  115,419  116,342 
16,045!  13,432  14,53.5 


118,082 

49,480 

39,937 

7.625 

11,550 

1,100 

6,650 


'Xotin  "Statistics." 

World's  Production  of  Tin 

(In  Metric  Tons) 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am  Main) 


1911 


1912 


1913 


Straits  Settlements 

Great  Britain: 

From  home  ores 

From  other  ores  (a) 

Germany  (a) 

France 

Banca  (sold  in  Holland) .  .  .  . 
Billiton  (sold  in  Holland  and 

Java) 

Australia 

China  (exports) 

Bolivia  (b) 


57,944 


61,528 


65,640 


4,950 

5,338 

(c)5,300 

13,850 

13,600 

16,700 

11,378 

11,000 

(c)ll,500 

500 

500 

1,200 

15,147 

16,111 

15,173 

2,240 

2,243 

2,243 

5,150 

5,130 

4,870 

6,050 

8,782 

(c)6,000 

400 

500 

300 

117,600        124,700     I    128,900 


(o)    Mainly  from  Bolivian  ores,     (fc)   Importation  of  Bolivian  crude  tin  into 
Great  Britain,     (c)  Estimated.     No  later  statistics  available. 


PRICE  AND  PRODUCTION  STATISTICS 


71 


World's  Consumption  of  Tin 

(In  ISIetric  Tons) 
(From  statistical  report  of  the  Metallgesellschaft,  Frankfurt  am  Main) 


1911 


1912 


1913 


Great  Britain 

Germany 

France 

Austria-Hungary 

Belgium 

Russia 

Italy 

Switzerland 

Spain 

Scandinavia 

Holland 

Other  European  countries 

Total  Europe 

United  States 

Other  America 

Australia 

Africa 

China  (imports) 

Other  Asia 

World's  consumption 

World's  production 


21,900 

18,300 
7,400 
4,000 
1,700 
1,900 
2,400 

-1,200 
1,200 
1,400 

(a)  250 
1,200 


62,800 

48,000 

2,300 

(a)900 

(a)500 

1,993 

3,000 


119,500 
117,600 


21,800 
20,200 
7,500 
3,800 
1,500 
2,600 
2,500 
1,400 
1,300 
1,500 
(a)  250 
1,100 


65,500 

51,700 

3,300 

(a)  1,200 

(a)600 

2,427 

3,000 


127,700 
124,700 


24,400 
19,300 
8,300 
3,200 
2,300 
2,700 
2,900 
1,400 
1,300 
1,600 
(a)250 
1,200 


68,900 

45,000 

3,400 

(a)l,400 

(a)500 

(a)2,400 

3,300 


124,900 
128,900 


(a)  Estimated.    No  later  statistics  available. 


World's  Consumption  of  Spelter 

(In  Metric  Tons) 
(From  statistical  report  of,  the  Metallgesellschaft,  Frankfurt  am  Main) 


1911 


1912 


1913 


United  States 

Germany 

Great  Britain 

France 

Belgium 

Austria-Hungary 

Russia 

Italy 

Spain 

Holland  (estimated) 

Other  countries  (estimated) 

Total 


251,600 

219,300 

175,700 

82,000 

73,700 

43,500 

28,900 

10,100 

4,800 

4,000 

17,800 


911,400 


312,900 

225,800 

185,200 

82,000 

77,200 

46,800 

27,900 

10,700 

4,700 

4,000 

19,700 


313,300 

232,000 

194,600 

81,100 

76,400 

40,400 

33,300 

10,900 

5,900 

4,000 

20,900 


996,900       1,012,700 


72  METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


_  >> 

oo 

O 

oooooo 

ooooo 

^■r  £ 

oo 

o   -oooooo 

ooooo 

c  aO^ 

>-v^-V^-K^^ 

^..^ 

^^^v 

■^"^ 

OS    .c_oocct» 

o_o_cqo_ 

^.O-O-O 

pO 

.o-o 

io'» 

M     !  O  lO  iM  d  C  C: 

iiifC^oo 

O-fl" 

■<)<      .  50  CO  t-c  ■-<  T}< 

cjirj": 

No. 
of 
Con- 
ver- 
ters 

M-MNtC 

MO  «•* 

t^MW 

o  CI  o  o  CO  M  «  ^; 

cococoicifl 

—  >> 

■   -o 

o   -co 

COO 

o     oco    -o    • 

•CO 

o 

oo 

coo 

o 

«.^ 

o 

o 

oo 

O  C  O 

1^ 

cqq 

o 

o  o 

c  a 

o 

lO 

•O^" 

do'o" 

I"" 

dcod 

lf> 

do" 

c  2- 

-^5 

M 

CO 

t^.-* 

!.';«  o 

CD 

OUJO 

t~ 

oo 

— 

- 

•<1« 

t" 

Xrt 

t>^coco 

m 

CI 

int^ 

°S<fe>.iS 

.  >   t.  t  3  u 

o  S  g  0(5,  a 

W 

ro 

o  — 

COM  CO 

■* 

-^C4-H 

CO 

>«■* 

_  >> 

CO 

oo   -oooooo   -ooooooooooooo   • 

°° 

oo 

ogoocg 

cccccccopoooo 

a.ti 

CO 

1 

Annu 
Capac 

od 

o"i-o 

^"cir-'o'c  c 

^" .-  . ,'  —  -/  —  —  ,-  ..»•,-■  — ■  —  .-" 

OCi 

CM 

u;  o  t^  '~  '~  CO 

O  •?  —  C  -i  c  1-  -■)  o  t^  ^  ^  C: 

00 

r)<n 

CCOOCC(Nt^!N 

coooccoo  —  "^CM^— —  CI  -r  i-< 

" 

^- 

No. 
of 
Blast 
Fur- 
naces 

O-H 

Tj<W 

«•**<««« 

't»NTOW00^iOOf-<M(N00'f 

11 

00 

J£ 

►!      .             VS                             » 

0 

tit  =->2  rt  2  rt  c5~  c  t;:=  =  0  c;  o  03  3  2  o^:;  a  3  £  c  cs 

a 

X 

<a.Ca<S«CE-'><COcfiaCUUaHQS^CQO<H^. 

■  6  6 

•  UO 

*  u  ^ 

•  c  a- 

B 

■  S  S 

'a 

■  o  o 

6 

:■«'« 

o    ■  utt 

n  6D 

*-*  :-B-J 

d  ®  0  o  o  o  0 

oooooooc 

c 

c 

,oO-§ 
Omq 

c 

£ 

M  Sf  M  M  M,  t£  m'-'^^  _ 

-  =  c  c  3  =  a  ffl  M  «  0 
ta '•?•£•£: -.3  •x:-j:.t;.t:.^  a 

'^  C^  rv*  ry*  f^  ^^  f^    3    3    3.M 

0 

o 

6  ; 
o  • 

.S  : 

•=,  • 

c 
C 

c 

'-<"'-<•-<'-<'-—•  O  O  o  c  C 
M  M  t£  ti  y  tr  ti  T.  M  «          c 

c 

5"= 

<5  Co 

a  so 

.£.S.=  .5.5.S.=  t  S  i  t  t^.S  o^  fcS--.5  '■S  s  c..5i3  ^  s 

'o'o"r~~~~'c;'i'o  —  —  fe  3'n  ^a-S'*-'*  -  t—  c'~ ~ '-'- ^ 

3333   =   3   =   33   3i5i|0-=  jO   3^^*00   gSOO.2.2 

< 

< 

Z 

<-? 

< 

^ 

< 

•< 

i 

3 

< 

< 

< 

c3 

i 

3 
c! 

o 

3 

a 

3 

o 

1 

II 

(5 

1^ 

c 
u 

C 

c 

PRICE  AND  PRODUCTION  STATISTICS 


73 


3  «  O' 


l°a>- 


3  o 

e  oJ 


i  d  >>  i 


c  a 


oo 
oo 


o     o   .inTC 
o      o    .c^o 


ct^^■«»"*^^'-|^:'-l 


ooo 


N  W-*M(NN 


NOOO       O 

roco  T)<.-i     o 

IN  t»  lO  (N        <0 


ooooo 

ooooo 
o  o  "o  o  m 
1.':  obTo-T*^ 


lNlOc^^5     M    .-^.-irtrjie^    .rt_<c.)-HioMc^M    .^(m_ 


oooocooo 

oooooooo 

Ot^OOOOOO 

o  ^  c  cT  ='  c  L-f  o 

O  tT  CI  O  O  "O  t>.  o 


»0  lO  o 


f^  .> 


^"O 


£-3 

g  O  !-! 

a  c  o    - 

5  O  C  u 


oo 


^    ^-S    ^ 


2  <u 


•So 


>   --o  nW  0-2 


52: « 


-S:^< 


dSJ 


3   O   O 

3^5 


a  =  t^c^3aNii.t-T3!3t.o 
OOO^OpqOHHO^OOO 


":o 

S  M 

e.So 

a;  n'2;  3 
MO&g. 
:g— "So 

S  £  =  a 
^£  °  ^ 


:0 


530 

.  _  :-a  d.Sf^  mQ  t.  o  fe 

o  o  o  =^0"^  p)  '^^-'Siri  > 

"2  5^  2  °Q  s  „  c  d  s  g  g  =<5  .  .Sgi^ 

d  3  S  — ^      o  r  c  *i  s  S  S--    ■'Jj'J^M  o  B 
g§ZZ2;ooai&.wxMEHeHO^t3D^^ 


£3  O 


2  S 


.So 

O    4) 


O   3 

EO 


o2 


3a, 


74     METALLURGISTS  AND  CHEMISTS'   HANDBOOK 


H 

(/J 

>>*^ 

o 

■* 

--■a 

iC 

a  z 

H 

—  X 

Z 

gi 

P 

a 

2 

>.* 

t- 

y: 

•-■? 

K 


2£§ 

u  0. 


C3   w  -, 


0055  = 


csscocsc 

coococso 


coooo  c  =  o 
000000c  o 

oooo_ooc_o 

X"  O  00  o"  O  — "  1.T  -■" 

OC  "i  "T  to  *  O  -J  'H 


ococoooooo^ 
o  o"  o"  o"  o"  x"  '■•;  ®.  o"  o  X 
■o  -c  o  -t  o  -r  o  c  re  o 

•^  •*  C  M  ?)  X  — 


0000000 


i">>'  X  ri  M 


c  c  c  o  c  o  o 


0000000 


o  o  X  .;  O  X  >o 


00 
00 
00" 


I<  e- 


!  3  5:i- 


a  o  e5  O-C  i;  t.  t.  ::  :;  i. 


c^  o  o  c  3 


=  3  1 
:  o  s 


Urn 


00 
2:2 


S;  Ei  "SS  Sf  =5.2 
a  o  _.  -  c.  a  -  t;  '^ 


;x 


!X° 


5  g^-=  SSgcS 
a£=BC=aao 


■w  o 
o  ^ 

a  J 


SECTION  III 
PHYSICAL   CONSTANTS 


The  Fundamental  Laws  of  Physics 

Force  =  mass  X  acceleration;    /  =  ma 

Momentum  =  mass  X  velocitj';  M  =  mv 
Energy  =  ^i  mass  X  velocity 2;  E  =  ]4,  mv' 

Work  =  force  X  distance  =  fs  =  mas 

Harmonic  motion,  period  =  Stta  / ~^ — -, — ,  or  in  a  pendu- 

\  acceleration 

lum 


T-2,^ 


Laws  of  a  falling  body:  v  =  velocity  at  end  of  t  seconds,  S  = 
space  traversed  in  t  seconds,  St  =  space  traversed  from  t  to 
{t  +  1)  seconds 

V  =  gt 

S  =  Vigt' 

St  =  yzg{2t  +  1) 
"  Centrifugal  force "  =  mrco',  where  w  =  angular  velocity. 

/  211 

Torsional  pendulum :  T  =  27r\/ 

M-n-nr* 
where  T  =  period,  I  =  length,  I  =  moment  of  inertia  of  mass 
on  end,  n  =  coefficient  of  rigidity,  r  =  radius  of  wire. 
Young's  modulus,  coefficient  of  elasticity: 

,        '       At        wr'Al' 
I 
I  —  length,  Al  =  change  in  length. 

Pressure  in  liquids  =  pgh,  where  p  =  density  and  h  =  height 
of  column. 

Speed  of  escape  of  a  liquid  from  an  orifice,  if  there  were  no 
viscosity,  

-  =  V?     ■ 

Boyle's  law,  behavior  of  perfect  gases  under  varying  volumes, 
pressures  and  temperatures : 

pv  =  RmT,  where  R  is  the  so-called  gas  constant  and  T  is 
absolute  temperature. 

Under  changes  so  sudden  that  the  heat  generated  by  com- 
pression (or  absorbed  by  expansion)  cannot  radiate  or  be 
absorbed  from  external  objects: 

pv''^  =  Rmt  (7=  1.406  approx.) 

75 


7G      METALLURGISTS  AND  CHEMLSTS'  HANDBOOK 


Electricity:  Ampere,  the  unit  of  current  strength, /;  volt, 
the  unit  of  electromotive  force,  E;  ohm,  the  unit  of  resistance, 
R;  coulomb,  the  unit  of  quantity,  Q;  wait,  the  unit  of  power, 
P;  joule,  the  unit  of  work,  J;  farad,  the  unit  of   capacity,  C; 

henr^-,  the  unit  of  inductance,  /.      I  =  seconds.     J  =  ^  (Ohm's 
law);   Q  =  n,    C  =%   W  =  QE,  P  =  IE,  P  =  ^  =  PR  =^ 


W 

I 


QE 

t 


E' 


R 


Heating  effect  of  a  current,  J  =  I-Rt  = 


EH 
R  ' 


COMPOSITIOX    OP   THE    AlR^ 


By  weight 


Ry  volume 


Expired    air 
by  volume 


Oxygen . 
Nitrogen 
Argon- . . 
CO. 


23.024 

75.539 

1.337 

n.040 


20.941 

78. 122  \ 
0.937/ 


15.4 
70.2 
4.33 


PYSCHROMETRIC  TABLES^ 

Measurement  of  Atmospheric  Moisture. — The  quantity  of 
moisture  mixed  with  the  air  under  different  conditions  of  tem- 
perature and  degree  of  saturation  may  be  measured  in  several 
distinctly  different  waj's.  Many  of  these,  however,  arc  not 
practicable  methods  for  daily  observations,  or  are  not  suffi- 
ciently accurate.  Probably  the  most  convenient  of  all  methods 
and  the  one  most  generally  employed  is  to  ob.serve  the  tempera- 
ture of  evaporation — that  is,  the  difference  between  the  tem- 
peratures indicated  by  wet- and  dry-bulb  thermometers.  The 
most  reliable  instrument  for  this  purpose  is  the  sling,  or  whirled 
psychrometer.  In  special  cases,  rotary  fans  or  other  means 
may  be  employed  to  move  the  air  rapidly  over  the  thermometer 
bulbs.  In  any  case  satisfactorj'  results  cannot  be  obtained 
from  observations  in  relatively  stagnant  air.  A  strong  ven- 
tilation is  absolutely  necessar\'  to  accuracy. 

Sling  Psychrometer. — This  instrument  consists  of  a  pair  of 
thermometers,  provided  with  a  handle,  which  permits  the  ther- 
mometers to  be  whirled  rapidly,  the  bulbs  being  thereby  strongly 
affected  by  the  temperature  of  and  moisture  in  the  air.  The 
bulb  of  the  lower  of  the  two  thermometers  is  covered  with  thin 
muslin,  which  is  wet  at  the  time  an  observation  is  made. 

The  Wet  Bulb. — It  is  important  that  the  muslin  covering  for 

'  Aocording  to  Ramsat  (cf.  Benson's  "Industrial  Chemistry,"  p.  38.  The 
Macmillan  Co.) 

2  Including  the  other  inert  gases.  The  rare  eases  are  present  in  air  in  the 
following  proportions  by  weight:  krypton,  0.028  per  cent.;  xenon,  0.005; 
neon,  0.0003S;  helium,  0.0000.56  per  cent. 

•  C.  F.  Marvin's  Tables,  Weather  Bureau  Bulletin  Xo.  235. 

Continued  on  page  78. 


PHYSICAL  CONSTANTS 


77 


Temperature  of  Dew-point  in  Degrees  Fahrenheit 

Pressure  =  30.0  inches  of  mercury 


■H 

Depression  of  wet-bulb  thermometer  {l  —  t') 

1         1         1         1        1        1         t         1         1        1        1         I         1         1 

>  ad 

0.2-  0.4|  0.6    0.8|  1.0|  1.2|  1.4|  1.61  l.SJ  2.o|  2.2|  2.4|  2.6|  2.8|  3.0 

—40 

0.0039 
41 

-52 
-50 

—39 

{t-n 

—38 

44 

46 

48 

0.0051 

54 

57 

61 

65 

0.0069 

74 

78 

83 

89 

0.0094 

0.9100 

106 

112 

119 

0.0126 

133 

141 

150 

159 

0.0168 

178 

188 

—49 
^8 
-46 
-45 
—43 
-42 
-40 
-38 
-36 
—35 
—33 
-32 
—30 
—29 
-28 
-27 
—26 
-25 
-23 
-22 
—21 
-20 
-19 
—18 
—16 
—15 

-59 
—56 
—53 
— 5C 
—47 
—45 
-^2 
-40 
-38 
-36 

-58 
—54 
-50 
—46 

—57 
—51 
—46 
-42 
—38 
—35 
—32 

t 

e 

( 

e 

—37 
—36 

0..1 

0.2 

0.3    0.4 

0.5 

-35 
—34 
—33 
—32 
—31 
—30 
—29 
—28 
—27 
—26 
—25 

-60 
—59 
-58 
-57 
-56 
-55 
-54 
-5? 
—52 
—51 

O.COIO 

11 

12 
13 
13 

0.0015 
16 
17 

IS 
0.0019 

—50 
-49 
—48 
-47 
—46 
-45 
—44 
-43 
—42 
—41 
—40 
-39 
-38 
-37 
-36 
-35 
-34 
—33 
—32 
—31 
-30 

0.0021 
22 
24 
26 
27 

0.0029 
31 
33 
35 
37 

0.0039 
41 
44 
46 
48 

0.0051 
54 
57 
61 
65 

0.0009 

—60 
-58 
-56 
-55 
-53 
-51 
-50 
—49 
-48 
-46 

—60 
—58 
-56 
-54 

—59 
—56 
—54 
-51 
—49 
-47 
-46 
—44 
—42 

—59 
-56 
—53 

—50 

—47 

24 

—23 

22 

—21 
—20 
—19 
—IS 
—17 
—16 
-15 
—14 

—34—431—60 
—.32—40—54 
—31—38—49 
—20—35—45 
—28— 33!— 42 
—26—31—39 
—25—20—36 
—23—28—33 
—22—26—31 
—21  —24 1—23 
—19—23—27 

-59 
—51 
-45 
-40 

-50 

— 40  — Ow; 

—44 '-50 
—43:— 49 
—42—48 
-41-46 
-40!— 45 
-38—43 
-37-42 
-35-40 
—34—38 
—33—36 

—60 
—55 

—13 

—18—21—25—30 

-36 1-48 

—12 

199 

—14 

—17—20—23—27 

-33—43 

-59 

—11 

210 

-13 

—161—18-22-25 

-30,-38 

—50 

-10 

0.0222 

-12 

—14—17—20—24 

-28—33 

—44 

-9 

234 

—11 

—13—16—18—22 

_26— 301—38 

—51 

—  8 

247 

—10 

—12 —14 —17;— 20 

-21i— 2S— 34 

—44 

—  7 

260 

—  9 

—11-13-16—18 

_22  — 26  —31 

—38 

-51 

—  6 

275 

—  8 

—10—121—141-17 

— 20S— 23  —28 

—33 

—44 

—  5 

0.0291 

—  7 

—  8  — 10  — 13|— 15 

-181—21  -25 

—30 

—37 

-50 

-  4 

307 

—  6 

—  7— 91— 111— 14 

-16—19  —22 

— 27 

—32 

^2 

-59 

—  3 

325 

—  4 

—  6'—  8—10—12 

-14'— 171—20 

-24 

—29 

—35 

-47 

—  2 

344 

—  3 

—  5  — 7  — 8'— 10 

-131-15—18 

-21 

—25 

—30 

—38 

—53 

—  1 

363 

-2 

—  4  —  5  —  7  —  9 

—11—13—16 

—10 

—22 

—27 

—32 

-A2 

-60 

0 

0.0383 

—  1 

-3-4-6—7 

-  9—12-14 

—17 

—20 

—23 

—28 

—35 

^6 

+  1 

403 

+  0 

—  2  — 3'— 4  —  6 

-  8'-10  -12 

—15 

—17 

-20 

—25 

—30 

—37—50 

2 

423 

+  1 

—  1;— 21—3  —  5 

-  6  —  8—10 

—13 

—15 

-18 

—21 

—26 

—31;— 40 

3 

444 

2 

+  1-1 

-2-4 

-5—7—9 

—11 

—13 

—16 

-19 

—22 

—27 

—32 

4 

467 

3 

2'+  0 

-1-2 

-4-5-7 

—  9 

—11 

-14 

-16 

—19 

—23 

—28 

5 

0.0491 

4 

3+  1 

±  0  —  1 

-3-4-6 

—  7 

—  9 

—12 

-14 

—17 

—20 

—24 

6 

515 

5 

4 

3 

+  ll±  0 

-1—3—4 

—  6 

—  8 

—10 

-12 

—15 

—17 

—21 

7 

542 

6 

5 

4 

2 

+  1 

+0—1—3 

-4 

—  6 

—  8 

—10 

—12 

—15 

-18 

8 

57C 

7 

6 

5 

4 

3 

+1+0—2 

—  3 

—  5 

—  6 

—  8 

—10 

—13 

-15 

9 

600 

8 

7 

6 

5 

4 

3  +  l!+  0 

—  2 

—  3 

—  5 

—  6 

—  8 

— 10|— 13 

10 

0.C631 

9 

8 

7 

6 

5 

4 

3 

+  1 

+  0 

2 

—  3 

—  5]— 6 

-  8j-10 

11 

665 

10 

9 

8 

7 

6 

5 

4 

3 

+  1 

+  0 

—  1 

-3-4 

—  6  —  8 

12 

699 

11 

10 

9 

8 

7 

6 

5 

4 

3 

+  2 

+  0 

-  11—3 

-4;- 6 

13 

735 

12 

11 

11 

10 

9 

8 

7 

6 

4 

3 

+  2 

±  0-1 

-2-4 

14 

772 

13 

12 

12 

11 

10 

9 

8 

7 

6 

5 

3 

+  2+  1 

-^-^ 

15 

0.0810 

14 

13 

13 

12 

11 

10       9 

8 

7 

6 

5 

4       2 

-  1  -  0 

16 

850 

15 

14 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

+  3 

+  1 

17 

891 

16 

15 

15 

14 

13 

12 

12 

11 

10 

9 

8 

7 

6 

4 

3 

18 

933 

17 

17 

16 

15 

14 

13 

13 

12 

11 

10 

9 

8 

7 

6 

5 

IC 

0.0979 

18 

18 

17 

16 

15 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

20|0.1026 

19 

19 

18l     17 

16 

16      15'     14|     13|     12 

12 

ii:  10 

9       8 

78      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 

Conliniied 


Pressure  = 

30.( 

inc 

les  of  mercury 

Air 

Depression  of  wet-bulb  thernionieter  ((  —  (') 

temp.,  t 

3.2  ,3.4  |3.6  i3.8  ;4.0 

4.2  |4.4 

4.6  J4.8  '5.0 

5.2 

5.4 

5.6 

5.8 

6.0 

2 

—56 

3 

^3 

4 

—34-46    • 

5 

—29—36—49 

a 

—2.5  —30—391—531 

7 

—21  —26—31 

— 41— 5.S 

8 

—18'— 22]— 26 

—32—42 

9 

—15—19—22 

—27—33 

-H 

10 

—13  —16—19  —23—27 

—34—45 

11 

—10  —13  —16—19  —22 

-27  —34-46 

12 

—  8—10—13—15  —19 

—22  —27  —34  —471 

13 

—  6,—  8  -10,-12  —15 

-18—22-27—34—46 

14 

-  4  —  6  —  8 -10|— 12 

-15—18  —22—27  —33 

^5 

15 

_ 2— 4-5-7-9 

-12'— 15  —18—21  -26 

-32^4 

16 

±  0  —  2  —  3-5- 7 

—  9—11  —14—17—20 

—25—31'— 421 

17 

+  2'±  0|-i;-3-4 

—  6  —  8  —11—13—16 

-20  —24—30  —39—57 

18 

+  3;+  2'+  1-  1-  2 

—  4—  6  — 8-10-13 

—16—19^—23  —29—37 

19 

+  5:+  4+  3,+  l'±  0 

—  2  —  4  —  5  —  7—10 

-121- 15|— 18 -22  — 27 

20 

+  7'+  6  +  4  +  3  +  2 

1         I         1         1 

+  0—  1  —  3  —  5  —  7 

—  9—11  —14—17—21 

the  wet  bulb  be  kept  in  good  condition.  The  evaporation  of 
the  water  from  the  mu.sHn  alwaj's  leaves  in  its  meshes  a  small 
quantity-  of  solid  material,  which  sooner  or  later  somewhat  stif- 
fens the  muslin  so  that  it  does  not  readily  take  up  water.  This 
will  be  the  case  if  the  muslin  does  not  readily  become  wet  after 
being  dipped  in  water.  On  this  account  it  is  desirable  to  use  as 
pure  water  as  possible,  and  also  to  renew  the  muslin  from  time 
to  time.  New  muslin  should  alwaj-s  be  washed  to  remove 
sizing,  etc.,  before  being  used.  A  small  rectangular  piece  wide 
enough  to  go  about  one  and  one-third  times  around  the  bulb, 
and  long  enough  to  cover  the  bulb  and  that  part  of  the  stem 
below  the  metal  back,  is  cut  out,  thoroughly  wetted  in  clean 
water,  and  neatly  fitted  around  the  thermometer.  It  is  tied  first 
around  the  bulb  at  the  top,  using  a  moderately  strong  thread. 
A  loop  of  thread  to  form  a  knot  is  next  placed  around  the  bot- 
tom of  the  bulb,  just  where  it  begins  to  round  off.  As  this 
knot  is  drawn  tighter  and  tighter  the  thread  slips  off  the  rounded 
end  of  the  bulb  and  neatly  stretches  the  muslin  covering  with  it, 
at  the  same  time  securing  the  latter  at  the  bottom. 

To  Make  an  Observation. — The  .so-called  wet  bulb  is  thor- 
oughh'  saturated  with  water  by  dipping  it  into  a  small  cup. 
The  thermometers  are  then  whirled  rapidly  for  15  or  20  seconds; 
stopped  and  quickly  read,  the  wet  bulb  first.  This  reading  is 
kept  in  mind,  the  psychrometer  immediately  whirled  again  and 
a  second  reading  taken.  This  is  repeated  three  or  four  times,  or 
more,  if  necessary,  until  at  least  two  succeeding  readings  of  the 
Continued  on  page  98. 


PHYSICAL  CONSTANTS 


79 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 
Continued 


Pressure  = 

30.C 

inr 

^es  of  mercury 

«-•  (£ 

>  0.S 

Depression  of  wet- 

bulb  thermometer  (t  - 

-  n 

a 

0.5 

1.0 

1.5 

2.0 

2.5  |3.0  |3.5 

4.0 

4.5 

5.0 

|.5 

6.0 

6.5 

7.0  J7.5 

20 

0.103 

18 

16 

14 

12 

10 

8 

5 

2 

—  2 

—  7 

—13 

—21 

—37 

21 

0.108 

19 

18 

16 

14 

12 

9 

7 

3 

+  0 

—  4 

—  9 

-16 

—27 

—60 

22 

0.113 

20 

19 

17 

15 

13 

11 

8 

5 

+  2 

—  2 

—  6 

-12 

—20 

—36 

23 

0.118 

21 

20 

18 

16 

14 

12 

10 

7 

41+  0 

—  4 

—  9 

—16 

—26—57 

24 

0.124 

23 

21 

19 

17 

15 

13 

11 

9 

6 

+  2 

—  1 

-6 

-12 

—20—35 

25 

0.130 

24 

22 

20 

19 

17 

15 

13 

10 

8 

5 

+  1 

-3 

—  8 

—15—25 

26 

0.136 

25 

23 

22 

20 

18 

16 

14 

12 

9 

7 

3 

—  1 

—  5 

—111—18 

27 

0.143 

26 

24 

23 

21 

19 

18 

16 

13 

11 

8 

5 

+  2 

—  2 

—  7—14 

28 

0.150 

27 

25 

24 

22 

21 

19 

17 

15 

13 

10 

7 

'  4 

±  0 

-4-9 

29 

0.157 

28 

26 

25 

23 

22 

20 

18 

16 

14 

12 

9 

6 

+  3 

—  1-5 

30 

0.164 

29 

27 

26 

25 

23 

21 

20 

18 

16 

14 

11 

8 

5 

+  2|-2 

31 

0.172 

30 

28 

27 

26 

24 

23 

21 

19 

17 

15 

13 

10 

8 

4!±  0 

32 

0.180 

31 

30 

2S 

27 

25 

24 

22 

21 

19 

17 

15 

12 

10 

7i+3 

33 

0.187 

32 

31 

29 

28 

27 

25 

24 

22 

20 

18 

16 

14 

12 

9 

6 

34 

0.195 

33 

32 

30 

29 

28 

26 

25 

23 

22 

20 

18 

16 

13 

11 

8 

35 

0.203 

34 

33 

31 

30 

29 

28 

26 

25 

23 

21 

19 

17 

15 

13 

10 

36 

0.211 

35 

34 

32 

31 

30 

29 

27 

26 

24 

23 

21 

19 

17 

15 

12 

37 

0.219 

36 

35 

33 

32 

31 

30 

28 

27 

26 

24 

22 

21 

19 

17 

14 

38 

0.228 

37 

36 

34 

33 

32 

31 

29 

28 

27 

25 

24 

22 

20 

18 

16 

39 

0.237 

38 

37 

35 

34 

33 

32 

31 

29 

28 

27 

25 

23 

22 

20 

18 

40 

0.247 

39 

38 

37 

35 

34 

33 

32 

30 

29 

28 

26 

25 

23 

21 

20 

41 

0.256 

40 

39 

38 

36 

35 

34 

33 

31 

30 

29 

27 

26 

24 

23 

21 

42 

0.266 

41 

40 

39 

38 

36 

35 

34 

33 

31 

30 

29 

27 

26 

24 

23 

43 

0.277 

42 

41 

40 

39 

37 

36 

35 

34 

32 

31 

30 

28 

27 

25 

24 

44 

0.287 

43 

42 

41 

40 

38 

37 

36 

35 

34 

32 

31 

30 

28 

27 

25 

45 

0.298 

44 

43 

42 

41 

40 

38 

37 

36 

35 

34 

32 

31 

30 

28 

27 

46 

0.310 

45 

44 

43 

42 

41 

40 

38 

37 

36 

35 

33 

32 

31 

29 

28 

47 

0.322 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

35 

33 

32 

31 

29 

48 

0.3.34 

47 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

35 

33 

32 

31 

49 

0.347 

48 

47 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

34 

33 

32 

50 

0.360 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

34 

33 

51 

0.373 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

34 

52 

0.387 

51 

50 

49 

48 

47 

46 

45 

44 

43 

'  42 

41 

40 

38 

37 

36 

53 

0.402 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

38 

37 

54 

0.417 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

38 

55 

0.432 

54 

53 

52 

51 

50 

50 

49 

48 

47 

45 

44 

43 

42 

41 

40 

56 

).448 

55 

54 

53 

53 

52 

51 

50 

49 

48 

47 

46 

44 

43 

42 

41 

57 

0.465 

56 

55 

54 

54 

S3 

52 

51 

50 

49 

48 

4> 

46 

45 

43 

42 

58 

0.4S2 

57 

56 

55 

55 

,54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

59 

0.499 

58 

57 

56 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

60 

T.517 

59 

58 

57 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

46 

61 

1.536 

60 

59 

59 

58 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

62 

0.5.55 

61 

60 

60 

59 

58 

57 

56 

55 

54 

53 

53 

52 

51 

50 

48 

63 

1.575 

62 

61 

61 

60 

59 

58 

57 

56 

55 

55 

54 

53 

52 

51 

50 

64 

).5'J5 

63 

62 

62 

61 

60 

59 

58 

57 

57 

56 

55 

54 

53 

52 

51 

65 

0.616 

64 

63 

63 

C2 

61 

60 

59 

59 

58 

57 

56 

55 

54 

53 

52 

66 

a.  633 

65 

64 

64 

63 

62 

61 

60 

60 

59 

58 

57 

56 

55 

54 

53 

67 

D.661 

66 

65 

65 

64 

63 

62 

62 

61 

60 

59 

58 

57 

56 

55 

54 

6S 

[).684 

67 

67 

66 

65 

64 

63 

63 

62 

61 

60 

59 

58 

57 

57 

56 

69 

).707 

6S 

68 

67 

66 

65 

64 

64 

63 

62 

61 

60 

59 

59 

58 

57 

70 

).732 

69 

69 

68 

67 

66 

65 

65 

64 

63 

62 

61 

61 

60 

59 

58 

71 

0.757 

70 

70 

69 

68 

67 

67 

66 

65 

64 

63 

62 

62 

61 

60 

59 

72 

0.783 

71 

71 

70 

69 

68 

68 

67 

66 

65 

64 

64 

63 

62 

61 

60 

73 

0.810 

72 

72 

71 

70 

69 

69 

68 

67 

66 

66 

65 

64 

63 

62 

61 

74 

0.838 

73 

73 

72 

71 

70 

70 

69 

68 

67 

67 

66 

65 

64 

63 

62 

75 

0.866 

74 

74 

73 

72 

71 

71 

70 

69 

68 

68 

67 

66 

65 

64 

64 

76 

0.896 

75 

75 

74 

73 

72 

72 

71 

70 

69 

69 

68 

67 

66 

66 

65 

77 

0.926 

76 

76 

75 

74 

73 

73 

72 

71 

71 

70 

69 

68 

67 

67 

63 

78 

0.957 

77 

77 

76 

75 

75 

74 

73 

72 

72 

71 

70 

69 

69 

68 

67 

79 

0.989 

78 

78 

77 

76 

76 

75 

74  73 

73 

72 

71 

70 

70 

69 

68 

80 

1.022 

79 

79 

78 

77 

77 

76 

75  74 

74 

73 

72 

72 

71 

70  69 

80      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 
Continued 

Pressure  =  30.0  inches  of  mercury 


c. 

a  t  2 

Depression 

of  wet-bulb  thermometer  (t  — 

f) 

•■31 

8.0 

8.5 

9.0 

9.510.0 

10.5  11.0  11.5  12.o'l2.5 

1        1        i        1 

13. o!l3.5'l4. 0,14.5  15.0 

25 

0.130 

-51 

26 

0.136 

-32 

27 

0.143 

-23—45 

28 

0.150 

-17 

-29 

29 

0.157 

-12 

-20 

-39 

30 

0.164 

-  7 

—14 

-25 

-57 

31 

0.172 

-4 

—10 

-18 

—31 

32 

O.ISO 

-  1 

—  6 

—12 

—21 

—\2 

33 

0.187 

+  2 

—  2 

—  7 

—14 

—26 

34 

0.195 

51+  1 

-3 

-9 

—17 

-32 

35 

0.203 

7 

4 

+  0 

-5 

—11 

-20 

-41 

36 

0.211 

10 

7 

+  3 

—  1 

—  6 

-14 

—25 

—58 

37 

0.219 

12 

9 

6 

+2 

—  3 

-8 

—16 

-29 

38 

0.228 

14 

11 

8 

5 

+  1 

—  4 

-10 

—19 

-36 

39 

0.237 

16 

13 

11 

8 

4 

±   0 

—  5 

—12 

—22 

—47 

40 

0.247 

18 

15 

13 

10 

7 

+  3 

—  1 

—  6 

—14 

—26 

41 

0.256 

19 

17 

15 

12 

10 

6 

+  2 

—  2 

—  8 

-16 

-30 

42 

0.266 

21 

19 

17 

14 

12 

9 

6 

-1-2 

-3 

—  9 

-18 

-36 

43 

0.277 

22 

20 

19 

16 

14 

11 

9 

5 

-1-  1 

—  4 

-11 

—21 

—45 

44 

0.287 

24 

22 

20 

18 

16 

13 

11 

8 

4 

+  0 

—  5 

-12 

—24 

—60 

45 

0.298 

25 

23 

22 

20 

18 

15 

13 

10 

7 

-h4 

—  1 

—  6 

—14 

-27 

46 

0.310 

27 

25 

23 

21 

20 

17 

15 

13 

10 

7 

+  3 

—  2 

—  7 

-16 

-30 

47 

0.322 

28 

26 

25 

23 

21 

19 

17 

15 

12 

9 

6 

+  2 

—  3 

—  9 

-17 

48 

0.334 

29 

28 

26 

25 

23 

21 

19 

17 

14 

12 

9 

5 

+  1 

—  4 

—10 

49 

0.347 

30 

29 

28 

26 

24 

23 

21 

19 

16 

14 

11 

8 

5 

+  0 

—  5 

50 

0.360 

32 

30 

29 

27 

26 

24 

22 

21 

18 

16 

13 

11 

8 

+  4 

+   0 

51 

0.373 

33 

32 

30 

29 

27 

26 

24 

22 

20 

18 

16 

13 

10 

7 

+2 

52 

0.387 

34 

33 

32 

30 

29 

27 

26 

24 

22 

20 

18 

16 

13 

10 

7 

53 

0.4C2 

36 

34 

33 

32 

30 

29 

27 

26 

24 

22 

20 

18 

15 

13 

10 

54 

0.417 

37 

36 

34 

33 

32 

30 

29 

27 

25 

24 

22 

20 

18 

15 

12 

55 

0.432 

38 

37 

36 

34 

33 

32 

30 

29 

27 

25 

24 

22 

20 

17 

15 

56 

0.44S 

40 

39 

37 

36 

34 

33 

32 

30 

29 

27 

25 

24 

22 

19 

17 

57 

0.465 

41 

40 

39 

37 

36 

34 

33 

32 

30 

29 

27 

25 

24 

21 

19 

58 

0.482 

42 

41 

40 

39 

37 

36 

35 

33 

32 

30 

29 

27 

25 

23 

21 

59 

0.499 

44 

49 

41 

40 

39 

37 

36 

35 

33 

32 

30 

29 

27 

25 

23 

60 

0.517 

45 

44 

43 

41 

40 

39 

38 

36 

35 

33 

32 

30 

29 

27 

25 

61 

0.536 

46 

45 

44 

43 

42 

40 

39 

38 

36 

35 

33 

32 

30 

29 

27 

62 

0.555 

47 

46 

45 

44 

43 

42 

40 

39 

38 

36 

35 

33 

32 

30 

29 

63 

0.575 

49 

48 

47 

45 

44 

43 

42 

41 

39 

38 

36 

35 

34 

32 

30 

64 

0..505 

50 

49 

48 

47 

46 

44 

43 

42 

41 

39 

38 

37 

35 

34 

32 

65 

0.616 

51 

50 

49 

48 

47 

46 

45 

43 

42 

41 

40 

38 

37 

35 

34 

66 

0.638 

52 

51 

50 

49 

48 

47 

46 

45 

44 

42 

41 

40 

38 

37 

35 

67 

0.661 

53 

53 

52 

50 

49 

48 

47 

46 

45 

44 

43 

41 

40 

38 

37 

68 

0.684 

55 

54 

53 

52 

51 

50 

49 

48 

46 

45 

44 

43 

42 

40 

39 

69 

0.707 

56 

55 

54 

53 

52 

51 

50 

49 

48 

46 

45 

44 

43 

42 

40 

70 

0.7.32 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

46 

44 

43 

42 

71 

0.757 

58 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

43 

72 

0.783 

59 

58 

58 

57 

56 

55 

54 

53 

52 

51 

50 

48 

47 

46 

45 

73 

0.810 

60 

60 

59 

58 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

46 

74 

0.838 

62 

61 

60 

59 

58 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

75 

0.866 

63 

62 

61 

60 

69 

58 

57 

56 

55 

55 

54 

52 

51 

60 

49 

76 

0.896 

64 

63 

62 

61 

60 

60 

59 

58 

57 

56 

55 

54 

53 

52 

51 

77 

0.926 

65 

61 

63 

62 

62 

61 

60 

59 

58 

57 

56 

55 

54 

53 

52 

78 

0.957 

66 

65 

64 

64 

63 

62 

61 

60 

59 

58 

57 

56 

55 

54 

53 

79 

0.9R9 

67 

66 

66 

65 

64 

63 

62 

61 

60 

59 

59 

58 

57 

56 

55 

80 

1.022 

68 

68 

67 

66 

65 

64 

63 

63 

62 

61 

60 

59 

58 

57 

66 

PHYSICAL  CONSTANTS 


81 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 

Continued 

Pressure  =  30.0  inches  of  mercury 


Air 

Depression  of 

wet-bulb  thermometer  (t  - 

-  t') 

temp.,  t 

15.5J16.0  16.5 

17.0  17.5 

18.0  18.5 

19.0 

19.5|20.0 

20.5 

21.0 

21.5|22.0 

22.5 

47 

—35 

48 

—201—41 

49 

-12 

—22 

—53 

50 

—  6 

-13 

—26 

51 

—  1 

-7 

—15 

—29 

52 

+  3 

—  2 

—  8 

—17 

—33 

53 

7 

+  2 

—  3 

—  9 

—18 

-39 

54 

10 

6 

+  2 

—  4 

—10 

-20 

—47 

55 

12 

9 

6 

+  1 

—  4 

-12 

—23 

—59 

56 

15 

12 

9 

5 

+  1 

—  5 

—13 

—25 

57 

17 

14 

12 

9 

5 

+  0 

—  6 

—14 

-27 

58 

19 

17 

14 

11 

8 

+  4 

—  1 

—  6 

-15 

—30 

59 

21 

19 

17 

14 

11 

8 

+  4 

—  1 

—  7 

—16 

—33 

60 

23 

21 

19 

17 

14 

11 

8 

+  4 

—  2 

—  8 

—17 

—36 

61 

25 

23 

21 

19 

17 

14 

11 

8 

+  3 

—  2 

—  8 

—18 

—40 

62 

27 

25 

23 

21 

19 

16 

14 

11 

7 

+  3 

—  2 

-9 

—19 

—45 

63 

29 

27 

25 

23 

21 

19 

17 

14 

11 

7 

+  3 

-2 

—  9 

—20—49 

64 

31 

29 

27 

25 

23 

21 

19 

17 

14 

11 

7 

+  3 

—  3 

—10;— 21 

65 

32 

31 

29 

27 

25 

24 

21 

19 

17 

14 

11 

7 

+  3 

—  3-10 

66 

34 

32 

31 

29 

27 

26 

24 

22 

19 

17 

14 

11 

71+2  —  3 

67 

36 

34 

32 

31 

29 

28 

26 

24 

22 

19 

17 

14 

11 

7+2 

68 

37 

36 

34 

33 

31 

29 

28 

26 

24 

22 

19 

17 

14 

11 

7 

69 

39 

37 

36 

34 

33 

31 

30 

28 

26 

24 

22 

19 

17 

14 

11 

70 

40 

39 

38 

36 

34 

33 

31 

30 

28 

26 

24 

22 

20 

17 

14 

71 

42 

41 

39 

38 

36 

35 

33 

31 

30 

28 

26 

24 

22 

20 

17 

72 

44 

42 

41 

40 

38 

37 

35 

33 

32 

30 

28 

26 

24 

22 

20 

73- 

45 

44 

43 

41 

40 

38 

37 

35 

34 

32 

30 

28 

27 

25 

22 

74 

47 

45 

44 

43 

41 

40 

39 

37 

35 

34 

32 

30 

29 

27 

25 

75 

48 

47 

46 

44 

43 

42 

40 

39 

37 

36 

34 

32 

31 

29 

27 

76 

49 

48 

47 

46 

45 

43 

42 

41 

39 

38 

36 

34 

33 

31 

29 

77 

51 

50 

49 

48 

46 

45 

44 

42 

41 

39 

38 

36 

35 

33 

31 

78 

52 

51 

50 

49 

48 

46 

45 

44 

43 

41 

40 

38 

37 

35 

33 

79 

54 

53 

52 

50 

49 

48 

47 

46 

44 

43 

42 

40 

38 

37 

35 

80 

55 

54 

53 

52 

51 

50 

48 

47 

46 

44 

43 

42 

40 

39 

37 

Depression 

of  wet-bulb  thermometer  {t  — 

') 

23.0 

23.5J24.O 

24.525.0 

25.5  26.0  26.5127.027.5 

1    '    1 

28.0 

28.529.0 

29.5 

30.0 

64 

—54 

65 

-22 

66 

—11 

-22 

67 

—  31— 11!— 23 

68 

+  2!—  3!— Ill— 24 

69 

7 

+  2 

—  3—11—24 

70 

11 

7 

+  2 

—  31-11 

—24 

71 

14 

11 

7 

+  31-3 

—11 

—24} 

72 

17 

14 

11 

7 

+  3 

—  31—111—24 

73 

20 

17 

15 

11 

8 

+  31—  3— 111— 24 

74 

23 

20 

18 

15 

12 

8 

+  3 

—  31-10 

—24 

75 

25 

23 

21 

18 

15 

12 

8 

+  41—2 

—10 

-23 

76 

27 

25 

23 

21 

18 

15 

12 

8 

+  4 

—  2 

—10—22 

77 

29 

28 

26 

23 

21 

18 

16 

13 

9 

+  4 

—  2  —  9 

-21 

78 

31 

30 

28 

26 

24 

21 

19 

16 

13 

9 

+  5—1 

—  9 

—20 

79 

34 

32 

30 

28 

26 

24 

22 

19 

16 

13 

10  +  5 

—  1 

—  8—20 

80 

36 

34 

32 

30 

28 

26 

24 

22 

20 

17 

13   10 

+  6 

±0,-7 

82      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 
Continued 

Pressure  =  30.0  inches  of  mercury 


d 

c  oi 

>  & 

Depression 

of  w 

Jt-bu 

lb  thermometer  (t  —  t') 

<5 

1 

2 

»h 

6 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

80 

1.022 

79 

77 

76 

74 

73 

72 

70 

68 

67 

65 

63 

62 

60 

'W 

66 

81 

1.056 

80 

78 

77 

75 

74 

73 

71 

70 

68 

66 

65 

63 

61 

59 

57 

82 

1.091 

81 

79 

78 

77 

75 

74 

72 

71 

69 

67 

66 

64 

62 

60 

69 

83 

1.127 

82 

80 

79 

78 

76 

75 

73 

72 

70 

69 

67 

65 

64 

62 

60 

84 

1.163 

83 

81 

80 

79 

77 

76 

74 

73 

71 

70 

68 

66 

65 

63 

61 

85 

1.201 

84 

82 

81 

80 

78 

77 

75 

74 

72 

71 

69 

68 

66 

64 

62 

86 

1.241 

85 

83 

82 

81 

79 

78 

76 

75 

73 

72 

70 

69 

67 

65 

64 

87 

1.281 

86 

84 

83 

82 

80 

79 

78 

76 

75 

73 

72 

70 

68 

67 

65 

88 

1.322 

87 

85 

84 

83 

81 

80 

79 

77 

76 

74 

73 

71 

69 

68 

66 

89 

1.364 

88 

86 

85 

84 

82 

81 

80 

78 

77 

75 

74 

72 

71 

69 

67 

90 

1.408 

89 

87 

86 

85 

83 

82 

81 

79 

78 

76 

75 

73 

72 

70 

69 

91 

1.453 

90 

88 

87 

86 

85 

83 

82 

80 

79 

78 

76 

75 

73 

71 

70 

92 

1.499 

91 

89 

88 

87 

86 

84 

83 

81 

80 

79 

77 

76 

74 

73 

71 

93 

1.546 

92 

90 

89 

88 

87 

85 

84 

83 

81 

80 

78 

77 

75 

74 

72 

94 

1.595 

93 

92 

90 

89 

88 

86 

85 

84 

82 

81 

79 

78 

76 

75 

73 

95 

1.645 

94 

93 

91 

90 

89 

87 

86 

85 

83 

82 

80 

79 

78 

76 

74 

96 

1.696 

95 

94 

92 

91 

90 

88 

87 

86 

84 

83 

82 

80 

79 

77 

76 

97 

1.749 

96 

95 

93 

92 

91 

89 

88 

87 

85 

84 

83 

81 

80 

78 

77 

98 

1.803 

97 

96 

94 

93 

92 

90 

89 

88 

87 

85 

84 

82 

81 

79 

78 

99 

1.859 

98 

97 

95 

94 

93 

92 

90 

89 

88 

86 

85 

83 

82 

81 

79 

100 

1.916 

99 

98 

96 

95 

94 

93 

91 

90 

89 

87 

86 

85 

83 

82 

80 

101 

1.975 

100 

99 

97 

96 

95 

94 

92 

91 

90 

88 

87 

86 

84 

83 

81 

102 

2.035 

101 

100 

98 

97 

96 

95 

93 

92 

91 

89 

88 

87 

85 

84 

83 

103 

2.097 

102 

101 

99 

98 

97 

96 

94 

93 

92 

91 

89 

88 

86 

85 

84 

104 

2.160 

103 

102 

100 

99 

98 

97 

95 

94 

93 

92 

90 

89 

88 

86 

85 

105 

2.225 

104 

lOS 

101 

100 

99 

98 

96 

95 

94 

93 

91 

90 

89 

87 

88 

106 

2.292 

105 

104 

102 

101 

100 

99 

98 

96 

95 

94 

92 

91 

90 

88 

87 

107 

2.360 

106 

105 

103 

102 

101 

100 

99 

97 

96 

95 

93 

92 

91 

90 

88 

108 

2.431 

107 

106 

104 

103 

102 

101 

100 

98 

97 

96 

95 

93 

92 

91 

89 

109 

2.503 

108 

107 

105 

104 

103 

102 

101 

99 

98 

97 

96 

94 

93 

92 

90 

110 

2.576 

109 

108 

106 

105 

104 

103 

102 

100 

99 

98 

97 

95 

94 

93 

91 

111 

2.652 

110 

109 

108  106 

105 

104 

103 

102 

100 

99 

98 

96 

95 

94 

93 

112 

2.730 

111 

110 

109  107 

106 

105 

104 

103 

101 

100 

99 

98 

96 

95 

94 

113 

2.810 

112 

111 

110  ;108 

107 

100 

105 

104 

102 

101 

100 

99 

97 

96 

95 

114 

2.k'n 

113 

112 

111  il09 

108 

107 

106 

105 

103 

102 

101 

100 

98 

97 

96 

115 

2.975 

114 

113 

112 

no 

109 

108 

107 

106 

104 

103 

102 

101 

99 

98 

97 

116 

3.061 

115 

114 

113 

111 

110 

109 

108 

107 

105 

104 

103 

102 

101 

99 

98 

117 

3.148 

116 

115 

114 

112 

111 

no 

109 

108 

107 

105 

104 

103 

102 

100 

99 

118 

3.239 

117 

116 

115 

113 

112 

111 

no 

109 

108 

106 

105 

104 

103 

101 

100 

119 

3.331 

118 

117 

116 

114 

113 

112 

111 

110 

109 

107 

106 

105 

104 

102 

101 

120 

3.425 

119 

118 

117 

115 

114 

113 

112 

111 

no 

108 

107 

106 

105 

104 

102 

121 

3.522 

120 

119 

118 

116 

115 

114 

113 

112 

111 

109 

108 

107 

106 

105 

103 

122 

3.621 

121 

120 

119 

118 

116 

115 

114 

113 

112 

no 

109 

108 

107 

106 

104 

123 

3.723 

122 

121 

120 

119 

117 

no 

115 

114 

113 

112 

110 

109 

108 

107 

106 

124 

3.827 

123 

122 

121 

120 

118 

117 

116 

115 

114 

113 

111 

no 

109 

108 

107 

125 

3.933 

124 

123 

122 

121 

119 

118 

117 

116 

115 

114 

112 

111 

110 

109 

108 

126 

4.042 

125 

124 

123 

122 

120 

119 

118 

117 

116 

115 

113 

112 

111 

no 

109 

127 

4.154 

1'26 

125 

124 

123 

121 

120 

119 

118 

117 

116 

114 

113 

112 

111 

no 

128 

4.268 

127 

126 

125 

124 

122 

121 

120 

119 

118 

117 

116 

114 

113 

112 

111 

129 

4.385 

128 

127 

126 

125 

123 

122 

121 

120 

119 

118 

117 

115 

114 

113 

112 

130 

4.504 

129 

128 

127 

126 

124 

123 

122 

121 

120 

119 

118 

116 

115 

114 

113 

131 

4.627 

130 

129 

128 

127 

125 

124 

123 

122 

121 

120 

119 

117 

116 

115 

114 

132 

4.752 

131 

130 

129 

128 

126 

125 

124 

123 

122 

121 

120 

119 

117 

116 

115 

133 

4.880 

132 

131 

1.30 

129 

127 

126 

125 

124 

123 

122 

121 

120 

118 

117 

116 

134 

5.011 

1.33 

1.32 

131 

1.30 

129 

127 

126 

125 

124 

123 

122 

121 

119 

118 

117 

135 

5.145 

134 

1.33 

132 

131 

130 

128 

127 

126 

125 

124 

123 

122 

120 

119 

118 

136 

5.282 

135 

1.34 

133 

132 

131 

129 

128 

127 

126 

125 

124 

123 

122 

120 

119 

137 

5.422 

136 

1.35 

134 

133 

132 

130 

129 

128 

127 

126 

125 

124 

123 

121 

120 

138 

5.565 

137 

136 

1.35 

134 

133 

131 

130 

129 

128 

127 

126 

125 

124 

122 

121 

139 

5.712 

138 

137 

136 

135 

134 

i:i2 

131 

1.30 

129 

128 

127 

126 

125 

123 

122 

140 

5.862 

139 

138 

137 

136 

135 

133  Il32 

131 

130 

129 

128 

127 

126 

124 

123 

PHYSICAL  CONSTANTS 


83 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 
Continued 

Pressure  =  30.0  inches  of  mercury 


d 

o  r 

Depression 

of  w 

et-bulb  thermometer 

(t   - 

t') 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29  30 

80 

1.022 

54 

52 

50 

47 

44 

42 

39 

36 

32 

28 

24 

20 

13 

6  -7 

81 

1.056 

55 

53 

51 

49 

46 

43 

41 

38 

34 

31 

27 

22 

17 

10  1+7 

82 

1.091 

57 

55 

52 

50 

48 

45 

42 

39 

36 

33 

29 

25 

20 

14  +7 

83 

1.127 

58 

56 

54 

52 

49 

47 

44 

41 

38 

35 

31 

27 

23 

18  11 

84 

1.163 

59 

57 

55 

53 

51 

48 

46 

43 

40 

37 

34 

30 

26 

21 

15 

85 

1.201 

61 

59 

57 

54 

52 

50 

48 

45 

42 

39 

36 

32 

28 

24 

19 

86 

1.241 

62 

60 

58 

56 

54 

52 

49 

47 

44 

41 

38 

34 

31 

27 

22 

87 

1.281 

63 

61 

59 

57 

55 

53 

51 

48 

46 

43 

40 

36 

33 

29 

25 

88 

1.322 

64 

62 

61 

59 

57 

55 

52 

50 

47 

45 

42 

38 

35 

31 

27 

89 

1.364 

66 

64 

62 

60 

58 

56 

54 

51 

49 

46 

44 

41 

37 

34 

30 

90 

1.408 

67 

65 

63 

61 

59 

57 

55 

53 

51 

48 

45 

43 

39 

36 

32 

91 

1.453 

68 

66 

65 

63 

61 

59 

57 

55 

52 

50 

47 

44 

41 

38 

35 

92 

1.499 

69 

68 

66 

64 

62 

60 

58 

56 

54 

51 

49 

46 

43 

40 

37 

93 

1.546 

71 

69 

67 

65 

63 

62 

60 

58 

55 

53 

51 

48 

45 

42  I  39 

94 

1.595 

72 

70 

68 

67 

65 

63 

61 

59 

57 

55 

52 

50 

47 

44 

41 

95 

1.645 

73 

71 

70 

68 

66 

64 

62 

60 

58 

56 

54 

52 

49 

46 

43 

96 

1.696 

74 

72 

71 

69 

67 

66 

64 

62 

60 

58 

55 

53 

51 

48 

45 

97 

1.749 

75 

74 

72 

70 

69 

67 

65 

63 

61 

59 

57 

55 

52 

50 

47 

98 

1.803 

76 

75 

73 

72 

70 

68 

66 

64 

63 

61 

58 

56 

54 

52 

49 

99 

1.859 

78 

76 

74 

73 

71 

69 

68 

66 

64 

62 

60 

58 

56 

53 

51 

100 

1.916 

79 

77 

76 

74 

72 

71 

69 

67 

65 

63 

61 

59 

57 

55 

52 

101 

1.975 

80 

78 

77 

75 

74 

72 

70 

69 

67 

65 

63 

61 

59 

56 

54 

102 

2.035 

81 

80 

78 

76 

75 

73 

72 

70 

68 

66 

64 

62 

60 

58 

56 

103 

2.C97 

82 

81 

79 

78 

76 

74 

73 

71 

69 

68 

66 

64 

62 

60 

57 

104 

2.160 

83 

82 

80 

79 

77 

76 

74 

72 

71 

69 

67 

65 

63 

61 

59 

105 

2.225 

84 

83 

82 

80 

78 

77 

75 

74 

72 

70 

68 

67 

65 

63 

61 

106 

2.292 

86 

84 

83 

81 

80 

78 

77 

75 

73 

72 

70 

68 

66 

64 

62 

107 

2.360 

87 

85 

84 

82 

81 

79 

78 

76 

75 

73 

71 

69 

67 

66 

64 

108 

2.431 

88 

86 

85 

84 

82 

81 

79 

77 

76 

74 

72 

71 

69 

67 

65 

109 

2.503 

89 

88 

86 

85 

83 

82 

80 

79 

77 

75 

74 

72 

70 

68 

66 

110 

2.576 

90 

89 

87 

86 

84 

83 

81 

80 

78 

77 

75 

73 

72 

70 

68 

111 

2.652 

91 

90 

88 

87 

86 

84 

83 

81 

80 

78 

76 

75 

73 

71 

69 

112 

2.7.30 

92 

91 

90 

88 

87 

85 

84 

82 

81 

79 

78 

76 

74 

72 

71 

113 

2.810 

93 

92 

91 

89 

88 

86 

85 

84 

82 

80 

79 

77 

76 

74 

72 

114 

2.891 

94 

93 

92 

90 

89 

88 

86 

85 

83 

82 

80 

79 

77 

75 

73 

115 

2.975 

96 

94 

93 

92 

90 

89 

87 

86 

84 

83 

81 

80 

78 

76 

75 

116 

3.061 

97 

95 

94 

93 

91 

90 

88 

87 

86 

84 

83 

81 

79 

78 

76 

117 

3.148 

98 

96 

95 

94 

92 

91 

90 

88 

87 

85 

84 

82 

81 

79 

77 

118 

3.239 

99 

98 

96 

95, 

94 

92 

91 

89 

88 

86 

85 

84 

82 

80 

79 

119 

3.331 

100 

99 

97 

96 

95 

93 

92 

91 

89 

88 

86 

85 

83 

82 

80 

120 

3.425 

101 

100 

98 

97 

96 

94 

93 

92 

90 

89 

87 

86 

84 

83 

81 

121 

3.522 

102 

101 

100 

98 

97 

96 

94 

93 

91 

90 

89 

87 

86 

84 

83 

122 

3.621 

103 

102 

101 

99 

98 

97 

95 

94 

93 

91 

90 

88 

87 

80 

84 

123 

3.723 

104 

103 

102 

100 

99 

98 

96 

95 

94 

92 

91 

90 

88 

87 

85 

124 

3.827 

105 

104 

103 

102 

100 

99 

98 

96 

95 

94 

92 

91 

89 

88 

86 

125 

3.933 

106 

105 

104 

103 

101 

100 

99 

97 

96 

95 

93 

92 

90 

89 

88 

126 

4.042 

107 

106 

105 

104 

102 

101 

100 

99 

97 

96 

94 

93 

92 

90 

89 

127 

4.154 

109 

107 

106 

105 

104 

102 

101 

100 

98 

97 

96 

94 

93 

91 

90 

128 

4.268 

110 

108 

107 

106 

105 

103 

102 

101 

99 

98 

97 

95 

94 

93 

91 

129 

4.385 

111 

109 

108 

107 

106 

104 

103 

102 

101 

99 

98 

97 

95 

94 

92 

130 

4.504 

112 

no 

109 

108 

107 

106 

104 

103 

102 

100 

99 

98 

96 

95 

94 

131 

4.627 

113 

112 

110 

109 

108 

107 

105 

104 

103 

101 

100 

99 

97 

96 

95 

132 

4.752 

114 

113 

111 

110 

109 

108 

106 

105 

104 

103 

101 

100 

99 

97 

96 

133 

4.880 

115 

114 

112 

111 

110 

109 

108 

106 

105 

104 

102 

101 

100 

98 

97 

134 

5.011 

116 

115 

114 

112 

111 

no 

109 

107 

106 

105 

104 

102 

101 

100 

98 

135 

5.145 

117 

116 

115 

113 

112 

111 

110 

108 

107 

106 

105 

103 

102 

101 

99 

136 

5.282 

118 

117 

116 

114 

113 

112 

111 

110 

108 

107 

106 

104 

103 

102  llOl 

137 

5.422 

119 

118 

117 

116 

114 

113 

112 

111 

109 

108 

107 

106 

104 

103  102 

138 

5.565 

120 

119 

118 

117 

115 

114 

113 

112 

110 

109 

108 

107 

105 

104  103 

139 

5.712 

121 

120 

119 

118 

116 

115 

114 

113 

112 

110 

109 

108 

107 

105  104 

140 

5.862 

122 

121 

120 

119 

117 

116 

115 

114 

113 

111 

110 

109 

108 

106  ia5 

84      MET-\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 

Cotilinued 

Pressure  =  30.0  inches  of  meroury 


**, 

5.  ^ 

>  i 

Depression  of  w 

et-bulb  thermometer  (/  — 

n 

45 

<  z 

31  1 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

^ 

~86~ 

1.022 

-531 

81 

1.056 

-18| 

82 

1.091 

-  6- 

-43 

83 

1.127 

+  2- 

-15 

84 

1.163 

8 

-  4 

-33 

85 

1.201 

12+3 

-12 

86 

1.241 

16| 

9 

-  2 

-27 

87 

1.281 

20 

13+5 

-10 

88 

1.322 

23| 

17 

10 

±  0 

-22 

89 

1.364 

26| 

21 

15 

+  6 

-  7 

80 

1.408 

281 

24 

19 

1) 

+  1 

-17 

91 

1.453 

31| 

27 

22 

16 

8 

-  4 

-40 

92 

1.499 

33 

29 

25 

20 

•  13 

+  4 

-13 

93 

1.546 

36 

32 

28 

23 

17 

10 

-  2 

-28 

94 

1.595 

38 

34 

30 

26 

21 

14+6 

-  9 

95 

1.645 

40 

37 

33 

29 

24 

19 

11 

+  1 

-20 

96 

1.696 

421 

39 

35 

31 

27 

22 

16 

8 

-  5 

97 

1.749 

441 

41 

38 

34 

30 

25 

20 

13 

+  3 

-15 

98 

1.803 

46 

43 

40 

36 

32 

28 

23 

17 

10 

-  2 

-33 

99 

1.859 

48 1 

45 

42 

39 

35 

31 

26 

21 

15 

+  6 

-10 

100 

1.916 

50 

47 

44 

41 

37 

33 

29 

25 

19 

12 

+  1 

-22 

101 

1.975 

52 

49 

46 

43 

40 

36 

32 

28 

23 

17 

8 

-  5 

j 

102 

2.035 

53 

51 

48 

45 

42 

38 

35 

31 

26 

21 

14'+  4 

-14 

103 

2.097 

55 

53 

50 

47 

44 

41 

37 

33 

29 

24 

18 

11 

-  2 

-32 

104 

2.160 

57! 

54 

52 

49 

46 

43 

40 

36 

32 

27 

22 

16'+  7 

-  9 

105 

2.225 

581 

56 

54 

51 

48 

45 

42 

38 

34 

30 

26 

20 

13 

+  2-20 

106 

2  292 

60 

58 

55 

53 

50 

47 

44 

41 

37 

33 

29 

24 

18 

9  -  4 

107 

2.360 

62 

59 

57 

55 

52 

49 

46 

43 

40 

36 

32 

27 

22 

15  +  5 

108 

2.431 

63 

61 

59 

56 

54 

51 

48 

45 

42 

39 

35 

30 

25 

20 

12 

109 

2.503 

64 

62 

60 

58 

56 

53 

50 

47 

44 

41 

37 

33 

29 

23 

17 

110 

2.576 

66, 

64 

62 

60 

57 

55 

52 

50 

47 

43 

40 

36 

32 

27 

21 

111 

2.652 

67 1 

65 

63 

61 

59 

57 

54 

52 

49 

46 

42 

39 

35 

30 

25 

112 

2.730 

69 1 

67 

65 

63 

61 

58 

56 

54 

51 

48 

45 

41 

37 

33 

29 

113 

2.810 

70 

68 

66 

64 

62 

60 

58 

55 

53 

50 

47 

44 

40 

36 

32 

114 

2.891 

72 

70 

68 

66 

64 

62 

59 

57 

55 

52 

49 

46 

43 

39 

35 

115 

2.975 

73 

71 

69 

67 

65 

63 

61 

59 

56 

54 

51 

48 

45 

42 

38 

116 

3.061 

74 

73 

71 

69 

67 

65 

63 

60 

58 

56 

53 

50 

47 

44 

40 

117 

3.148 

76 

74 

72 

70 

68 

66 

64 

62 

60 

58 

55 

52 

49 

46 

43 

118 

3.239 

77 

75 

74 

72 

70 

68 

66 

64 

62 

59 

57 

54 

51 

49 

45 

119 

3.331 

78, 

77 

75 

73 

71 

69 

67 

65 

63 

61 

59 

56 

53 

51 

48 

120 

3.425 

80 

78 

76 

75 

73 

71 

69 

67 

65 

63 

60 

58 

55 

53 

50 

121 

3.522 

81' 

79 

78 

76 

74 

72 

70 

68 

66 

64 

62 

60 

57 

65 

52 

122 

3.621 

82 

81 

79 

77 

76 

74 

72 

70 

68 

66 

64 

62 

59 

57 

54 

123 

3.723 

84 

82 

80 

79 

77 

75 

73 

71 

69 

67 

65 

63 

61 

58 

56 

124 

3.827 

85 

83 

82 

80 

78 

77 

75 

73 

71 

69 

67 

65 

63 

60 

58 

125 

3.933 

86 

84 

83 

81 

80 

78 

76 

74 

72 

71 

69 

66 

64 

62 

60 

126 

4.042 

87 

86 

84 

83 

81 

79 

78 

76 

74 

72 

70 

68 

66 

64 

62 

127 

4.154 

88 

87 

85 

84 

82 

81 

79 

77 

75 

74 

72 

70 

68 

65 

63 

128 

4.268 

90 

88 

87 

85 

84 

82 

80 

79 

77 

75 

73 

71 

69 

67 

65 

129 

4.385 

91 

89 

88 

86 

85 

83 

82 

80 

78 

76 

75 

73 

71 

69 

67 

130 

4.504 

92 

91 

89 

88 

86 

85 

83 

81 

80 

78 

76 

74 

72 

70 

68 

131 

4.627 

93 

92 

90 

89 

87 

86 

84 

83 

81 

79 

77 

76 

74 

72 

•  70 

132 

4.752 

94 

93 

92 

90 

89 

87 

86 

84 

82 

81 

79 

77 

75 

73 

71 

133 

4.880 

96 

94 

93 

91 

90 

88 

87 

85 

84 

82 

80 

78 

77 

75 

73 

134 

5.011 

97 

95 

94 

93 

91 

90 

88 

87 

85 

83 

82 

80 

78 

76 

74 

135 

5.145 

98 

97 

95 

94 

92 

91 

89 

88 

86 

85 

83 

81 

80 

78 

76 

136 

5.282 

99 

98 

96 

95 

94 

92 

91 

89 

88 

86 

84 

83 

81 

79 

77 

137 

5.422 

100 

99 

98 

96 

95 

93 

92 

90 

89 

87 

86 

84 

82 

81      79 

138 

5.565 

101 

100 

99 

97 

96 

95 

93 

92 

90 

39 

87 

85 

84 

82     80 

139 

5.712 

103 

101 

100 

99 

97 

96 

94 

93 

91 

90 

88 

87 

85 

83     82 

140 

5.862 

104 

102 

101 

100 

98 

97 

96 

94 

93 

91 

90 

88 

Jl 

85     83 

PHYSICAL  C  O  N  ST  A  NTS 


8^ 


Temperature  of  Dew-point  ix  Degrees  Fahrenheit. 

Continued 
Pressure  =  30.0  inches  of  mercury 


- 

Depression 

of  w 

et-bulb  thermometer  {I  — 

t') 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

106 

-56 

I 

107 

-12 

108 

±  0 

-26 

, 

, 

1 

109 

+  8 

-  6 

110 

14 

+  4 

-16 

111 

19 

11 

-  1 

-35 

112 

23 

17 

+  8 

-  8 

113 

27 

21 

14 

+  3 

-19 

114 

30 

25 

19 

11 

-  2 

-50 

113 

33 

29 

23 

16 

+  7 

-10 

116 

36 

32 

27 

21 

14 

+  2 

-22 

117 

39 

35 

30 

25 

19 

10 

-  3 

118 

42 

38 

34 

29 

23 

16 

+  7 

-11 

119 

44 

41 

37 

32 

27 

21 

14 

+  2 

-25 

120 

47 

43 

39 

35 

30 

25 

19 

10 

-  4 

121 

49 

46 

42 

38 

34 

29 

23 

16 

+  6 

-12 

122 

51 

48 

45 

41 

37 

32 

27 

21 

14 

+  1 

-27 

123 

53 

50 

47 

44 

40 

36 

31 

25 

le 

10 

-  4 

124 

55 

52 

49 

46 

43 

39 

34 

29 

24 

17 

+  7 

-13 

125 

57 

54 

52 

49 

45 

42 

37 

33 

28 

22 

14 

+  2 

-29 

126 

59 

56 

54 

51 

48 

44 

40 

36 

31 

26 

19 

■  11 

-  4 

127 

61 

58 

56 

53 

50 

47 

43 

39 

35 

30 

24 

17 

+  7 

-13' 

128 

63 

60 

58 

55 

52 

49 

46 

42 

38 

33 

28 

22 

14 

+  2 

-27 

129 

64 

62 

60 

57 

54 

51 

48 

45 

41 

37 

32 

26 

20 

11 

-  4 

130 

66 

64 

62 

59 

50 

54' 

51 

47 

44 

40 

35 

30 

25 

17 

+  7 

131 

68 

66 

63 

01 

58 

50. 

53 

50 

46 

43 

39 

34 

29 

23 

15 

132 

69 

67 

65 

03 

60 

58; 

55 

52 

49 

45 

42 

37 

32 

27 

21 

133 

71 

69 

67 

64 

62 

60 

57 

54 

51 

48 

44 

40 

36 

31l 

25 

134 

73 

71 

68 

66 

64 

62 

59 

56 

53 

50 

47 

43 

39 

34. 

29 

135 

74 

72 

70 

6? 

66 

63 

61 

58 

56 

53 

50 

46 

42 

1 
38 

33 

136 

76 

74 

72 

70 

67 

65' 

63 

60 

58 

55 

52 

49 

45 

41 

37 

137 

77 

75 

73 

71 

69 

67, 

65 

62 

-60 

57 

54 

51 

48 

44 

40 

138 

78, 

77 

75 

73 

71 

69 

66 

64 

62 

59 

56 

53 

50i 

47 

43 

139 

80 

,78 

76 

74 

72 

70i 

68i 

66 

64 

61 

58 

56 

53| 

50 

46 

140 

81 

80 

78 

76 

74 

72' 

70 

68 

65 

63 

60' 

1 

1 
58 

55I 

52 

49 

86      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 

Continued 

Pressure  ■=  23.0  inches  of  mercury 


Depression  of  wet-bulb  thermometer  (t  —  t') 


0.2  I  0.4  10.6  iO.8  j  1.0   1.2  I  1.4  I  1.6'  1.8[2.o|2.2  |  2.4  j  2.6  I  2.8  [  3.0 


— 40^.00391— 49 


-39 

—38 
—37 
-36 
—35  0.0051 


—34 
—33 
—32 
—31 


—29 
—28 
-27 
—26 


—48 
-46 


46—45 
4S-43 


54—40 


300.0069 


74 


—39 
-3S 

36 
—34 

33 


83 

89 
2.y0.0094 
24,0.0100 
106 
112 
1 


78-32 


-30 

—29 

■28 

—27 

-26 


200.0126 


—19 
—18 
—1 
—16 


23 
—22 
—20 


150—19 


159 
—150.0168 
—14       1781—16 
—13 
—12 
—11 
—10)0.0222 

234 

247 


—  9 


—  / 

—  6 


—  4 

—  3 

—  2 

—  1 
0 

-f-  1 
2 
3 
4 
S( 


—18 
-17 
—16 
188-15 
199-14 
210—13 
—12 
—11 
10 


260—8 


275 
0.0291 
307 
325 
344 
363 

0'0.03&3 
403 
423 
444 
467 
0.O491 
515 
542 
570 

9|  600 
100.0631 


1—7 
6 
5 

—  4 

—  3 

—  2 

—  1 
±  0 
+  1 

2 
3 
4 
5 


—59! 

—571 

—5o\ 

—52 

—501 

—48 

—16 

—44 

-^2 

—40 

;— 38 

—36 

—34 

—32 

—31 

—30 

—29 

—27, 

—26 

—24 

—23 

—22, 

—20 

—19 

—IS 

—17 

—16' 

—14 

—13 

—12 

—11 

—10 

—  9 

—  8 

—  6 

—  5 


665 
G99 
735 

772 


150.0810 


850 
891 
933 
19(0.0979 
200.1026 


—59 
—55 
—521 
^^9i 
—16—60 
41  — 55 
—41—51 
—39  -^8 
—36  —45 
—34—12 
—33  —39 
—31  —36 
—29  —34 
—28—32 
—26  —30 
—25  — 2S 
—23  —26 
—22  —25 
—20  —23 
—19—22 
—18—20 
—16—19 
—15—17 
—14  —16 
—13—15 
—12  —14 
—10  —12 

—  9—11 

—  8—10 

—  7  —  8 

—  6  —  7 

—  4  —  6 

—  3  —  4 

—  2  —  3 

—  1—2 
±0  —  1 
+  1  ±  0 

2,-1-1 
3!  2 
4       3 

6  5 

7  6 


—60 

—59 
58 
57 
56 

— 55 
54 

—53 


0.0010 
11 
12 


13M9 

13 
0.0015 

16—16 
0.0017—45 
44 


•57 
—51 
—17 

-^4|— 57 
-511 

•37M7 


—35 
—32 


-2S 


1—5210.00181—60 


^51 


500.0021 


—39 
38 
37 

—36 


19-^9 


—35  0.0051 


■34 
33 
32 
31 
—30:0. 0069 


3 1— .54 

-39,— IS 

—30[— 351-43 

33— 39— 19r 

361-44  —57 
—28—331—39  -49 
— 261- 30|— 35  —43,— .56 
— 24  — 28  — 32  — 39I-4.S 
—20—22—26—29  —34 


_      «  -  t') 

0.1   0.2  ,0.3  0.4  0.5 


—58 

-56, 

—54: 

—53 

—51—59 
10.0029—50—67 
31  -^9-55 
33—47—53 
35^6— 51— «0 
37-45—50—58 
—1010.0039—14—19—56 


1—43-48—54 
2-46—52—59 
1—45—50—57 
—40—13^9—55 
—39-^2—47—52 


54— 37— 10— 45— .50 


—58 


—36—39—43^8—5.5 

—35—38—42—16—52 

33—36—10—44—49 

1—32—34—38^2-47 


26— 30:- 


—25 
—23 
—21 


—17 
—15 
—14 
—12 
—11 
—10 


-55 
—46 


—18—21—24—27  —31  —3 

— 19i— 22  — 25  —29  — 33|— 40  —50 
—17,— 20 1—23  —26  — 30|— 35  -44;— 56 
— 16|— 18i— 21  —24  —2 
14—161—19—22  —2 
—13—15—171-19-22 


32  —38,— 471 
[—29  —33  —40—51 
26—30  —.35  —43  —57 


11  — 13— 151- 17— 20— 23— 26— 31  —37—46 


—  7 

—  6 

—  4 

—  3 

—  2 

—  1 
+  0 
+  1 

2 
4 
5 


—10-12—14—16-18 

—  8|— 10,-12  —14  —16 

—  7  —  9—10—12—14 

—  6:—  7;— 9— 10— 12 
-4i— 61—  7  —  9—10 


20:— 23 —27 —32 —38 
—18—21—24—28—32 
—16—18—21  —24—28 

14  —161—19—22  —25 
—12— 14— 16!— 19— 22 


—  3  —  4  —  6  —  7  —  9—10—12—14—16—19 


10  9: 

11  10 

12  111 


18,     18 


—  21—3—5  —  6  —  7 

—  ll— 2  — 3  — 5  — 6 
±  0 
+  1 

3 

4 

5 

6 

8 

9 
10 
11 
12 
13 
14 
15 
16 


+  2 

3 

4 

5 

7 

8 

9 

10 

11 

13 

14 

15 

16 


-H  1  —  1  — 2 
2-1-1+0 
3i  2-1-1 
3 
4 
5 
7 


5 

4 

fl 

5 

7 

6 

8 

8 

10 

9 

11 

10 

12 

11 

13  12 

14  13 


10 
12 
13 
151     14 


—  9  —10—12  —14 

—  7  —  9  —10  —12 


—  1—2  —  3  —  4  —  6  —  7—  9—10  —12 

±  0—  1  —  2  —  3  —  4  —  51-  7  —  9  —10 

—3—4—5—7—8 

—1—3—4—5—7 

+  0  —  1—2  —  4  —  5 

+  1  ±  0  —  1  —  2  —  3 

3-|-2-|-l±0  —  2 

4'      31      2,-t-  1  ±  0 

61      51       "        ''      ' 


12  111 

13  12, 


3H-  2 

4I  3 

6|  5 

7  6 

8  8 
10'  9 

12      111     10 


PHYSICAL  CONSTANTS 


87 


Temperature  of  Dew-point  in  Degrees  Fahrenheit 
Continued 

Pressure  =  23.0  inches  of  mercury 


Depression  of  wet-bulb  thermometer  (f  —  (') 

Air 

temp.,  ( 

3.2  13.4 

3.6 

3.8 

4.0 

4.2 

4.4 

4.6 

4.8 

5.0 

5.2 

5.4 

5.6 

5.8 

6.0 

-2 
-1 

^4 

3 
)— 51 

0 

-3. 

i-41 

^2 

+  1 

—291—33 

:^2 

-54 

2 

^2, 

)— 29 

1-34 

-43 

—56 

3 

—2. 

>— 25 

—29 

—34 

—43 

-58 

4 

— 1' 

)— 22 

—25 

—29 

—35 

-44 

—59 

5 

— r 

r— 19 

-22 

—25 

—29 

-35 

-Ah 

—60 

6 

—14 

—17 

-19 

—22 

-25 

—30 

—35 

—45 

—60 

7 

—12  —14 

—16 

—19 

—22 

-25 

—30 

—35 

-Ab 

8 

—10  —12 

—14 

—16 

—19 

-22 

—25 

—29 

—35 

—45 

9 

—  8—10 

—12 

—14 

-16 

—19 

—21 

-25 

-29 

—35 

-44,-60, 

10 

-6  —  8 

-10 

—12 

-14 

-16 

—18 

-21 

-24 

-29 

-34—43  —59 

11 

-5  —  6 

-7 

—  9 

—11 

—13 

—15 

—18 

—20 

—24 

-28:— 33^2— 56 

12 

-3—4 

—  5 

—  7 

—  9 

—11 

—13 

—15 

-17 

—20 

— 23j— 27  —32  ^Ol— 53 

13 

-l!-2 

—  4 

—  5 

—  7 

—  8 

—10 

—12 

—14 

—17 

—19J— 221— 26— 311—38 

14 

±  0 

—  1 

—  2 

—  3 

—  5 

-6 

—  8 

—  9 

—11 

—13 

— 16— 18— 21!- 25— 29 

15 

-f  2 

+  1 

±  0 

—  1 

—  3 

-4 

—  5 

—  7 

-9 

—11 

-13  —15  — 17i— 20,— 24 

16 

4 

3 

+  2 

±  0 

—  1 

—  2 

—  3 

—  5 

—  6 

—  8 

-10— 12— 14— 16[— 19 

17 

5 

4 

3 

+  2 

+  1 

4-  0 

—  2 

—  3 

—  4 

—  5 

-7j— 9i— 11|— 13— 15 

18 

7 

6 

5 

4 

3 

+  2 

+  0 

—  1 

—  2 

-3 

—  5  — 6i— 8— 10— 12 

19 

8 

7 

6 

5 

4 

3 

+  2 

-1-  1 

+  0 

—  1 

—  3  —  4—5  —  7—9 

20 

9 

9 

8 

7 

6 

5 

4       3 

-f  2 

+  1 

-1—2—3—5—6 

t     - 

(«  -  t) 

5.2 

5.4 

5.6 

6.8 

7.0 

7.2 

7.4 

7.6 

7.8 

8.0 

13  - 

-49 

14   - 

-36^7 

15  - 

-28  -34  - 

-44- 

-59 

16  - 

-22  —27;— 32  - 

-40- 

-53 

17  - 

-18—21—25- 

-29- 

-36- 

-47 

18  - 

-14  —17—20  —23  - 

-27- 

-33- 

-42- 

-58 

19  - 

-11  —13—16—18- 

-21- 

-25- 

-30—37- 

-49 

20   - 

-  8  —10,-12  —14  - 

-17- 

-20- 

-23  —28  - 

-33-44 

88      MET.VLLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 

Continued 

Pressure  =  23.0  inches  of  mercurj' 


Air 

Depression  of  wet-bulb  thermometer  (/ 

-  t' 

temp.,  t 

0.5'l.0y52.02.5 

3.0  3.5  4. o|4. 5  5.0 

5.5 

1 

••»i 

6.5  1 

7.0 

7.5  1  8.0 

20 

0.103 

19    17    16 

14    12 

10  ,  8  i  6 

3      1 

—  3 

-6 

-11] 

^^ 

—26—44 

21 

0.108 

20    18    17 

15    13 

12    10     8 

5  1  2 

—  1 

—  4 

-8 

-13 

—20—30 

22 

0.113 

21    19    18 

16    15 

13    11      9 

7     4 

+  1 

—  2 

-5I 

-10 

-15-23 

23 

0.118 

22    20    19 

17    16 

14    12    10 

8  I  6 

3+0 

-3' 

7 

—12—18 

24 

0.124 

23    21    20 

19    17 

15    14    12    10  i  8 

5  +  2' 

—  1 

—  4 

—  8  —14 

25 

0.130 

24    23    21 

20    18 

17    15    13    11      9 

7 

4 

+  1 

—  2 

—  5—10 

26 

0.136 

25    24    22 

21    20 

18    16    15  jl3  111 

9 

6 

4+1 

-3-7 

27 

0.143 

26    25    23 

22    21 

19    18    16    14    12 

10 

8 

6 

3 

±0-4 

28 

0.150 

27    26    24 

23    22 

20    19    17  Il6  '14 

12; 

10 

8 

5 

+  2-1 

29 

0.157 

28    27    26 

24    23 

22    20    19    17    15 

13 

11 

9 

7 

4  +  1 

30 

0.164 

29    28    27 

25    24 

23    21    20    18    17 

15l 

131 

11 

9 

7       4 

31 

0.172 

30    29    28 

27    25 

24    23    21    20    18 

17 

15 

13 

11 

8       6 

32 

0.180 

31    30    29 

28    26 

25    24    23    21    20 

18 

16 

14 

12 

10       8 

33 

0.1S7 

32    31    30 

29    28 

26    25    24    22    21 

19 

18 

16 

14 

12      10 

34 

0.195 

33    32    31 

30    29 

28    26    25    24    22 

21 

19 

18 

16 

14      12 

35 

0.203 

34    33    32 

31    30 

29  '28    26    25    24 

22 

21 

19 

17 

16!    14 

36 

0.211 

35    34    33 

32    31 

30    29    27    26    25 

24 

22 

21 

19 

17'    15 

37 

0.219 

36  ,35  ,34 

33    32 

31    30    28    27    26 

25 

24 

22 

20 

19i    17 

38 

0.228 

37    36  (35 

34    33 

32    31    30    28  '27 

26 

25 

23 

22 

20:     19 

39 

0.237 

38  '37  '36 

35    34 

33    32    31    30    28 

27 

26 

25 

23 

22 1     20 

40 

0.247 

39  '38    37 

36    35 

34    33    32    31    30 

28 

27 

26 

25 

23      22 

41 

0.2.56 

40    39    38 

37    36 

35    34    33    32    31 

29 

28 

27 

26 

24      23 

42 

0.266 

41    40    39 

38    37 

36  135    34    33    32 

31 

29 

28 

27 

26      24 

43 

0.277 

42    41    40 

39    38 

37    36    35    34    33 

32 

31 

29 

28 

27 

26 

44 

0.287 

43    42    41 

40    39 

38   37   36    35    .34 

33 

32 

31 

29 

28 

27 

45 

0.298 

44    43  '42 

41    40 

39   38    37    36    35 

34 

33 

32 

31 

29 

28 

40 

0.310 

45    44    43 

42    41 

40 

39   38   37  '36 

35 

34 

33 

32 

31 

30 

47 

0.322 

46  ;45    44 

43    42 

42 

41    40   38   37 

36 

35 

34 

33 

32 

31 

48 

0.334 

47    46    45 

44  '44 

43 

42    41    40    39 

38 

37 

35 

34 

33 

32 

49 

0.347 

48   47    46 

46    45 

44    43  '42  '41    40 

39 

38 

37 

36 

34 

33 

50 

0.360 

49   48    47 

47    46 

45    44    43    42  ,41 

40 

39 

38 

37 

36 

34 

51 

0.373 

r,0    49    48 

48    47 

46    45  ,44  ,43    42 

41 

40 

39 

38 

37 

36 

52 

0.387 

51    50    50 

49   48 

47  ,46  ,45  j44    43 

42 

41 

40 

39 

38 

37 

53 

0.402 

52    51    51 

50    49 

48   47  146    45    44 

43 

42 

41 

40 

39 

38 

54 

0.417 

.=53    52    52 

51    50 

49   48  |47   46    45 

44 

44 

43 

42 

41 

40 

55 

0.432 

54    53    .53 

52    51 

50   49  '48   48   47 

46 

45 

44 

43 

42 

41 

56 

0.448 

55    54    54 

53  ,52 

51    50    49  '49   48 

47 

46 

45 

44 

431    42 

57 

0.465 

56  'o6    55 

54    53 

52    51    50    50    49 

48 

47 

46 

45 

44 

43 

58 

0.482 

57  ;.57    56 

55    54 

.53    52    52    51    50 

49 

48 

47 

46 

45 

44 

59 

0.499 

58  l58    57 

56    .55 

.54    54    53    52    51 

50 

49 

48 

47 

46 

46 

60 

0.517 

59  1.59    58 

57    .56 

55    55    54    53  :52 

51 

50 

49 

49 

48i     47 

61 

0.536 

60    60    59 

58    57 

56    56    55  '54    .53 

52 

52 

51 

50 

49     48 

62 

0.555 

61    61    60 

59    58 

58    57    56    .55  |54 

53 

53 

52 

51 

50     49 

63 

0.575 

62    62    61 

60    59 

59    58    57    56    55 

55 

54 

53 

52 

51      50 

64 

0.595 

63    63    62 

61    60 

60  i59   58  ,57  156 

56 

55 

54 

53 

52 1    51 

63 

0.616 

64    64    63 

62    61 

61  |60  :59  158  |58 

57 

56 

55 

54 

54 

53 

66 

0.638 

65    65    64 

63    62 

62 

61  ,60 

59   59 

58 

57 

56 

55 

55 

54 

67 

0.061 

06  ,66    65 

64    63 

63 

62  ,61 

61    60 

59 

58 

57 

57 

56 

55 

68 

0.084 

67    67    66 

65    64 

64 

63    62 

62    61 

60 

59 

58 

58 

57 

56 

69 

0.707 

08  '68   67 

66    66 

65 

64  '63    63  ;62 

61 

60 

60 

59 

58 

57 

70 

0.732 

69   69  :68 

67    67 

66  |65  '64    64  163 

62 

61 

61 

60 

59 

58 

71 

0.757 

70    70   69 

68   68 

67    66    66    65  !64 

63 

62 

62 

61 

60;    59 

72 

0.783 

71  ,71  ,70 

69   69 

68   67   67   66    65 

64 

64 

63 

62 

61      60 

73 

0.810 

72    72    71 

70   70 

69   68    68   67    66 

65 

65 

64 

63 

62     62 

74 

0.838 

73    73    72 

,71    71 

70   69   69   68    67 

66 

66 

65 

64 

64|    63 

75 

0.866 

74    74  173 

!72  72 

71    70   70   69   68 

67 

67 

66 

65 

65|    64 

76 

0.896 

75   75    74 

73    73 

72    71    71    70  69 

69 

68 

67 

66 

66 

65 

77 

0.926 

76   76    75 

i74  74 

73    72    72  171    70 

70 

69 

68 

67 

67 

66 

78 

0.957 

77   77   76 

;75    75 

74    73    73    72    71 

71 

70 

69 

69 

68 

67 

79 

0.989 

78   78    77 

76    76 

75  ,74    74  173    72 

72 

71 

70 

70 

69 

68 

80 

1.022 

79   79   78 

77    77 

76    75    75  |74    73 

73 

72 

71 

71 

70     69 

PHYSIC.\L  CONSTANTS 


89 


Temperatuke  of  Dew-point  in  Degrees  Fahrenheit. 
Conlimied 

Pressure  =  23.0  inches  of  mercury 


•^  c. 

0  " 

Depression  of 

wet-bulb  thermometer  (i 

-  n 

<g 

8.5 

9.0 

9.5 

10.010.5 

11.011.5 

12.012.5J13.0 

13. 514. 0|l4.5jl5. 015. 516.0 

22  0.113 

—37 

23  0.118 

-28 

—50 

24 

0.124 

—21 

—32 

i 

25 

0.130 

—16 

— 24'-42 

26 

0.136 

—12 

—18 

—29 

—56 

27 

0.143 

—  8 

—14 

—21 

—34 

28 

0.150 

—  5 

—10 

—16 

—24 

-43 

29 

0.157 

—  2 

—  6 

—11 

—18 

—29 

-57 

30 

0.164 

+  0 

—  3 

—  7 

—13 

—21 

-33 

31 

0.172 

+  3 

+  0 

—  4 

—  9 

—15 

—23 

—40 

32 

0.180 

5 

+  2 

—  1 

—  5 

—10 

—16 

—26 

—50 

33 

0.187 

8 

5 

+  2 

—  2 

—  6 

—11 

—18 

—30 

34 

0.195 

10 

7 

4 

+  1 

—  3 

—  7 

—12 

—20 

-34 

35 

0.203 

12 

9 

7 

4 

+  0 

—  3 

—  8 

—14 

—22 

-AC 

36 

0.211 

13 

11 

9 

6 

+  3 

+  0 

—  4 

—  9 

—15 

—25 

-A7 

37 

0.219 

15 

13 

11 

9 

6 

+  3 

-1 

—  5 

—10 

—17 

—28 

—60 

38 

0.228 

17 

15 

13 

11 

8 

6 

+  2 

—  1 

—  5 

—11 

—18 

—31 

39 

0  237 

19 

17 

15 

13 

11 

8 

5J-  ">. 

—  2 

—  6 

—12 

—20 

—34 

40 

0.247 

20 

19 

17 

15 

13 

10 

8 

5 

+  1 

—  2 

—  7 

—13 

—22 

—39 

41 

0.256 

22 

20 

19 

17 

15 

12 

10 

8 

5 

+  1 

-3 

—  8 

—14 

—23 

-A5 

42 

0.266 

23 

22 

20 

18 

17 

14 

12 

10 

7 

4 

+  1 

—  3 

—  8 

—15 

—25 

—50 

43 

0.277 

24 

23 

22 

20 

18 

16 

14 

12 

10 

7 

4'+  0 

—  4 

—  9 

—16 

—27 

44 

0.287 

26 

24 

23 

22 

20 

18 

16 

14 

12 

10 

7+4±  0 

—  4 

—10 

—17 

45 

0.298 

27 

26 

24 

23 

21 

20 

18 

16 

14 

12 

10 

7 

+  4+0 

—  5 

—10 

46 

0.310 

28 

27 

26 

24 

23 

21 

20 

18 

16 

14 

12 

10 

7,+ 3 

—  1 

—  5 

47 

0.322 

30 

28 

27 

26 

24 

23 

21 

20 

18 

16 

14 

12 

9 

7 

+  3 

—  1 

48 

0.334 

31 

30 

28 

27 

26 

24 

23 

21 

20 

18 

16 

14 

12 

9 

6 

+  3 

49 

0.347 

32 

31 

30 

28 

27 

26 

24 

23 

21 

20 

18 

16 

14 

11 

9 

6 

50 

0.360 

33 

32 

31 

30 

28 

27 

26 

24 

23 

21 

20 

18 

16 

14 

11 

9 

51 

0.373 

34 

33 

32 

31 

30 

29 

27 

26 

24 

23 

21 

20 

18 

16 

14 

11 

52 

0.387 

36 

35 

34 

32 

31 

30 

29 

27 

26 

24 

23 

21 

20 

18 

16 

14 

53 

0.402 

37 

36 

35 

34 

32 

31 

30 

29 

27 

26 

25 

23 

21 

20 

18 

16 

54 

0.417 

38 

37 

36 

35 

34 

32 

31 

30 

29 

27 

26 

25 

23 

21 

20 

18 

55 

0.432 

40 

39 

38 

36 

35 

34 

32 

31 

30 

29 

27 

26 

25 

23 

22 

20 

56 

0.448 

41 

40 

39 

38 

36 

35 

34 

33 

31 

30 

29 

28 

26 

25 

23 

22 

57 

0.465 

42 

41 

40 

39 

38 

37 

35 

34 

33 

32 

30 

29 

28 

26 

25 

23 

58 

0.482 

43 

42 

41 

40 

39 

38 

37 

36 

34 

33 

32 

31 

29 

28 

26 

25 

59 

0.499 

45 

44 

43 

42 

40 

39 

38 

37 

36 

35 

33 

32 

31 

29 

28 

27 

60 

0.517 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

35 

33 

32 

31 

30 

28 

61 

0.536 

47 

46 

45 

44 

43 

42 

41 

40 

39 

37 

36 

35 

34 

32 

31 

30 

62 

0.555 

48 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

36 

35 

34 

32 

31 

63 

0.575 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

37 

35 

34 

33 

64 

0.595 

50 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

39 

38 

37 

36 

34 

65 

0.616 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

66 

0.638 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

67 

0.661 

54 

53 

52 

51 

50 

50 

49 

48 

47 

46 

45 

44 

42 

41 

40 

39 

68 

0.684 

55 

54 

54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

40 

69 

0.707 

56 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

42 

70 

0.732 

57 

57 

56 

55 

54 

53 

52 

51 

50 

50 

49 

48 

47 

46 

44 

43 

71 

0.757 

59 

58 

57 

56 

55 

54 

54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

72 

0.783 
0.810 

60 
61 

59 

58 
59 

57 
58 

56 

68 

56 
57 

55 
56 

54 
55 

53 
54 

52 
53 

51 
52 

50 
51 

49 
50 

48 
49 

47 
48 

46 

73 

60 

47 

74 

0.838 

62 

61 

60 

60 

59 

58 

57 

56 

55 

54 

54 

53 

52 

51 

50 

49 

75 

0.866 

63 

62 

62 

61 

60 

59 

58 

57 

57 

56 

55 

54 

53 

52 

51 

50 

76 

0.896 

64 

63 

63 

62 

61 

60 

59 

59 

58 

57 

56 

55 

54 

53 

52 

51 

77 

0.926 

65 

65 

64 

63 

62 

61 

61 

60 

59 

58 

57 

56 

56 

55 

54 

53 

78 

0.957 

66 

66 

65 

64 

63 

63 

62 

61 

60 

59 

58 

58 

57 

56 

55 

54 

79 

0.989 

67 

67 

66 

65 

64 

64 

63 

62 

61 

60 

60 

59 

58 

57 

56 

55 

80 

1.022 

69 

68 

67 

66 

66 

65 

64 

63 

62 

62 

61 

60 

59 

58 

58 

57 

90      MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  ix  Degrees  Fahrenheit. 

Continued 

Pressure  =  23.0  inches  of  mercurj" 


Depression  o: 

wet 

-bulb  thermometer  (t 

-  n 

<l 

16.5 

,17.0l7.5|18.0Jl8.5|l9.0,19.5|20.0|20.5 

21.0 

21.5j22.0|22.5 

23.0J23.5J24.0 

44 

-29 

1 

1 

45 

-18 

'-31 

46 

-11 

—19—33 

Ji 

—  5 

—11 

—20—35 

-  1 

—  5 

—12 

—20—3$ 

49 

+  3 

—  1 

—  6 

—12 

—21 

—40 

50 

6 

+  3 

—  1 

—  6 

—12 

-21 

-42 

51 

9 

6  +  2 

-2 

—  6 

—12 

—22 

—44 

52 

11 

9 

6 

+  2 

—  2 

-7 

-13 

22 

-46 

53 

14 

11 

9 

6 

+  2 

-2 

-7 

— ii 

—23 

-47 

54 

16 

13 

11 

9 

6 

+  2 

-2 

—  7 

—14 

-24 

-50 

55 

18 

16 

14 

11 

8 

5 

+  2 

—  2 

—  7 

-14 

-25—55 

56 

20 

18 

16 

14 

11 

8 

5 

+  2 

—  2 

-8 

—15 

—26—60 

57 

22 

20 

18 

16 

14 

11 

8 

5  +  2 

—  3 

-8 

—15 

—26 

58 

23 

22 

20 

18 

16 

14 

11 

9 

5 

+  2 

r-3 

-8 

-15 

—27 

59 

25 

24 

22 

20 

18 

16 

14 

11 

9 

5 

+  2 

—  3 

—  8 

—16 

-28 

60 

27 

25 

24 

22 

20 

18 

16 

14 

11 

9 

6 

+  2 

—  3 

-8 

—16  —28 

61 

28 

27 

25 

24 

22 

20 

18 

16 

14 

12 

9 

6 

+  2 

—  3 

—  8  —IS 

62 

30 

28 

27 

26 

24 

22 

20 

19 

17 

14 

12 

9 

6  +  2 

—  3  —  6 

63 

32 

30 

29 

27 

26 

24 

22 

21 

19 

17 

14 

12 

9 

6 

+  2  —  3 

64 

33 

32 

30 

29 

28 

26 

24 

23 

21 

19 

17 

15 

12 

9 

6  +  2 

65 

35 

33 

32 

31 

29 

28 

26 

25 

23 

21 

19 

17 

15 

12 

10       6 

66 

36 

35 

34 

32 

31 

29 

28 

27 

25 

23 

22 

19 

17 

15 

13      10 

67 

38 

36 

35 

34 

32 

31 

30 

28 

27 

25 

24 

22 

20 

18 

15     13 

68 

39 

38 

37 

35 

34 

33 

31 

30 

28 

27 

25 

24 

22 

20 

18      16 

69 

41 

39 

38 

37 

36 

34 

33 

32 

30 

29 

27 

26 

24 

22 

20'     18 

70 

42 

41 

40 

38 

37 

36 

35 

33 

32 

31 

29 

27 

26 

24 

22     20 

71 

44 

42 

41 

40 

39 

38 

36 

35 

34 

32 

31 

29 

28 

26 

251    23 

72 

45 

44 

43 

42 

40 

39 

38 

37 

35 

34 

32 

31 

29 

28 

27     25 

73 

46 

45 

44 

43 

42 

41 

40 

38 

37 

36 

34 

33 

31 

30 

28     27 

74 

48 

47 

46 

45, 

43 

42 

41 

40 

38 

37 

36 

34 

33 

32 

30     29 

75 

49 

48 

47 

46' 

45 

44 

43 

42 

40 

39 

38 

36 

35 

34 

32     31 

78 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

39 

38 

37 

35 

34     32 

77 

52 

51 

50 

49 

48 

47 

46 

44 

43 

42 

41 

40 

38 

37 

36     34 

78 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

41 

40 

39 

37     36 

79 

54 

54 

53 

52 

51 

50 

49 

47 

46 

45 

44 

43 

42 

40 

39     38 

80 

56 

55 

54 

53 

52 

51 

50 

49 

4S 

47 

46 

44 

43 

42 

41      40 

Depi 

ession  0 

wet 

-bulb  the 

rmometer  ((  —  t') 

24.5 

25.0  25.5  26.0  26.5 

1 

27.0  27.5i28.0|28.5  29.0 

29,5J30.0|30.5  31.0J31.5 

32.0 

62 

—16 

-29! 

«  -  t') 

64 

—  2 

—  7  - 

-15—28 

32.5|33.0  33.5  34.0  34.5 

65 

+  2 

—  2- 

-7—15 

—28 

76 

331         1 

66 

7  +  31- 

-2  —  7 

—15 

-27 

77 

-15—30 

67 

10 

7  +  3  —  1 

—  7 

-14 

—27 

78 

_  6— 14,— 28 

68 

13 

10 

7i+3 

—  1 

—  6 

—14 

—26 

7P 

+  0  -  5I-I3 

-?fi 

69 

16 

I3I 

11       8 

+  4 

-1 

-« 

—13  —25 

sn 

+  6  +  1  -  4  -11  -23 

70 

IK 

16 

14      11 

K 

+  4 

+  0 

—  5  —13  —24 

71 

21 

19 

17,     14 

11 

8 

+  5 

+  0  —  5—12 

—23  —54          '         1 

72 

23 

21 

19     17;     14 

12 

9 

+5+1-4 

-11  —22  —.50 

73 

25 

23 

22     20      17 

15 

12 

9'      6+1 

—  4—11  —20—45' 

74 

27 

26 

24|  -22;    20 

1ft 

15 

12'     10       6 

+  2  —  3  —10—19—41 

75 

29 

28 

26,     24     22 

20 

18 

15      13'     10 

7  +  2  —  3  —  9—18—37 

76 

31 

29 

28     26     24 

23 

21      is:     16 

13 

10;      7  +  3-2-8-17 

77 

33 

31 

30;     28     27 

25 

23     21      19 

16 

14     11       8  +  4  —  1  —  7 

78 

35 

33 

32     30     29 

27 

25:    23     21 

19 

17,     14      11       8  +  4  ±  0 

79 

37 

35 

33     32     31 

29 

271     26      24 

22 

20I     17     15     12|      9+5 

80 

38 

37 

35     34     32 

31      29;    28      26      24 

22     20     18     15;    12       9 

PHYSICAL  CONSTANTS 


91 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 

Continued 

Pressure  =  23.0  inches  of  mercury 


o    " 
c.  ^ 

Depression  of  wet-bulb  thermometer  (J  —  (') 

Air  temp.,  t 

1 

1       1 

1              1              1 

, 

1              1              1 

1  1  2 

3      4 

' 

6 

7     8 

9 

10 

11  jl2 

13    14  |l5    16 

80 

1.022 

79 

77 

76 

75 

73 

"72" 

71 

69 

"68 

"66 

65 

63 

62 

60 

58 

57 

81 

1.056 

80 

78 

77 

76 

75 

73 

72 

70 

69 

67 

66 

64 

63 

61 

60 

58 

82 

1.091 

81 

79 

78 

77 

76 

74 

73 

71 

70 

69 

67 

66 

64 

62 

61 

59 

83 

1.127 

82 

81 

79 

78 

77 

75 

74 

72 

71 

70 

68 

67 

65 

64 

62 

60 

84 

1.163 

83 

82 

80 

79 

78 

76 

75 

74 

72 

71 

69 

68 

66 

65 

63 

62 

85 

1.201 

84 

83 

81 

80 

79 

77 

76 

75 

73 

72 

70 

69 

67 

66 

64 

63 

86 

1.241 

85 

84 

82 

81 

80 

78 

77 

76 

74 

73 

72 

70 

69 

67 

66 

64 

87 

1.281 

86 

85 

83 

82 

81 

79 

78 

77 

75 

74 

73 

71 

70 

68 

67 

65 

88 

1.322 

87 

S6 

84 

83 

82 

80 

79 

78 

76 

75 

74 

72 

71 

69 

68 

66 

89 

1.364 

88 

87 

85 

84 

83 

82 

80 

79 

78 

76 

75 

73 

72 

71 

69 

67 

90 

1.408 

89 

88 

86 

85 

84 

83 

81 

80 

79 

77 

76 

75 

73 

72 

70 

69 

91 

1.453 

90 

89 

87 

86 

85 

84 

82 

81 

80 

78 

77 

76 

74 

73 

71 

70 

92 

1.499 

91 

90 

88 

87 

86 

85 

83 

82 

81 

79 

78 

77 

75 

74 

72 

71 

93 

1.546 

92 

91 

89 

88 

87 

86 

84 

83 

82 

81 

79 

78 

76 

75 

74 

72 

94 

1.595 

93 

92 

90 

89 

88 

87 

85 

84 

83 

82 

80 

79 

78 

76 

75 

73 

95 

1.645 

94 

93 

91 

90 

89 

88 

87 

85 

84 

83 

81 

80 

79 

77 

76   74 

96 

1.696 

95 

94 

92 

91 

90 

89 

88 

86 

85 

84 

82 

81 

80 

78 

77 

76 

97 

1.749 

96 

95 

93 

92 

91 

90 

89 

87 

86 

85 

83 

82 

81 

79 

78 

77 

98 

1.803 

97 

96 

94 

93 

92 

91 

90 

88 

87 

86 

85 

83 

82 

81 

79 

78 

99 

1.859 

98 

97 

95 

94 

93 

92 

91 

89 

88 

87 

86 

84 

83 

82 

80 

79 

100 

1.916 

99 

98 

96 

95 

94 

93 

92 

90 

89 

88 

87 

85 

84 

83 

81 

80 

101 

1.975 

100 

99 

98 

96 

95 

94 

93 

92 

90 

89 

88 

86 

85 

84 

83 

81 

102 

2.0.35 

101  100 

99 

97 

96 

95 

94 

93 

91 

90 

89 

88 

86 

85 

84 

82 

103 

2.097 

102. 101 '100 

98 

97 

96 

95 

94 

92 

91 

90 

89 

87 

86 

85 

83 

104 

2.160 

103'102;101 

99 

98 

97 

96 

95 

93 

92 

91 

90 

88 

87 

86 

85 

105 

2.225 

104 1 103 i 102  100 

99 

98 

97 

96 

94 

93 

92 

91 

89 

88 

87 

86 

106 

2  292 

105il04|103  101  100 

99 

98 

97 

95 

94 

93 

92 

91 

89 

88 

87 

107 

2.360 

106;105|104:102,101 

100 

99 

98 

97 

95 

94 

93 

92 

90 

89 

88 

108 

2.431 

107|106  105  103:102 

101  100 

99 

98 

96 

95 

94 

93 

91 

90 

89 

109 

2.503 

108il07|106  104  103 

102  101 '100 

99 

97 

96 

95 

94 

92 

91 

90 

110 

2.576 

1091108 

107105:104 

103  102:101:100 

9S 

97 

96 

95 

94 

92 

91 

111 

2.652 

110  109 

10Sil06|105 

104  1031102:101 

99 

98 

97 

96 

95 

93 

92 

112 

2.730 

111  110 

10911081106 

105  104 1 103  102 

101 

99 

98 

97 

96 

94 

93 

113 

2.810 

112:111 

110  109  107 

106  1051104  103 

102 

100 

99 

98 

97 

96 

94 

114 

2.891 

113 

112,lllillOilOS 

107;106!l05  104 

103 

101 '100 

99 

98 

97 

95 

115 

2.975 

114 

113 

112]111|109 

108.107jl06.105 

104 

102:101:100 

99 

98 

96 

116 

3.061 

115 

114 

113:112:110 

109  108,107,106 

105 

103 

102:101 

100 

99 

97 

117 

3.148 

116 

115 

114!ll3:lll 

110:i09il08  107 

106 

105 

103 

102 

101 

100 

99 

118 

3.239 

117 

116- 

115  114:112 

111,110  109!l08 

107 

106 

104 

103 

102:101  100 

119 

3.331 

118 

117 

116  115  113 

112  111  110109 

108 

107 

105 

104 

103:102  101 

120 

3.425 

119 

118;117  116  114 

113  112  111  110 

109 

(OS 

106'105 

104|l03  102 

121 

3.522 

120 

119illS  117  11.0 

114  113  112  111:110 

109 

108:106 

105:104  103 

122 

3.621 

121 

120:119  118416 

115  114,113,112:111 

110 

109:107 

106,105,104 

123 

3.723 

122 

121 

120  119,118 

116  115:114, II3I112 

111 

110:108 

107 

106  105 

124 

3.827 

123 

122 

121  120:119 

117,116,115  114  113 

I12|lli:i09 

108 

107  106 

125 

3.933 

124 

123 

122  121  120 

118  1171116  115  114 

113:112:111 

109 

108  107 

126 

4.012 

125 

124il23|l22:i21 

119  118  117  116:il.- 

114'll3:il2 

110 

109  108 

127 

4.154 

126 

125  124  123 

122 

120  119118  117  llfi 

llo'lH  113 

111 

110  109 

128 

4.268 

127 

126:1251124 

123 

1211120,119  118,117 

116!ll5,114 

112 

111  110 

129 

4.385 

128 

127 

1261125 

124 

122  12lll20ill9 

lis 

117:116:115 

114 

112:111 

130 

4.504 

129 

128 

127 

126 

!25 

123  122 

121 

120 

119 

118 

117 

116 

115 

113:112 

131 

4.627 

130 

129 

128 

127 

126 

124  123 

122 

121 

12f 

119 

118 

117 

116 

114  113 

132 

4.752 

131 

130 

129 

128il27 

126  124 

123 

122 

121 

120 

119 

118 

117 

115  114 

133 

4.880 

1.32 

131 

130 

129:128 

127(125 

124 

1231122 

121 

120 

119 

118 

117  115 

134 

5.011 

1.33 

132 

131 

130 

129 

128!l26il25 

124:123 

122 

121 

120 

119 

118,116 

135 

5.145 

134 

133 

132 

131 

130 

120;i27,126 

125' 121 

123^122  121 

120 

119117 

136 

5.282 

1.35 

134 

133 

132 

131 

130  128:l27!l26il2- 

P4  123:122 

121 

120:118 

137 

5.422 

1.36 

135 

134 

133 

132 

131  129!l28  127:126 

12.V124:i23 

122 

121120 

138 

5 .  565 

137 

136 

135  134 

133 

1.32  130,129  12S  127 

126,125  124 

123 

122  121 

139 

5.712 

1.38 

1371136  135,134 

133  132|130  129  12.« 

127il26  125 

124  123,122 

140 

5.862 

139jl38;137  136135 

134  133,131  130  129 

1281127  126 

125,124,123 

92      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 
CoiUinued 

Pressure  =  23.0  inches  of  mercury 


Air 

C    E 

Depression  of  wet-bulb  thermometer  (<  —  t') 

temp.,  ( 

17  '18  jl9  J20  I2I 

22  J23  '24 

25 

26 

27 

28 

29 

30 

31  |32 

80 

1.022 

551  53    51    49    47 

44,  421  40;  37 

"34 

IT 

"28 

"24 

"20 

15'    9 

81 

1.056 

56t  54    52    50,  48 

461  44    41    39 

36 

33 

30 

27 

23 

18'  13 

82 

1.091 

571  56    54:  52    50 

47;  45    43'  40 

38 

35 

32 

29 

25 

21    16 

83 

1.127 

59!  57    55    53,  51 

49!  47    44!  42 

40 

37 

34 

31 

27 

24    19 

84 

1.163 

60'  58    56   54'  52 

50   48    46'  44 

41 

39 

36 

32 

29 

26   22 

85 

1.201 

61    591  58    56i  54 

52,  50    48!  45 

43 

40i  38 

35 

31 

28|  25 

86 

1.241 

62    61 

591  571  55 

53 

511  40 

47 

45 

42 

40 

37 

34 

30   27 

87 

1.281 

64    62 

60:  58   57 

55 

53I  51 

48 

46 

44 

41 

39 

36 

32    29 

88 

1.322 

651  63 

61  i  6O1  58 

56 

54 1  52 

50 

48 

46 

43 

40 

38 

35    31 

89 

1.364 

661  64'  63    61'  59 

57 

55    54 

52 

49 

47 

45 

42 

39 

37   33 

90 

1.408 

67    661  64    62,  60 

591  57    55 

53 

51 

49 

46 

44 

41 

38   35 

91 

1.453 

68    67!  65    63 

62 

60   58   56 

54 

52 

50 

48 

46 

43 

40   37 

92 

1.499 

69    68 

66    65 

63 

61    59    58 

56 

54 

52 

50 

47 

45 

42    39 

93 

1.546 

71 1  69 

68    66 

64 

63    61    59 

57 

55 

53    51 

491  46!  44i  42 

94 

1.595 

72    70 

69 

67 

66 

64    62    60   59   57 

55    53    50   48i  46   43 

95 

1.645 

73    72 

70 

68 

67 

65    63    62 

60;  58 

56|  64;  52    50 

48    45 

96 

1.696 

74!  73 

71 

70 

68 

66    65    63 

61!  60 

58   56:  54|  51 

49   47 

97 

1.749 

751  74 

72 

71 

69 

68 

66 

64 

63 

61 

69   57   55   53 

51    48 

98 

1.803 

761  75 

74 

72 

70 

69 

67 

66 

64 

62 

60   58   56   54 

52   50 

99 

1.859 

78!  76 

75 

73 

72 

70 

69 

67 

65 

64 

62    60    58   56 

54    52 

100 

1.916 

79    77 

76 

74:  73 

71 

70 

68 

67 

65 

63    611  59    581  56'  53 

101 

1.975 

80'  78 

77 

76   74 

73 

71 

69 

68 

66 

641  63'  61    59    57    55 

102 

2.035 

81    80 

78 

77   75 

74 

72 

71 

69 

67 

66    64    62    60    58   56 

103 

2.097 

82:  81 

79 

78   76 

75 

73 

73 

70 

69 

67    65    64    62    60   58 

104 

2.160 

83;  82 

80 

79   78 

76 

75 

73 

72 

70 

68    67    65    631  61    59 

105 

2.225 

84    83 

82 

8O!  79 

77 

76 

74 

73 

71 

70 

68    66 

64 

63,  61 

106 

2.292 

85    84 

83 

811  80 

78 

77 

76 

74 

72 

71 

69 

68 

66 

&4[  62 

107 

2.360 

86   85 

84 

82   81 

80 

78 

77 

75 

74 

72 

71 

69 

67 

661  U 

108 

2.431 

88   86 

85 

84    82 

81 

79 

78 

76 

75 

73 

72 

70 

69 

67    65 

109 

2.503 

89   87 

86 

85    83 

82 

81 

79 

78 

76 

75 

73 

72 

70 

68    66 

110 

2.576 

90   88 

87 

861  84 

83 

82 

80 

79 

77 

76 

74 

73 

71 

69    68 

111 

2.652 

91    90 

88 

871  86 

84 

83 

81 

80 

79 

77 

76 

74 

72 

71!  69 

112 

2.730 

92    91 

89 

881  87 

85 

84 

83 

81 

80 

78 

77 

75 

74 

72 

70 

113 

2.810 

93    92 

90 

89   88 

87 

85 

84 

82 

81 

80 

78 

76 

75 

73 

72 

114 

2.891 

94    93 

92 

90   89 

88 

86 

85 

84 

82 

81 

79 

78 

76 

75 

73 

115 

2.975 

95'  94 

93 

91!  90 

89 

87 

86 

85 

83 

82 

80 

79 

77 

76 

74 

116 

3.061 

96]  95 

94 

92'  91 

90 

89 

87 

86 

84 

83 

82 

80 

79 

77 

76 

117 

3.148 

97   96 

95 

94    92 

91 

90 

88 

87 

86 

84 

83 

81 

80 

78 

77 

118 

3.239 

98'  97 

96 

95   93 

92 

91 

89 

88 

87 

85 

84 

83 

81 

80 

78 

119 

3.331 

99'  98 

97 

96   94 

93 

92 

90 

89 

88 

87 

85 

84 

82 

81 

79 

120 

3.425 

10l|  99 

98 

97 

96 

94 

93 

92 

90 

89 

88 

86 

85 

84 

82 

81 

121 

3.522 

102  100 

99 

98 

97 

95 

94 

93 

92 

90 

89 

88 

86 

85 

83 

82 

122 

3.621 

103  101100 

99 

98 

96 

95 

94 

93 

91 

90 

89 

87 

86 

84 

83 

123 

3.723 

104  102  101  100 

99 

98 

96 

95 

94 

92 

91 

90 

88 

87 

86 

84 

124 

3.827 

105  104  102  101100 

99 

97 

96 

95 

94 

92 

91 

90 

88 

87 

85 

125 

3.9.1"? 

106  105  103  102  101 

100 

99 

97 

96 

95 

93 

92 

91 

89 

88 

87 

126 

4.042 

107  106  104  103  102 

lonoo 

98 

97 

96 

95 

93 

92 

91 

89   83 

127 

4.154 

108  107  106  104  103 

102  101 

99 

98 

97 

96 

94 

93 

92 

90l  89 

128 

4.268 

V)0  108  107  1C5  104 

103  102  101! 

99 

98 

97 

95 

94 

93 

921  90 

129 

4.385 

110  109  108  106  105 

104  103  102  100 

99 

98 

97 

95 

94 

93:  91 

130 

4.504 

111  110  100  108  106 

105  104  1.30  101  100 

99 

98 

96 

95 

94'  92 

131 

4.627 

112  HI  110  109  107 

106  105  104  103  101 

100 

99 

98 

96 

95   94 

132 

4.752 

113 112  111  no  lOS 

107  106  105  104  102 

101  lOOl 

99 

97 

96!  95 

133 

4.8K0 

114  113  112  111  iir 

108  107  106  1C5  104 

102  101  100   99 

971  96 

134 

5.C11 

115  114  113  112  111 

109  108  107  106  K15 

103  102  101  100 

98   97 

135 

5.14.5 

116  115  114  113  112 

111  100  108  107  106 

104,103  102  101 

99i  98 

136 

5.2S2 

117  116  ll.i  114  113 

112  110  100  108  107 

106,104  103  102  101    99 

137 

5.422 

118  117  116  115  114 

113  111  110  109  108 

107  105  104  103,102  100 

138 

5.. 565 

119  118  117  116  115 

114  112  111  110  109108  107  105  104103  102 

139 

5.712 

120  119  118  117  116 

115  114  112  111  110109  108  106  105  104  103 

140 

5.862 

121  120  119  lis  117116  115  113  112  llljllO  109  108  106  105  104 

PHYSICAL  CONSTANTS 


93 


Temperature  of  Dew-point  in  Degrees  Fahrenheit. 
Concluded 

Pressure  =  23.0  inches  of  mercury 


•t  c. 

k.  r 

O  en 

|s 

>  c 

Dep 

ression  of  wet-bulb  therm 

omet 

er  (( 

-  (') 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47  1  48 

80 

1.022 

—11 

81 

1.056 
1.091 
1.127 
1.163 

6 
11 
14 
18 

—  3 

+  3 
8 
12 

—21 

—  9 

—  1 

+  5 

-41 
-17 
-6 

-30 

i 

« 

-  t) 

82 
83 

49 

50 

51 

52 

53 

84 

1104 

—20 

85 

1.201 

21 

16 

9 

+  1 

—13 

105 

—  6—40 

86 

1.241 

23 

19 

13 

6 

—  4 

-23 

1106 

+  3 

—12 

87 

1.281 

26 

22 

17 

11 

+  3 

-10 

-54 

107 

9 

— 1 

—23 

88 

1.322 

28 

24 

20 

15 

8 

—  1 

-18 

108 

14 

—6 

—  6|— 49 

89 

1.364 

30 

27 

23 

18 

12 

+  5 

—  7 

—34 

109 

19 

12 

+3 

—14 

90 

1.40S 

32 

29 

25 

21 

16 

10+  1 

—14 

110 

22 

17 

9 

—  2—25 

91 

1.453 
1.499 

34 
36 

31 
33 

28 
30 

24 
27 

20 
23 

14 
18 

7-  3 
11+  3 

—25 
—  9 

—59 

1 

92 

93 

1.546 

39 

36 

32 

29 

25 

21 

15 

9 

-1 

—17 

94 

1.595 

41 

38 

35 

31 

28 

24 

19 

13 

+  6 

—  5 

—32 

95 

1.645 

42 

40 

37 

33 

30 

26 

22 

17 

11  +  2 

-12 

96 

1.696 

44 

42 

39 

36 

32 

29 

25 

20 

15 

8 

—  2 

—22 

97 

1.746 

46 

44 

41 

38 

34 

31 

28 

23 

19 

13 

+  5 

—  7 

—41 

98 

1.803 

48 

45 

43 

40 

37 

33 

30 

26 

22 

17 

10 

+  1 

—15 

99 

1.85? 

50 

47 

45 

42 

39 

36 

32 

29 

25 

21 

14 

7 

—  3 

—28 

100 

1.91f 

51 

49 

46 

44 

41 

38 

35 

31 

28 

24 

19 

12 

+  4 

—  9 

101 

1.975 

53 

51 

48 

46 

43 

40 

37 

34 

30 

26 

22 

17 

10 

+  C 

-18 

102 

2.035 

54 

52 

50 

48 

45 

42 

39 

36 

32 

29 

25 

20 

14 

+  7 

-  5 

—32 

103 

2.097 

56 

54 

52 

49 

47 

44 

41 

38 

35 

31 

28 

23 

18 

12 

+  3 

—11 

104 

2.16C 

57 

55 

53 

51 

49 

46 

43 

40 

37 

34 

30 

26 

22 

16 

9 

—  1 

105 

2.225 

59 

57 

55 

53 

50 

48 

45 

42 

39 

36 

33 

29 

25 

20 

14 

+  6 

106 

2.292 

6C 

58 

56 

54 

52 

50 

47 

44 

42 

39 

35 

32 

28 

24 

18 

12 

107 

2.360 

62 

60 

58 

56 

54 

51 

49 

46 

44 

41 

38 

34 

31 

27 

22 

16 

108 

2.431 

63 

61 

59 

57 

55 

53 

51 

48 

46 

43 

40 

37 

33 

29 

■  25 

20 

109 

2.5C3 

65 

63 

61 

59 

5' 

55 

53 

50 

48 

45 

42 

39 

36 

32 

28 

24 

110 

2.57( 

66 

64 

62 

60 

58 

56 

54 

52 

50 

47 

44 

41 

38 

34 

31 

27 

111 

2.652 

67 

66 

64 

62 

60 

58 

56 

54 

51 

49 

46 

43 

40 

37 

33 

30 

112 

2.730 

69 

67 

65 

63 

62 

60 

57 

55 

53 

51 

48 

46 

43 

40 

36 

32 

113 

2.81C 

70 

68 

67 

65 

63 

61 

59 

67 

55 

52 

50 

48 

45 

42 

38 

35 

114 

2.891 

71 

70 

68 

66 

64 

63 

61 

59 

56 

54 

52 

49 

47 

44 

41 

38 

115 

2.975 

73 

71 

69 

68 

66 

64 

62 

60 

58 

56 

54 

51 

49 

46 

43 

40 

116 

3.061 

74 

72 

71 

69 

67 

66 

64 

62 

60 

58 

55 

53 

SO 

48 

45 

42 

117 

3.14^ 

75 

74 

72 

70 

69 

67 

65 

63 

61 

59 

57 

55 

52 

50 

47 

44 

118 

3.239 

77 

75 

73 

72 

70 

68 

67 

65 

63 

61 

59 

57 

54 

52 

49 

47 

119 

3.331 

78 

76 

75 

73 

7-1 

70 

68 

66 

64 

62 

60 

58 

56 

54 

51 

49 

120 

3.425 

79 

78 

76 

74 

73 

71 

69 

68 

66 

64 

62 

60 

58 

55 

53 

50 

121 

3.522 

80 

79 

77 

76 

74 

72 

71 

69 

67 

65 

63 

61 

59 

57 

55 

52 

122 

3.621 

82 

80 

79 

77 

75 

74 

72 

70 

69 

67 

65 

63 

61 

59 

57 

54 

123 

3.723 

83 

81 

80 

78 

77 

75 

74 

72 

70 

68 

66 

64 

63 

61 

58 

56 

124 

3.827 

84 

83 

81 

80 

78 

76 

75 

73 

72 

70 

68 

66 

64 

62 

60 

58 

125 

3.933 

85 

84 

82 

81 

79 

78 

76 

74 

73 

71 

69 

68 

66 

64 

62 

60 

126 

4.042 

86 

85 

84 

82 

81 

79 

78 

76 

74 

72 

71 

69 

67 

65 

63 

61 

127 

4.154 

88 

86 

85 

83 

82 

80 

79 

77 

76 

74 

72 

70 

69 

67 

65 

63 

128 

4.268 

89 

87 

86 

85 

83 

82 

80 

78 

77 

75 

74 

72 

70 

68 

66 

129 

4.385 

90 

89 

87 

86 

84 

83 

81 

80 

78 

77 

75 

73 

72 

70 

68 

66 

130 

4.504 

91 

90 

88 

87 

86 

84 

83 

81 

80 

78 

76 

75 

73 

71 

69 

68 

131 

4.627 

92 

91 

90 

88 

87 

85 

84 

82 

81 

79 

78 

76 

74 

72 

71 

69 

132 

4.752 

93 

92 

91 

89 

88 

87 

85 

84 

82 

81 

79 

77 

76 

74 

72 

70 

133 

4.880 

95 

93 

92 

91 

89 

88 

86 

85 

83 

82 

80 

79 

77 

75 

74 

72 

134 

5.011 

96 

94 

93 

92 

9C 

89 

88 

86 

85 

83 

82 

80 

78 

77 

75 

73 

135 

5.145 

97 

96 

94 

93 

92 

90 

89 

87 

86 

84 

83 

81 

80 

78 

76 

75 

136 

5.282 

98 

97 

95 

94 

93 

91 

90 

89 

87 

86 

84 

83 

81 

80 

78 

76 

137 

5.422 

99 

98 

97 

95 

94 

93 

91 

90 

88 

87 

85 

84 

82 

81 

79 

78 

138 

5.565 

100 

99 

98 

96 

95 

94 

92 

91 

90 

88 

87 

85 

84 

82 

81 

79 

139 

5.712 

101 

100 

99 

98 

96 

95 

94 

92 

91 

89 

88 

86 

85 

83 

82 

80 

140 

5.862 

103 

101 

100 

99 

97 

96 

95 

93 

92 

91 

89 

88 

86 

85 

83 

81 

04      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Relative  Humidity,  Per  Cent. — Fahrenheit  Temperatuhe.s 

Pressurp  =  30.0  inches  of  ineroury 


Air 

Depression  of  wet-bulb  thermometer  (i  — 

n 

temp., ' 

0.2'0.40.6'o.s'l.O 

III! 

1.2Jl.4Jl.6[l.8J2.0 

2.2]2.4J2.6|2.8  3.03.2J3.4J3.6[3.8|4.0 

-40 

46 

48; 

5b  2 
53!  6 

u  -  n 

—  39 

—  38 

4. 214. 4, 4.614. 815. 0|5. 2  5. 4  5. 6:5. 816.0 

-37 

8 

1 

-36 

56;  10 

9 

5 

1 

-35 

59}  15: 

10 

9 

5 

0 

-34 

61 '  20 

11 

12 

8 

4 

0 

-33 

63  24 

12 

16 

12 

8 

4 

0 

-32 

64  28 

13 

19 

15 

11 

7 

4 

0 

—  31 

66'  32 

0 

14 

22 

18 

15 

11 

8 

4 

0 

-30 

68 

36 

4 

15 

25 

21 

18 

14 

11 

7 

4 

0 

-29 

70 

41 

9 

16 

28 

24 

21 

n 

14 

11 

8 

4 

11 

-28 

72 

45 

15 

17 

30 

27 

24 

21 

17 

14 

11 

8 

5:  1 

—  27 

74 

48 

19 

18 

33 

30 

27 

24 

20 

17 

14 

11 

8  5 

-26 

75 

51 

24 

0 

19 

35 

32 

29 

26 

23 

20 

17 

14 

11   8 

-25 

76 

53 

29 

5 

20 

37 

34 

32 

2S 

26 

23 

20 

17 

14  12 

-24 

77 

55 

32 

10 

T 

"~^ 

i'\ 

-23 
—  22 

78 
80 

57 
59 

36 
39 

15 
20 

0 

0.1  0.210.3  0.410.5 

-21 

81 

61 

43 

24 

5 

^sTj 

50 

-20 

82 

63 

45 

28 

10 

-49 

54 

5 

-19 

83 

65 

48 

32 

15 

-48 

57 

12 

-18 

84 

67 

51 

35 

19 

2 

-47 

60 

H 

-17 

85 

69 

53 

39 

23 

7 

-40 

03 

B 

-16 

86 

70 

56 

42 

27 

12 

-45 

66 

28 

-15 

86 

72 

58 

45 

31 

17 

4 

-44 

68 

32 

-14 

87 

74 

61 

48 

34 

21 

8! 

-43 

70 

36 

3 

-13 

88 

75 

63 

50 

38 

25 

13 

0 

-42 

71 

40 

9 

-12 

88 

76 

64 

52 

41 

29 

17 

6 

-41 

72 

43 

14 

-11 

89 

77 

66 

55 

44 

32 

21 

10 

1 

-40 

73 

46 

18 

-10 

90 

78 

68 

57 

46 

36 

25 

14 

4 

-39 

74 

48 

22 

-  9 

90 

79 

70 

59 

49 

39 

29 

18 

9 

-38 

75 

50 

25 

2 

-  8 

90 

81 

71 

61 

51 

42 

32 

22 

13 

3 

-37 

76 

53 

28 

6 

-  7 

91 

82 

72 

63 

54 

44 

35 

26 

17 

8 

-36 

77 

56 

33 

10 

-  6 

91 

82 

73 

64 

56 

47 

38 

29 

20 

12 

3 

-35 

78 

59 

37 

15 

-  5 

91 

83 

75 

66 

58 

49 

41 

32 

24 

16 

7 

-34 

80 

61 

41 

20 

0 

-  4 

92 

84 

76 

68 

60 

52 

44 

36 

28 

20 

12 

4 

-33 

81 

63 

44 

24 

5 

-  3 

92 

85 

77 

69 

61 

54 

46 

39 

31 

23 

16 

8   1 

-32 

82 

04 

46 

28 

10 

-  2 

92 

85 

78 

71 

63 

56 

49 

42 

34 

27 

19 

12 

5 

-31 

S3 

Of) 

49 

32 

15 

-  1 

93 
93 

86 
87 

79 
80 

72 
73 

65 

67 

58 
60 

51 
53 

44 
47 

37 
40 

30 
33 

23 
27 

16 
20 

10 
14 

3 

-30 

84 

08 

.')2 

36 

20 

0 

1 

+  1 

93 

87 

81 

75 

68 

62 

56 

49 

43 

36 

30 

24 

18 

11 

5 

2 

94 

88 

82 

76 

70 

64 

58 

52 

46 

39 

33 

27 

21 

15 

9 

3 

3 

94 

88 

82 

77 

71 

65 

59 

54 

48 

42 

36 

30 

25 

19 

13 

7 

2 

4 

94 

89 

83 

78 

72 

66 

61 

55 

50 

44 

39 

33 

28 

22 

17 

11 

6 

0 

6 

95 

89 

84 

78 

73 

68 

63 

57  S2| 

46 

41 

36 

31 

25 

20 

15 

10 

4 

6 

95 

90 

84 

79 

74 

69 

64 

59 

54 

49 

43 

38 

33 

28 

23 

18 

13 

8 

3 

7 

95 

90 

85 

80 

75 

70 

65 

60 

55 

51 

46 

41 

30 

31 

26 

21 

17 

12 

7 

2 

8 

95 

90 

86 

81 

76 

71 

67 

62 

57 

53 

48 

43 

38 

34 

29 

24 

20 

15 

11 

6 

9 

95 

91 

86 

82 

77 

72 

68 

63 

59 

55 

50 

46 

41 

30 

32 

27 

23 

18 

14 

10 

10 

96 

91 

87 

82 

78 

73 

69 

65 

60 

56 

52 

47 

43 

39 

34 

30 

26 

22 

17 

13 

11 

96 

91 

87 

83 

79 

74 

70 

66 

62 

58 

53 

49 

45 

41 

37 

33 

28 

25 

20 

16 

12 

96 

92 

88 

84 

80 

75 

71 

67 

63 

59 

55 

51 

47 

43 

39 

35 

31 

27 

23 

19 

13 

96 

92 

88 

84 

80 

76 

73 

69 

65 

61 

57 

53 

49 

45 

41 

38 

34 

30 

26 

23 

14 

96 

92 

89 

85 

81 

77 

74 

70 

66 

62 

59 

55 

51 

48 

44 

40 

37 

33 

29 

26 

15 

96 

93 

89 

86 

82 

78 

75 

71 

67 

64 

60 

57 

53 

50 

46 

42 

39 

35 

32 

29 

16 

96 

93 

90 

86 

82 

79 

76 

72 

69 

65 

62 

58 

55 

51 

48 

45 

41 

38 

34 

31 

17 

97 

93 

90 

86 

83 

80 

77 

73 

70 

66 

63 

60 

57 

53 

50 

47 

43 

40 

37 

34 

18 

97  93  90 

87:  84 

80 

77  74 

71 

68 

65 

61 

58 

55 

52 

49 

45 

42 

39 

36 

19 

97:  94!  90 

87!  84 

81 

78  75 

72 

69 

66 

63 

60 

56 

53 

50 

47 

44 

41 

38 

20 

97  94  91 

88  85 

82  79'  76'  73| 

70 

67 

64 

61 

58 

55  52 

49 

46 

43 

40 

PHYSICAL  CONSTANTS 


9/ 


Relative  Httmiditt,  Per  Cent. — Fahrenheit  Temperatures. 
CoTilinued 

Pressure  =  30  0  inches  of  mercurj' 


cL 

Depression  of 

wet-bulb  thermometer  U  —  t') 

*-  H 

0.5 

l.o'l.5'2.o'2.5 

1   I   1 

3.03.54.04.50.0 

1   1   1   1 

5.5'6.0'6.5'7.o'7.5 

1    1    !    1 

S.0|8.5'9.09.5  10.0 10.5 

w 

"92 

851  77|  70 

62 

55 

48  40 

33  26 

19 

12 

-  51 

21 

92 

85  78:  71 

63 

56 

49;  42 

35  28 

21 

15 

8,  1 

22 

93 

86  78l  71 

65 

58 

51  44 

37,  31 

24 

17 

11   4 

23 

93 

86!  79 

72 

66 

59 

52  46 

39,  33 

26 

20 

141  7 

1 

24 

93 

87 

80 

73 

67 

60 

54  47 

,  41;  35 

29 

i  22 

16!  10 

4 

25 

94 

87 

81 

74 

68 

62 

55  49 

'  43;  37 

31 

1  25 

19;  13 

7 

1 

26 

94 

87 

81 

75 

69 

63 

57,  51 

45,  39 

33 

27 

21  16 

IC 

4 

27 

94 

88 

82 

76 

70 

64 

5S  52 

47:  41 

35 

29 

24  18 

13 

71  2' 

28 

94 

88 

82 

76 

71 

60 

59  54 

48  43 

37 

32 

26  21 

15 

10  5 

29 

94 

88 

83 

77 

72 

66 

6O:  55 

50  44 

39 

34 

28  23 

18 

13  8  3 

30 

94 

89 

83 

78 

73 

67 

62,  56 

51  46 

41 

36 

31i  26 

21 

16  11  6  li 

31 

94 

89 

84 

78 

73 

68 

63  58 

52|  47 

42 

37 

33  28l  23 

18  13  8'  i' 

32 

95 

89 

84 

79 

74 

69 

64  59 

54;  49 

44 

39 

35  30'  25 

20  16  11  7  2 

33 

95 

90j  85|  80 

75 

70 

65  60 

56  51 

46 

41 

37  32  27 

23  18  14  9  5   0 

34 

95 

90  86,  81 

76 

71 

66  62 

57  52 

48 

43 

38  34  29 

25  21  16  12  8   3 

35 

95 

91  86;  81 

77 

72 

67!  63 

58  54 

49 

45 

40  36  32 

27  23  19  14  10   6 

36 

95 

91 i  86  82 

77 

73 

68'  64 

60  55 

51 

46 

42  38  34 

29  25  21  17  13   9 

37 

95 

91  87;  83 

78 

74 

69!  65 

61  57 

53 

48 

44  40  36 

31  27  23  19  15  11 

38 

96 

91  87  83 

79 

75 

70:  66 

62  5.S 

54 

50 

46  42!  37 

33  29  25  21  17  14 

39 

96 

92  87  83 

79 

75 

71  67 

63  59 

55 

51 

47  43'  39 

35  31  27  24  20  16 

40 

96 

92:  87 i  83 

79 

75 

71'  68 

64  60 

56 

52 

48,  45'  41 

37  33  29  26  22  18 

41 

96 

92  88  84 

80 

76 

72  69 

65  61 

57 

54 

50!  46  42 

39  35  31  28  24  20 

42 

96 

92  88!  85 

81 

77 

73  69 

65  62 

58 

55 

51i  47  44 

40  36  33  30  26  23 

43 

96 

92!  88'  85 

81 

77 

73  70 

66  63 

59 

55 

52  48  45 

42  38  35  31  28  25 

44 

96 

93  89  85 

81 

78 

74  71 

67  53 

60 

56 

53  49  46 

43  39  36  33  30  26 

45 

96 

93  89  86 

82 

78 

74  71 

67  64 

61 

57 

54  51  47 

44  41  38  34  31  28 

46 

96 

93  89  86 

82 

79 

75  72 

68  65 

61 

58 

55  52  48 

45  42  39  35  32  29 

47 

96 

93  89;  86 

82 

79 

75  72 

69  66 

62 

59 

.56  53  49 

46  43  40  37  34  31 

48 

96 

93  90  86 

83 

79 

76  73 

69  66 

63 

60 

57  54  50 

47  44  41  38  35  32 

49 

96 

93:  90  86 

83 

80 

76  73 

70  67 

64 

61 

57  54  51 

48  45  42  39  46  34 

50 

96 

93  90;  87 

83 

80 

77  74 

71  67 

64 

61 

58  55  52 

49  46  43  41  38  35 

51 

97 

94;  90|  87 

84 

81 

78  75 

71  68 

65 

62 

59  56,  53 

50  47  45  42  39  36 

52 

97 

94 1  90  87 

84 

81 

78  7.5 

72  G';" 

66 

63 

60  57,  54 

51  49  46  43  40  37 

53 

97 

94;  90 

87 

84 

81 

7^  " ' 

"_  ■  . 

66 

63 

61  58  55 

52  50  47  44  41  39 

54 

97 

94  91 

88 

85 

82 

7:^  " 

i  67 

64 

61  59  56 

53  50  48  45  42  40 

55 

97 

94;  91 

88 

85 

82 

7lj  7 

'      :■'  68 

65 

62  59  57 

54  51  49  46  43  41 

56 

97 

94'  91 

88 

85 

82 

79  76 

73  71 

68 

65 

63  60  57 

55  52  5C  47  44  42 

57 

97 

941  91 

8S 

85 

82 

80  77 

74  71 

69 

66 

63  61'  58 

55  53  50  48  45  43 

58 

97 

94|  91 

88 

85 

83 

80  77 

74  72 

69 

66 

64  61  59 

56  54  51  49  46  44 

59 

97 

94i  91 

89 

86 

83 

80  78 

75  72 

7C 

67 

60    62!  59 

57  55  52  49  47  45 

60 

97 

94!  91 

89 

86 

83 

8I;  78 

75  73 

70 

68 

65  63;  60 

58  55  53  50  48  46 

61 

97 

94;  92 

89 

86 

84 

81  78 

76  73 

71 

68 

65  63  61 

58  56  54  51  49  47 

62 

97 

94  92 

89 

86 

84 

81 

79 

76!  74 

71 

69 

66  64  61 

59  57  54  52  50  47 

63 

97 

95;  92 

89 

87 

84 

82 

79 

77  74 

71 

69 

67  64  62 

60  57  55  53  50  48 

64 

97 

95  92 

90 

87 

84 

82 

79 

77|  74 

72 

70 

67  65  63 

60  58  56  53  51  49 

65 

97 
97 

95 1  92 

90 

87 
87 

85 
85 

82 

80 

77i  75 
78,  75 

72 
73 

70 
71 

68  66  63 
68  66  64 

61  59  56  54  52  50 

66 

95|  92 

90 

82!  80 

61  59  57  55  53  51 

67 

97 

95  92 

90 

87 

8.5 

83,  80 

78  75 

73 

71 

69  66  64 

62  6C  58  56  53  51 

68 

97 

95 

92 

90 

88 

85 

831  80 

78!  76 

74 

71 

69  67  65 

62  60'  58  56  54  52 

69 

97 

95 

93 

90 

88 

85 

831  81 

79,  76 

74 

72 

70i  67  65 

63  61  59  57  55  53 

70 

98 

95 

93 

90 

88 

86 

83'  81 

79;  77 

74 

72 

70  68  66 

64  61  59  57  55  53 

71 

98 

95 

93 

90 

88 

86 

84t  81 

79,  77 

75 

72 

70'  68'  66 

64  62  60  58  56  54 

72 

98 

95  93 

91 

88 

86 

84;  82 

79'  77 

75 

73 

71  69  67 

65  63  61  59  57  55 

73 

98 

95  93 

91 

88 

86 

84  82 

80  78 

75 

73 

71  69  67 

65  63  61  59  57  55 

74 

98 

95  93  91 

89 

86 

84 

82 

80 

78 

76 

74 

71  69  67 

65  63  61  60  58  56 

75 

98 

96  93  91 

S9 

86 

84 

82 

80 

78 

76 

74 

72  70  68 

66  64  62  60  58  56 

76 

98 

96  93  91 

89 

87 

84 

82 

80 

78 

76 

74 

72  70'  68 

66  64  62  61  59  57 

77 

98 

96  93  91 

89 

87 

85 

83 

81 

79 

77 

74 

72  71 1  69 

67  65  63  61  59  57 

78 

98 

96!  93j  91 

89 

87 

85 

83 

81 

79 

77 

75 

73:  71  69 

67  65  63  62  60  58 

80 

98 

96,  93  91 

89 

87 

85 

83 

81 

79 

77 

75 

731  71  69 

68  66  64  62  60  '  58 

79 

98 

96,  94  91 

89 

87 

85]  83 

81 

79 

77 

75 

74  72  70 

68,  66  64  62  61  ;  59 

00      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Relattve  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 

Continued 


Pressure  = 

30,0  i 

nch 

OS  0 

f  m 

eroury 

& 

Depression  of  wet-bulb  therino 

met 

er  (t  — 

n 

u  C 

ij 

o 

'  ^ 

c 

■o 

o 

>a 

a 

ift 

o 

IC 

c 

lO 

c 

tn 

c 

W5 

o 

U5 

o 

•-;  tj 

^ 

cs 

ci 

n 

CO 

2 

■* 

« 

lO 

o 

CO 

f^ 

f^ 

« 

CO 

ej 

o» 

o 

d 

^ 

--  *j 

^- 

^^ 

^^ 

*-< 

'-' 

.-» 

f 

OJ 

y< 

C-l 

"  .35 

2 

36 

5 

1 

37 

7 

3 

38 

10 

6 

2 

39 

12 

8 

5 

1 

40 

15 

11 

7 

4 

0 

41 

17 

13 

10 

6 

3 

42 

I'J 

16 

12 

9 

5 

2 

43 

21 

18 

14 

11 

8 

4 

1 

44 

23 

20 

16 

13 

10 

7 

4 

0 

45 

25 

22 

18 

15 

12 

9 

6 

3 

46 

26 

23 

20 

17 

14 

11 

8 

5 

2 

47 

28 

25 

22 

19 

16 

13 

10 

7 

5 

2 

48 

29 

26 

23 

21 

18 

15 

12 

9 

7 

4 

1 

49 

31 

28 

25 

22 

19 

17 

14 

11 

9 

6 

3 

1 

50 

32 

29 

27 

24 

21 

18 

16 

13 

10 

8 

5 

3 

0 

51 

34 

31 

28 

26 

23 

20 

17 

15 

12 

9 

7 

4 

2 

52 

35 

32 

29 

27 

24 

22 

19 

17 

H 

11 

9 

6 

4 

1 

53 

36 

33 

31 

28 

26 

23 

20 

IS 

16 

13 

10 

8 

6 

3 

1 

54 

37 

35 

32 

29 

27 

24 

22 

20 

17 

15 

12 

10 

8 

5 

3 

1 

55 

38 

36 

33 

31 

28 

26 

23 

21 

19 

16 

14 

12 

9 

7 

5 

2 

0 

56 

39 

37 

34 

32 

30 

27 

25 

22 

20 

18 

16 

13 

11 

9 

7 

4 

2 

57 

40 

38 

35 

33 

31 

28 

26 

24 

22 

19 

17 

15 

13 

10 

8 

6 

4 

2 

58 

41 

39 

37 

34 

32 

30 

27 

25 

23 

21 

18 

14 

14 

12 

10 

8 

6 

3 

2 

59 

42 

40 

38 

35 

33 

31 

29 

26 

24 

22 

20 

18 

16 

13 

11 

9 

7 

5 

3 

1 

60 

43 

41 

39 

37 

34 

32 

30 

28 

26 

23 

21 

19 

17 

15 

13 

11 

9 

7 

5 

3 

1 

61 

44 

42 

40 

38 

35 

33 

31 

29 

27 

25 

22 

20 

IS 

10 

14 

12 

10 

8 

7 

5 

3 

62 

45 

43 

41 

39 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

63 

46 

44 

42 

40 

37 

35 

33 

31 

29 

27 

25 

23 

21 

19 

17 

15 

13 

u 

10 

8 

6 

64 

47 

45 

43 

41 

38 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

17 

15 

13 

11 

9 

7 

65 

48 

46 

44 

41 

39 

37 

35 

33 

31 

29 

27 

25 

24 

22 

20 

18 

16 

14 

12 

11 

9 

66 

48 

46 

44 

42 

40 

38 

36 

34 

32 

30 

29 

27 

25 

23 

21 

19 

17 

16 

14 

12 

10 

67 

49 

47 

45 

43 

41 

39 

37 

35 

33 

31 

30 

28 

26 

24 

22 

20 

19 

17 

15 

13 

12 

68 

50 

48 

46 

44 

42 

40 

38 

36 

34 

32 

31 

29 

27 

25 

23 

21 

20 

18 

16 

15 

13 

69 

51 

49 

47 

45 

43 

41 

39 

37 

35 

33 

32 

30 

28 

26 

24 

23 

21 

19 

18 

16 

14 

70 

51 

49 

48 

46 

44 

42 

40 

38 

36 

34 

33 

31 

29 

27 

25 

24 

22 

20 

19 

17 

15 

71 

52 

50 

48 

46 

45 

43 

41 

39 

37 

35 

33 

32 

30 

28 

27 

25 

23 

22 

20 

18 

17 

72 

53 

51 

49 

47 

45 

43 

42 

40 

38 

36 

34 

33 

31 

29 

2S 

20 

24 

23 

21 

19 

18 

73 

53 

51 

50 

48 

46 

44 

42  40 

39 

37 

35 

34 

32 

30 

29 

27 

25 

24 

22 

20 

19 

74 

54 

52 

50 

48 

47 

45 

43  41 

39 

38 

36 

34 

33 

31 

20 

28 

20 

25 

23 

21 

20 

75 

54 

53 

51 

49 

47 

45 

44 

42 

40 

39 

37 

35 

34 

32 

30 

29 

27 

26 

24 

23 

21 

76 

55 

53 

51 

50 

48 

46 

44 

43 

41 

39 

38 

36 

34 

33 

31 

30 

28 

27 

25 

24 

22 

77 

56 

54 

52 

50 

48 

47 

45 

43 

42 

40 

39 

37 

35 

34 

32 

31 

29 

28 

26 

25 

23 

78 

56 

54 

53 

51 

49 

47 

46 

44 

43 

41 

39 

38 

36 

34 

33 

31 

30 

28 

27 

25 

24 

79 

57 

55 

53 

51 

50 

48 

46 

45 

43 

42 

40 

38 

37 

35 

34 

32 

31 

29 

28 

26 

25 

80 

57 

55 

54 

52 

50 

49 

47 

45 

44 

42 

41 

39 

38 

36 

35 

33 

32 

30 

29 

27 

26 

PHYSICAL  CONSTANTS 


97 


Lelattve  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 

Continued 

Pressure  =  30.0  inches  of  mercury 


Depression  of  wet-bu 

b  thermometer  ( 

-  t') 

21.5 

22.0  22.5  23.0 

.23.5|24.0]24.5 

25.025.5 

26. 0|26.5i27.0j27. 5:28. 0128.5 

61 
62 

1 
2 

1 

1 

63 

4 

2 

0 

M 

6 

4 

2 

0 

fi,5 

7 

5 

4 

2 

0 

fifi 

9 

7 

5 

3 

2 

0 

67 

10 

8 

7 

5 

3 

2 

6,S 

11 

10 

8 

6 

5 

3 

1 

6!) 

i;5 

11 

9 

8 

6 

5 

3 

1 

70 

14 

12 

11 

9 

8 

6 

4 

3 

1 

71 

15 

13 

12 

10 

9 

7 

6 

4 

3 

1 

72 

16 

15 

13 

12 

10 

9 

7 

6 

4 

3 

1 

73 

17 

16 

14 

13 

11 

in 

8 

7 

5 

4 

3 

1 

74 

18 

17 

15 

14 

13 

11 

10 

8 

7 

5 

4 

3 

1 

75 

20 

18 

17 

15 

14 

12 

11 

9 

8 

7 

5 

4 

3 

1 

76 

21 

19 

18 

16 

15 

13 

12 

11 

9 

8 

6 

5 

4 

3 

1 

77 

22 

20 

19 

17 

16 

14 

13 

12 

10 

9 

8 

6 

5 

4 

3 

78 

23 

21 

20 

18 

17 

16 

14 

13 

11 

10 

9 

8 

6 

5 

4 

79 

23 

22 

21 

19 

18 

17 

15 

14 

13 

11 

10 

9 

7 

6 

5 

80 

24 

23 

22 

20 

19 

18 

16 

15 

14 

12 

11 

10 

9 

7 

6 

Air 
;emp.,  t 

Depression  of 

wet-bulb  thermometer  {t 

-  t') 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

80 

96 

TT 

87 

83 

79 

75 

72 

68 

64 

61 

57 

64 

50 

47 

~44 

82 

96 

92 

88 

84 

80 

76 

72 

69 

65 

61 

58 

55 

51 

48 

45 

84 

96 

92 

88 

84 

80 

76 

73 

69 

66 

62 

59 

56 

52 

49 

46 

86 

96 

92 

88 

84 

81 

77 

73 

70 

66 

63 

60 

57 

53 

50 

47 

88 

96 

92 

88 

85 

81 

77 

74 

70 

67 

64 

61 

57 

54 

51 

48 

90 

96 

92 

89 

85 

81 

78 

74 

71 

68 

65 

61 

58 

55 

52 

49 

92 

96 

92 

89 

85 

82 

78 

75 

72 

68 

65 

62 

59 

56 

53 

50 

94 

96 

93 

89 

85 

82 

79 

75 

72 

69 

66 

63 

60 

57 

54 

51 

96 

96 

93 

89 

86 

82 

79 

76 

73 

69 

66 

63 

61 

58 

55 

52 

98 

96 

93 

89 

86 

83 

79 

76 

73 

70 

67 

64 

61 

58 

56 

53 

100 

96 

93 

89 

86 

83 

80 

77 

73 

70 

68 

65 

62 

59 

56 

54 

102 

96 

93 

90 

86 

83 

80 

77 

74 

71 

68 

65 

62 

60 

57 

55 

104 

97 

93 

90 

87 

83 

80 

77 

74 

71 

69 

66 

63 

60 

58 

55 

106 

97 

93 

90 

87 

84 

81 

78 

75 

72 

69 

66 

64 

61 

58 

56 

108 

97 

93 

90 

87 

84 

81 

78 

75 

72 

70 

67 

64 

62 

59 

57 

110 

97 

93 

90 

87 

84 

81 

78 

75 

73 

70 

67 

65 

62 

60 

57 

112 

97 

94 

90 

87 

84 

81 

79 

76 

73 

70 

68 

65 

63 

60 

58 

114 

97 

94 

91 

88 

85 

82 

79 

76 

74 

71 

68 

66 

63 

61 

58 

116 

97 

94 

91 

88 

85 

82 

79 

76 

74 

71 

69 

66 

64 

61 

59 

118 

97 

94 

91 

88 

85 

82 

79 

77 

74 

72 

69 

67 

64 

62 

59 

120 

97 

94 

91 

88 

85 

82 

80 

77 

74 

72 

69 

67 

65 

62 

60 

122 

97 

94 

91 

88 

85 

83 

80 

77 

75 

72 

70 

67 

65 

63 

60 

124 

97 

94 

91 

88 

85 

83 

80 

78 

75 

73 

70 

68 

65 

63 

61 

126 

97 

94 

91 

88 

86 

83 

80 

78 

75 

73 

70 

68 

66 

64 

61 

128 

97 

94 

91 

89 

86 

83 

81 

78 

76 

73 

71 

68 

66 

64 

62 

130 

97 

94 

91 

89 

86 

83 

81 

78 

76 

73 

71 

69 

67 

64 

62 

132 

97 

94 

92 

89 

86 

84 

81 

79 

76 

74 

71 

69 

67 

65 

63 

134 

97 

94 

92 

89 

86 

84 

81 

79 

76 

74 

72 

69 

67 

65 

63 

136 

97 

94 

92 

89 

86 

84 

81 

79 

77 

74 

72 

70 

68 

65 

63 

138 

97 

94 

92 

89 

87 

84 

82 

79 

77 

75 

72 

70 

68 

66 

64 

140 

97 

95 

92 

89 

87 

84 

82 

79 

77 

75 

73 

70 

68 

66 

64 

98        METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


RELATm:  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 

Coiitinued 

Pressure  =  30. Oinches  of  mercury 


t 

Depression  of  wet-bulb  thermometer 

(«  - 

n 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25  j  26 

27 

28 

29  j  30 

80 

41 

38 

"35~ 

32 

29 

26 

23 

20 

18 

Is" 

12 

10 

7 

5  :  3 

82 

42 

39 

36 

33 

30 

28 

25 

22 

20 

17 

14 

12 

10 

7   5 

84 

43 

40 

37 

35 

32 

29 

26 

24 

21 

19 

16 

14 

12 

9   7 

86 

44 

42 

39 

36 

33 

31 

28 

26 

23 

21 

18 

16 

14 

11   9 

88 

46 

43 

40 

37 

35 

32 

30 

27 

25 

22 

20 

18 

15 

13  11 

90 

47 

44 

41 

39 

36 

3% 

31 

29 

26 

24 

22 

19 

17 

15  '  13 

92 

48 

45 

42 

40 

37 

35 

32 

30 

28 

25 

23 

21 

19 

17  :  15 

94 

49 

46 

43 

41 

38 

36 

33 

31 

29 

27 

24 

22 

20 

18 

16 

96 

50 

47 

44 

42 

39 

37 

35 

32 

30 

28 

26 

24 

22 

20 

18 

98 

50 

48 

45 

43 

40 

38 

36 

34 

32 

29 

27 

25 

23 

21 

19 

100 

51 

49 

46 

44 

41 

39 

37 

35 

33 

30 

28 

26 

24 

22 

21 

102 

52 

49 

47 

45 

42 

40 

38 

36 

34 

32 

30 

28 

26 

24 

22 

104 

53 

50 

48 

46 

43 

41 

39 

37 

35 

33 

31 

29 

27 

25 

23 

106 

53 

51 

49 

46 

44 

42 

40 

38 

36 

34 

32 

30 

28 

26 

24 

108 

54 

52 

49 

47 

45 

43 

41 

39 

37 

35 

33 

31 

29 

27 

25 

110 

55 

52 

50 

48 

46 

44 

42 

40 

38 

36 

34 

32 

30 

28 

26 

112 

55 

53 

51 

49 

47 

44 

42 

40 

38 

36 

35 

33 

31 

29 

27 

114 

56 

54 

52 

49 

47 

45 

43 

41 

39 

37 

35 

34 

32 

30 

28 

116 

57 

54 

52 

50 

48 

46 

44 

42 

40 

38 

36 

34 

33 

31 

29 

118 

57 

55 

53 

51 

49 

47 

45 

43 

41 

39 

37 

35 

34 

32  •   30 

120 

58 

55 

53 

51 

49 

47 

45 

43 

41 

40 

38 

36 

34 

33  '  31 

122 

58 

56 

54 

52 

50 

48 

46 

44 

42 

40 

39 

37 

35 

34  32 

124 

59 

57 

54 

52 

50 

48 

47 

45 

43 

41 

39 

38 

36 

34   33 

126 

59 

57 

55 

53 

51 

49 

47 

45 

44 

42 

40 

38 

37 

35  !  33 

128 

60 

58 

56 

54 

52 

50 

48 

46 

44 

42 

41 

39 

37 

36  1  34 

130 

60 

68 

56 

54 

52 

50 

48 

47 

45 

43 

41 

40 

38 

37 

35 

132 

61 

58 

56 

55 

53 

51 

49 

47 

45 

44 

42 

40 

39 

37 

36 

134 

61 

59 

57 

55 

53 

51 

49 

48 

46 

44 

43 

41 

39 

38 

36 

136 

61 

59 

57 

55 

54 

52 

50 

48 

46 

45 

43 

41 

40 

38 

37 

138 

62 

60 

58 

56 

51 

52 

50 

49 

47 

45 

44 

42 

40 

39 

37 

140 

62 

60 

58 

56 

54 

53 

51 

49 

47 

46 

44 

43 

41 

40 

33 

wet  bulb  are  found  to  agree  very  closely,  thereby  showing  that 
it  has  reached  its  lowest  temperature.  A  minute  or  more  is 
generally  required  to  secure  the  correct  temperature. 

When  the  air  temperature  is  near  the  freezing  point  it  often 
happens  that  the  temperature  of  the  wet  bulb  will  fall  several 
degrees  below  freezing  point,  but  the  water  will  still  remain  in 
the  liquid  state.  No  error  results  from  this,  provided  the 
minimum  temperature  is  reached.  If,  however,  as  frequently 
happens,  the  water  suddenly  freezes,  a  large  amount  of  heat  is 
liberated,  and  the  temperature  of  the  wet  bulb  immediately 
becomes  32°.  In  such  cases  it  is  necessary  to  continue  the 
whirling  until  the  ice-covered  bulb  has  reached  a  minimum 
temperature. 

The  psychrometer  will  give  fairly  accurate  indications,  even 
in  the  sunshine,  yet  observations  so  made  are  not  without 
some  error,  and  where  greater  accuracy  is  desired,  the  psy- 
chrometer should  be  whirled  in  the  shade. 

[While  the  above  is  true  for  refined  observations,  such  as  were  necessary 
in  Professor  Marvin's  work,  yet  for  practical  work  I  have  found  that  a 
wet-  and  a  dry-bulb  thermometer,  simply  mounted  on  a  board  and  placed 
in  a  good  draft,  would  give  accurate  enough  results  for  technical  data.  In 
this  case  the  cloth  wrapper  of  the  wet-bulb  thermometer  went  down  into  a 
cup  of  water,  so  that  it  was  alway.'i  wet  and  hence  always  ready  for  an 
obsiTvation.    See  also  p.  104. — Editor.] 


PHYSIC/VL  CONSTANTS 


99 


Relative  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 

Continued 

Pressure  =  30.0  inches  of  mercury 


Air 

Depression 

of  wet-bulb  thermometer  {I  — 

i') 

temp.,  t 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

80 

0 

82 

2 

0 

84 

5 

3 

0 

8« 

7 

5 

3 

1 

88 

9 

7 

5 

3 

1 

90 

11 

9 

7 

5 

3 

1 

92 

13 

11 

9 

7 

5 

3 

1 

94 

14 

12 

10 

9 

7 

5 

3 

1 

96 

16 

14 

12 

10 

8 

7 

5 

3 

2 

0 

98 

17 

15 

14 

12 

10 

8 

7 

5 

3 

2 

0 

100 

19 

17 

15 

13 

12 

10 

8 

7 

5 

4 

2 

1 

102 

20 

18 

16 

15 

13 

11 

10 

8 

7 

5 

4 

2 

1 

104 

21 

20 

18 

16 

14 

13 

11 

10 

8 

7 

5 

4 

2 

1 

106 

23 

21 

19 

17 

16 

14 

13 

11 

10 

8 

7 

5 

4 

3 

1 

108 

24 

22 

20 

19 

17 

16 

14 

12 

11 

10 

8 

7 

5 

4 

3 

110 

25 

23 

21 

20 

18 

17 

15 

14 

12 

11 

10 

8 

7 

6 

4 

112 

26 

24 

23 

21 

19 

18 

16 

15 

14 

12 

11 

9 

8 

7 

6 

114 

27 

25 

24 

22 

20 

19 

18 

16 

15 

13 

12 

11 

9 

8 

7 

116 

28 

26 

25 

23 

22 

20 

19 

17 

16 

14 

13 

12 

11 

9 

8 

118 

29 

27 

25 

24 

23 

21 

20 

18 

17 

16 

14 

13 

12 

11 

9 

120 

29 

28 

26 

25 

23 

22 

21 

19 

18 

17 

15 

14 

13 

12 

10 

122 

30 

29 

27 

26 

24 

23 

22 

20 

19 

18 

16 

15 

14 

13 

11 

124 

31 

30 

28 

27 

25 

24 

22 

21 

20 

18 

17 

16 

15 

14 

12 

126 

32 

30 

29 

27 

26 

25 

23 

22 

21 

19 

18 

17 

16 

15 

13 

128 

33 

31 

30 

28 

27 

25 

24 

23 

22 

20 

19 

18 

17 

16 

14 

130 

33 

32 

30 

29 

28 

26 

25 

24 

22 

21 

20 

19 

18 

16 

15 

132 

34 

33 

31 

30 

28 

27 

26 

24 

23 

22 

21 

20 

18 

17 

16 

134 

35 

33 

32 

30 

29 

28 

26 

25 

24 

23 

21 

20 

19 

18 

17 

136 

35 

34 

33 

31 

30 

28 

27 

26 

25 

23 

22 

21 

20 

19 

18 

138 

36 

35 

33 

32 

30 

29 

28 

27 

25 

24 

23 

22 

21 

20 

19 

140 

37 

35 

34 

32 

31 

30 

29 

27 

26 

25 

24 

23 

21 

20 

19 

Dep 

ressi 

on  0 

:  we 

t-bu 

b  th 

ermc 

)met 

er  (« 

-  t 

) 

t 

46 

47 

48 

49 

60 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

106 

0 

108 

2 

0 

110 

3 

2 

1 

112 

4 

3 

2 

1 

114 

6 

5 

3 

2 

1 

116 

7 

6 

5 

4 

2 

1 

0 

118 

8 

7 

6 

5 

4 

3 

2 

1 

120 

9 

8 

7 

6 

5 

4 

3 

2 

1 

122 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

124 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

126 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

2 

1 

128 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

4 

3 

2 

1 

0 

130 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

5 

4 

3 

2 

1 

132 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

6 

5 

4 

3 

2 

134 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

6 

5 

4 

3 

136 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

6 

5 

4 

138 

17 

16 

15 

14 

14 

13 

12 

11 

10 

9 

8 

7 

7 

6 

5 

140 

18 

17 

16 

15 

14 

13 

12 

12 

11 

10 

9 

8 

7 

7 

6 

100     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Relattv'e  Hu>nDiTT,  Per  Cent. — Fahrenheit  Temperatures. 

CoTiliniied 

Pressure  =  23.0  inches  of  mercury 


d 

Depression  of  wet-bulb  thermometer  (t  —  t') 

<2 

0.2|o.4[o.6J0.8  1.o|l.2jl.4Jl.6jl.8J2.o|2.2[2.4j2.6j2.8'3.o|3.2|3.4[3.6]3.8  4.o[4.2 

25 
28 
31 

35!  4 
39!  9 
42  14 
45  18 
48  22 
51  26 
54'  30 
57|  34 
59  37 
62  40 

64  44 

65  47, 

66  50 
68  53 
70  55 1 
71;  57 
73'  59; 

74  62 

75  63 
77;  65 

78  67 

79  69 

80  71 1 
81!  72 
82|  731 
83|  75 

84,  76: 

85,  77| 

85  78 
86'  79 

86  80 


1 

6 
12 
18 
22 
26 
30  13 
34  18 
37  22 
40  26 
44  30 
47  34 
50  37 
52  i  40 
54  43 
57;  46 
59'  48 
61;  51 
63 1  53 
64,  56 
661  5$ 

68  60 

69  62 

70  63 
72  65 


87 
83 
88 
89 
89 
90 
90 
91 
91 

91  87 


87, 


89 


93  89 
93  90 

93  90 

94  91 
94  91 
94  91 

94  92' 
95;  92, 

95  92 
95,  92, 


66 
68 
69 
70 
72 
73 
74 
76 
77 
77 
78 
79 
80 
80 
81 
82 
86  82 
86  83 
87,  84 
871  84 
88  85 

88  85 

89  86 
89,  86 
89  87 
99  87 


1.4  4.6  4.8  5.0|5.2  5.4  3.6T5.8'6.0|6.2  6.4  6.6  6.4,7.0 


I') 


2 
6 
12:  9 

12 


12 
15  12 

18  15;  12 
21  18'  15 
24  21  18  15 
26  24  21  18  15 
29  26  24  21  19 
32  29  20  24  21 
34  31  29  26  24 
36  33  31  20  20 


3 

8 

13     2 

17!    7! 

22:  12     2 

26    16!    7 

29    20    11 

2 

32    24:  16 

7 

36    2S!  20 

12 

4 

3S,  31 

23 

16 

8 

0 

41'  34 

27 

20 

12 

5 

44'  37 

30 

23 

16 

9 

3 

46   40 

33 

26 

20 

13 

7| 

49   42 

36 

30 

23 

17 

10 

51    45 

39 

33 

27 

21 

14 

53    47 

41 

36 

30 

21 

18 

55:  50 

44 

39 

33 

28 

22 

571  52 

47 

41 

36 

31 

26 

59    54 

40 

44 

30 

34 

29 

61    56    51 

47 

42 

37 

32 

63 1  58.  53 

49 

44 

40 

35 

64    60 

55 

51 

46 

42 

3.S 

65    61 

57 

53 

4,S 

44 

40 

66    62 

5S 

54 

50 

40 

42 

68    64 

60 

56 

52 

4S 

44 

69    65    61 

58 

54 

50 

46 

70    66    63 

50 

00 

52 

48 

71'  68    64 

61 

57 

53 

50 

72    69!  65 

62 

58 

55 

52 

73    70,  66 

63 

60 

57 

53 

74    71    68 

64 

61 

58 

55 

75  i  72 

60 

66 

63 

60 

57! 

76,  73 

70 

67 

64 

61 

5S| 

77    74 

71 

68 

6R 

63 

60 

78    75 

72 

69 

67 

64 

61 

79    76 

73 

71 

68 

65 

63 

79    77 

74 

71 

69 

66 

64 

80    77 

75 

72 

70 

67 

651 

0; 

3 

10  7 
13,  10 
16  1^ 
19  16 
21  10 
24  22 


7 
11 

14'  11  9 
17'  14  12 
10  17  15 


it   -  I') 


0.10.20.30.40.5 


-47 

6,S 

36 

0 

-46 

70 

41,    4 

-45 

72 

45<  10 

-44 

74 

48 

19 

-43 

76 

51 

241    0 

-42 

77 

54 

29 

5 

-41 

78 

57 

32 

10 

-40 

78 

59 

36 

16 

-39 

79 

61 

39 

21 

-38 

80 

62 

41 

25 

2 

-37 

80 

54 

43 

28 

7 

-36 

81 

66 

48 

31 

13 

181  13 


21 

20|  24 
31  27 
34,  30 
36i  321  29! 
39  35  31 
41  37  34i 
43  30!  36| 


45  41 
47  43 
49 1  46 
51  48 


60 1  57 


3 

7 
11 
15 

22'  18 
25i  21 
28 ;  24 
30!  27i  23 
32  29  26 
3.V  32  28 
37  34  31 
39,  36  33 
42  39;  36 
41  38 
43  40 
451  42 
47|  44 
51'  49  46 
53  .50  48 


PHYSICAL  CONSTANTS 


101 


Relative  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 
Continued 

Pressure  =  30.0  inches  of  mercury 


d 

Depression  of  wet-bulb  thermometer  (t  —  t') 

■3  S  0.5'1.0!1.5'2.0'2.53.0'3.5'4.0'4.5'5.0 

3.5'6.o'6.57.07.5[8.o{8.5;9.09.5ll0.010.5 

20 

94  87 

81 :  75|  691 

63 

56|  50  44'  3S| 

32 

26  21 

15  9| 

3,   1 

21 

94  87 

81  75 1  69| 

63 

57|  52 

46  40 

34 

29  23 

17 

12 

6 

1 

22 

94  88 

82 

76  701 

64 

591  53 

47!  42 

36 

31  25 

20 

15 

9 

4 

1 

23 

94  88 

82 

77 

71 

65!  60 

54 

49!  43 

38 

33  28 

22 

17 

12 

7  2 

24 

94  89 

83 

78 

72 

67;  61 

56 

50!  45 

40  35j  30 

25 

20 

15i  lOi  5 

i 

25 

95!  89 

84 

78 

73 

68.  62 

57 

521  47 

42  37I  32 

27 

22 

171  12|  81  3;   1 

26 

95 

89 

84 

79 

73 

68!  63 

58  53!  48 

43 

38  34 

29 

24 

19  151  10  all 

27 

95 

90 

84 

79 

74 

69;  64 

59 i  551  50 

45 

40  35 

31'  26 

22  17!  13  8!  4  : 

28 

95 

90 

85 

80 

75 

70,  65 

60  561  51 

46 

42  37 

33;  28 

24  I9I  15  lli  6  ; 

2 

29 

95 

90 

85 

80 

76 

71!  66,  62  571  52 

48 

43  39 

35  30 

26  22  17  I3I  9  i 

5 

30 

95 

90 

86 

81 

76 

72;  67,  63'  5S:  54 

49 

45  41 

36  32 

28  24  20  Ih  11  ' 

7 

31 

95 

91 

86 

81 

77 

721  68  64  59'  55 

51 

46  42 

38  34 

30  2G  22  l^  14 

10 

32 

95 

91 

86 

82 

77 

73  69  65'  60  56 

52  48  44 

40  36 

32  2s  24  211  16 

12 

33 

96 

92 

87 

83 

78 

74 

70  66  62  57 

53 1  49  45 

41  38 

34  30  26  22  18 

15 

34 

96 

92 

88 

84 

79 

75 

71  67  63  59 

55[  51;  47 

43  39 

35  32  28  24  21 

17 

35 

96 

92 

88 

84 

80 

76 

72  68  64  60 

56  52,  49 

45  41 

37  34;  30  26  23 

19 

36 

96'  92 

88  84 

80 

77  73'  691  65  61 

5S|  54,  50  46  43 

39;  35;  32  28  25 

21 

37 

96  931  89  851  81 

78:  74;  70;  66;  63 

59|  551  521  4-S  44 

41:  37;  34;  30'  27 

23 

38 

96'  93|  89  85i  81 

78  74  71j  67i  64 

60|  57,  531  49'  46 

42,  39i  36,  32I  29 

25 

39 

96!  93'  89  85.  81 

78  75;  71 

681  65 

61!  57  54'  51  4S 

44i  41-37;  34,  31 

27 

40 

96!  93 1  89  85  82 

79;  75 

72 

68  65 

62  5S;  55;  52  49 

45  42;  39'  36,  32 

29 

41 

96'  93  89'  86  82 

79,  76 

72 

69 

66 

62 1  59  56 1  53  50 

47  44  41  37  34 

31 

42 

96!  93  89,  86  83 

80!  76 

73 

70 

67 

63:  60  57|  54,  51 

43  45,  42,  30'  36 

33 

43 

96:  93  90  87 

83 

80 

77 

73 

70 

67 

64;  61;  5S|  55  52 

49  46  43  40  37 

34 

44 

97i  94  90  87 

83 

80 

77 

74 

71 

68 

651  62  59i  56  53 

50  47I  44  41  39 

36 

45 

97;  94'  901  87 

84 

81 

78 

74 

71 

68 

65l  62!  60[  57  54 

51  48  45  42  40 

37 

46 

97i  94,  90  87 

84 

81 

78 

75 

72 

69 

661  63'  60,  57  55 

52  i<^   4G  44,  41 

38 

47 

97;  94,  90!  87 

84 

•81  78 

75 

72 

70 

67 

64,  61,  58  55 

53  50  47  45:  42 

39 

48 

97,  94!  91!  88 

85 

82!  79 

76 

73 

70 

67 

65!  62 

59,  56 

54  51  48  46:  43 

40 

49 

97i  94!  91  j  881  85 

82!  79 

76 

73 

71 

68 

65  62 

60;  57 

54  52  49  47:  44 

41 

50 

97l  941  91,  88 

85 

82 1  79 

77 

74 

71 

68 

66  63 

60'  57 

55  52  50:  48;  45 

42 

51 

97l  94I  91;  88 

86 

831  80 

77 

75 

72 

69 

66 

64 

611  58 

56  53  51  49!  46 

43 

52 

97I  94  911  89 

86 

83'  80 

78 

75 

72 

70 

67 

64 

61'  59 

57  54  52  49  47 

44 

53 

97  94!  91 

89 

86 

83!  80 

78 

75 

72 

70 

67 

65 

62,  60 

57,  55  52,  50'  48 

45 

54 

97  94!  92 

89 

86 

83 

81 

78 

76 

73 

70 

68 

65 

63'  60 

58  56  53  51' 48 

46 

55 

97  95:  92 

89 

86 

84 

81 

78 

76 

73 

71 

69 

66 

63  61 

59  56  54  .52  49 

47 

56 

97  95 

92 

89 

87 

84 

81 

79 

76 

74 

71 

69 

67 

64  62 

50  57  55  52.  50 

48 

57 

97 

95 

92 

89 

87 

84 

82 

79 

77 

74 

72 

69 

67 

65  62 

60  57  55  .53;  51 

49 

58 

97 

95 

92 

89 

87 

84 

82 

79 

77 

74 

72 

70 

67 

65  63 

61,  58,  56  54  52 

50 

59 

97 

95 

92 

90 

87 

85 

82 

80 

77 

75 

73 

70 

68 

65  63 

61'  ■/>   57  5.-;  53 

50 

60 

97 

951  92 

90 

87 

85 

82 

80 

78 

75 

73 

71 

68 

66  64 

-  53 

51 

61 

97 

95  92 

90 

88 

85 

83 

80 

78 

76 

73 

71 

69 

67  64 

54 

52 

62 

97 

95  92 

90 

88 

85 

83 

81 

78 

76 

74 

72 

69 

67  6.5 

54 

52 

63 

97 

95 1  93 

90 

88 

85 

83 

81 

79 

76 

74 

72 

70 

67  65 

G.J  01  .j'.j  .J  7  55 

53 

64 

971  95;  93 

90 

88 

86 

83 

81 

79 

77 

74 

72 

70 

68  66 

64  62  60  58  56 

54 

65 

98 1  95  93 

91 

88 

86 

84 

81 

79 

77 

75 

73 

71 

69  66 

64  62  60  58  56 

54 

66 

98|  95  93!  91;  88 

86  84 

82 

79 

77 

75 

73 

71 

69  67 

65  63  61  59  57 

55 

67 

98  95  93!  91  89 

86  84 

82 

80 

77 

75 

73 

71 

69;  67 

65  63  61  59  57 

55 

68 

98l  95  93|  91  89 

86 1  84 

82 

80 

78 

76 

74 

72 

70,  68 

66  64  62  60'  58 

56 

69 

98!  96  931  91 

89 

87,  84 

82 

80 

78 

76 

74 

72 

70'  68 

66  64  62  60 

58 

57 

70 

98  96:  93 

91 

89 

871  85 

83 

80]  78 

76 

74 

72 

701  68 

66  64  63,  61 

59 

57 

71 

98  96 1  93 

91 

89 

87 

85 

83 

81 !  79 

771  75 

73'  71  69 

67  65  63  61 

59 

58 

72 

98  96  i  93 

91 

89 

87 

85 

83 

81 

'7C 

77 

75 

73;  71  69 

67  65  64  62 

60 

58 

t\ 

73 

98 

96,  93 

91 

89 

87. 

85 

83 

81 

79 

77 

75 

73  71  70 

68  66  64  621  60 

59 

74 

98 

96  94 

91 

89 

87 

85 

83 

81 

79 

77 

75 

74 

72  70 

68  60  64  63'  61 

59 

75 

98 

96,  94 

91 

89 

87 

85 

83 

81 

80 

78 

76 

74 

72  70 

68  66  65  631  61 

60 

76 

98 

96  94 

92 

90 

88 

86 

84 

82 

80 

78 

76 

74 

72  70 

69  67  651  63:  62  \  60 

77 

98!  96 

94 

92 

90 

88 

86 

84 

82 

80 

78 

76 

74 

721  71 

69  67'  66  64,  62  '  60 

78 

98  96 

94 

92 

90 

88 

86 

84 

82 

80 

78 

76 

75 

73,  71 

69  68:  66  64'  62  |  61 

79 

98  96 

94 

92 

90 

88 

86 

84 

82 

80 

78 

77 

75 

73  71 

70  68  66  65  63  |  61 

80 

98  96  i  94 

92 

90 

881  86 

84 

82 

80 

79 

77'  75!  73  72 

70  68  67  65  63  i  62 

102     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


RELATrv'E  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 

ContiTutcd 
Pressure  =  2.3.0  inclics  of  mercury 


d 

Depression  of  wet-bulb  thermometer  (l  —  t') 

k4       C 

=>.  i  «.  1  ° 

10  0 

U5 

0   U5 

0   10  1  0  j  "5 

0 

ic  1  0  j  u?  10 

•^ 

0  m  1 0 

■^  -  r  1  =:  1 2 

ci   M 

n 

TM   4 

ui      U3   to   0 

t>^ 

t~  ]  00  1  00  1  2 

2 

_g  gis 

29 
30 

1 
4 

31 

6 

2 

32 

9 

5 

1 

33 

11 

7 

4 

0 

34 

13 

10 

6 

3 

35 

16 

12 

9 

5 

2 

36 

18 

15 

11 

8 

4 

1 

37 

20 

17 

13 

10 

7 

4 

0 

38 

22 

19 

16 

12 

9 

6 

3 

39 

24 

21 

18 

15 

12 

8 

5 

2 

40 

26 

23 

20 

17 

14 

11 

8 

5 

2 

41 

28 

25 

22 

19 

16 

13 

10 

7 

4 

1 

42 

30 

27 

24 

21 

18 

15 

12 

9 

6 

3 

1 

43 

31 

28 

26 

23 

20 

17 

14 

11 

8 

6 

3 

0 

44 

33 

30 

27 

25 

22 

19 

16 

13 

11 

8 

5 

3 

0 

4.5 

34 

31  28 

26 

24 

21 

18 

15 

13 

10 

7 

6 

2 

46 

35 

33 

30 

27 

25 

22 

20 

17 

15 

12 

9 

7 

4 

2 

47 

37 

34 

31 

29 

26 

24 

21 

19 

17 

14 

11 

9 

6 

4 

2 

48 

38 

35 

32 

30 

28 

25 

23 

21 

18 

16 

13 

11 

9 

61  4 

1 

49 

39 

37 

34 

31 

29 

27 

24 

22 

20 

17 

15 

13 

10 

.81  6 

3 

1 

50 

40 

38 

35 

33 

30 

28 

26 

23 

21 

19 

17 

14 

12 

10 

8 

5 

3 

1 

51 

41 

39 

36 

34 

32 

29 

27 

25 

23 

20 

18 

16 

14 

12 

9 

7 

5 

3 

1 

52 

42 

40 

37 

35 

33 

31 

28 

26 

24 

22 

20 

17 

15 

13 

11 

9  7 

5 

3 

1 

53 

43 

41 

38 

36 

34 

32 

29 

27 

25 

23 

21 

19 

17 

15 

13 

11 

9 

7 

5 

3  1 

54 

44 

42 

39 

37 

35 

33 

31 

29 

26 

24 

22 

20 

18 

16 

14 

12 

10 

8 

6 

4'  2 

55 

45 

43 

40 

38 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

.16 

14 

12 

10 

81  6,  4 

56 

46 1  41 

41 

39 

37 

35 

33 

31 

29 

27 

25 

23 

21 

19 

17 

15 

13 

11 

9 

7  6 

57 

47  41 '  42  40  38 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

16 

14 

13 

11 

9  7 

58 

48  4o  43  41  39 

37 

35  33 

31 

29 

27 

25 

23 

21 

20 

18 

16 

14 

12 

10'  9 

59 

4S  40  44  42'  40 

38 

36 

34 

32 

30 

28 

26 

24 

22 

21 

19 

17 

15 

14 

12'  10 

60 

49  47  45  43  41 

39 

37 

35 

33 

31 

29 

27 

26 

24 

22 

20 

18 

16 

15 

13  11 

61 

50  4S  46  44  42 

40 

38 

36 

34 

32 

30 

29 

27 

25 

23 

21 

20 

18 

16 

14|  13 

62 

50  48  40  45  43 

41 

39 

37 

35 

33 

31 

30 

28 

26 

24 

23 

21 

19 

17 

16 

14 

63 

51  41  47  45  43 

41 

40 

38 

36 

34 

32 

31 

29 

27 

25 

24 

22 

20 

19 

17 

15 

61 

,52  5'(  •t^  i>\    44 

42 

40 

39 

37 

35 

33 

32 

30 

28 

26 

25 

23 

21 

20 

18 

16 

65 

52  511  i\>    4  7  45 

43 

41 

39 

38 

36 

34 

32 

31 

29 

27 

26 

24 

22 

21 

19 

18 

66 

53  51:  49,  47;  46 

44 

42 

40 

38 

37 

35 

33 

32 

30 

28 

27 

25 

24 

22 

20 

19 

67 

54;  52 

50 

48]  46 

44 

43 

41 

39 

37 

36 

34 

33 

31 

29 

28 

26 

25 

23 

21 

20 

68 

54 

52 

50 

49  47 

45 

44 

42 

40 

38 

37 

35 

33 

32 

30 

29'  27 

25 

24 

22 

21 

69 

55 

53 

51 

49  48 

46 

44 

42 

41 

39 

37 

36 

34 

33 

31 

30 

28 

26 

25 

23 

22 

70 

55 

53 

52 

50  48 

47 

45 

43 

42 

40 

38 

37 

35 

33 

32 

30 

29 

27 

26 

24 

23 

71 

56 

54 

52 

51  49 

47 

46 

44 

42 

41 

39 

37 

36 

34 

33 

31 

30 

28 

27 

25 

24 

72 

56 

55 

53I  511  50 

48 

46 

45 

43 

41 

40 

38 

37 

35 

34 

32 

31 

20 

28 

26 

25 

73 

57 

55 

53 

52 1  50 

48 

47 1  45 

44 

42 

40 

39 

37 

36 

34 

33 

31 

30 

29 

27 

26 

74 

67 

56 

54 

52  51 

49 

47 

46 

44 

43 

41 

39 

38 

37 

35 

34 

32 

31 

29 

28 

27 

75 

58 

56 

55 

53|  51 

50 

48 

46 

45 

43 

42 

40 

39 

37 

36 

34 

33 

32 

30 

29 

27 

76 

58 

57 

55 

53 i  52 

50 

49 

47 

45 

44 

42 

41 

39 

38 

37 

35 

34 

32 

31 

29 

28 

77 

59 

57 

55  54 

52 

51 

49 

48 

46 

44 

43 

41 

40 

39 

37 

36j  34 

33 

32 

30 

29 

78 

59 

67 

66  54 

53 

51 

50 

48i  47'  45 

44 

42 

41 

39 

3S 

36  35 

34 

32 

31 

29 

79 

60 

58 

56  55 

53 

52 

50 

49:  47  40 

44 

43 

41 

40 

39 

37  36 

34 

33[  32 

30 

80 

60 

68 

57  551  54 

52 

51 

491  4Si  4r 

45 

43 

42 

41 

30 

38i  37 

35 

34 1  .33!  31 

PHYSICAL  CONSTANTS 


103 


Ielative  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 
Continued 

Pressure  =  23.0  inches  of  mercury 


t 

(( -  n 

22'23'24'25 

1  1 

26'27  28'29|30 

3l]32'33'34 

60 

8 

5 

1 

61 

9 

6 

3 

62 

11 

8 

4 

1 

63 

12 

9 

6 

3 

64 

13 

10 

7 

4 

1 

65 

15 

12 

9 

6 

3 

66 

16 

13 

10 

7 

i'   1 

67 

17 

14 

11 

8 

5,  3 

6S 

18 

15 

12 

9 

71  4 

1 

69 

19 

16 

13 

11 

8:  5 

3 

0 

70 

20 

17 

14 

12 

9  6 

4 

1 

71 

21 

IS 

15 

13 

10  8 

5 

3 

0 

72 

22 

19 

16 

14 

11  9 

6 

4 

1 

73 

23 

20 

17 

15 

12  10 

7 

5 

3 

0 

j 

74 

24 

21 

18 

Ifi 

13  11 

9 

6 

4 

2 

1 

7.5 

25  22 

19 

17 

14  12 

10 

7 

5 

3 

1 

76 

25  28 

20 

IS 

15  13 

11 

8 

6 

4 

2 

77 

26  24 

21 

19 

16  14 

12 

9 

7 

5 

3:  1' 

78 

27  25 

22 

20 

17  15 

13 

10 

8 

6 

4I  2 

79 

28  25 

23 

21 

18  16 

14 

11 

9 

7 

5  3  1 

80 

29  26 

24 

21 

19  17 

15 

12 

10 

8 

6  4  2 

Air 
emp.. 

Depression  of 

wet-bulb  thermometer  {t 

-  t') 

, 

t 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

12 

14 

15  1  16 

80 

96 

92 

88 

84 

80 

77 

73 

70 

67 

63 

60 

57 

54 

51 

48 

45 

82 

96 

92 

88 

85 

81 

77 

74 

71 

67 

64 

61 

58 

55 

52 

49 

46 

84 

96 

92 

89 

85 

81 

78 

74 

71 

68 

65 

61 

58 

55 

53 

50 

47 

86 

96 

92 

89 

85 

81 

78 

75 

71 

68 

65 

62 

59 

56 

53 

50 

48 

88 

96 

93 

89 

85 

82 

79 

75 

72 

69 

66 

63 

60 

57 

54 

51 

49 

90 

96 

93 

89 

86 

82 

79 

76 

73 

69 

66 

63 

61 

58 

55 

52 

50 

92 

96 

93 

89 

86 

83 

79 

76 

73 

70 

67 

64 

61 

58 

56 

53 

51 

94 

96 

93 

89 

86 

83 

80 

76 

73 

70 

67 

65 

62 

59 

56 

54 

51 

96 

96 

93 

90 

86 

83 

80 

77 

74 

71 

68 

65 

62 

60 

57 

55 

52 

98 

97 

93 

90 

87 

83 

80 

77 

74 

71 

68 

66 

63 

60 

58 

55 

53 

100 

97 

93 

90 

87 

84 

80 

77 

75 

72 

69 

66 

64 

61 

58 

56 

53 

102 

97 

93 

90 

87 

84 

81 

78 

75 

72 

69 

67 

64 

61 

59 

57 

54 

104 

97 

93 

90 

87 

84 

81 

78 

75 

72 

70 

67 

65 

62 

59 

57 

55 

106 

97 

94 

90 

87 

84 

81 

78 

76 

73 

70 

68 

65 

62 

60 

58 

55 

108 

97 

94 

90 

87 

84 

82 

79 

76 

73 

71 

68 

65 

63 

61 

58 

56 

110 

97 

94 

91 

88 

85 

82 

79 

76 

74 

71 

68 

66 

63 

61 

59 

56 

112 

97 

94 

91 

88 

85 

82 

79 

77 

74 

71 

69 

66 

64 

62 

59 

57 

114 

97 

94 

91 

88 

85 

82 

80 

77 

74 

72 

69 

67 

64 

62 

60 

58 

116 

97 

94 

91 

88 

85 

82 

80 

77 

75 

72 

70 

67 

65 

62 

60 

58 

118 

97 

94 

91 

88 

85 

83 

80 

77 

75 

72 

70 

67 

65 

63 

61 

58 

120 

97 

94 

91 

88 

85 

83 

80 

77 

75 

73 

70 

68 

65 

63 

61 

59 

122 

97 

94 

91 

89 

86 

83 

80 

78 

75 

73 

71 

68 

66 

64 

62 

59 

124 

97 

94 

91 

89 

86 

83 

81 

78 

76 

73 

71 

68 

66 

64 

62 

60 

126 

97 

94 

91 

89 

86 

83 

81 

78 

76 

74 

71 

69 

67 

65 

62 

60 

128 

97 

94 

91 

89 

86 

84 

81 

79 

76 

74 

72 

69 

67 

65 

63 

61 

130 

97 

94 

92 

89 

86 

84 

81 

79 

76 

74 

72 

70 

67 

65 

63 

61 

132 

97 

94 

92 

89 

86 

84 

81 

79 

77 

74 

72 

70 

68 

66 

63 

61 

134 

97 

95 

92 

89 

87 

84 

82 

79 

77 

75 

72 

70 

68 

66 

64 

62 

136 

97 

95 

92 

89 

87 

84 

82 

79 

77 

75 

73 

70 

68 

66 

64 

62 

138 

97 

95 

92 

89 

87 

84 

82 

80 

77 

75 

73 

71 

69 

66 

64 

62 

140 

97 

95 

92 

90 

87 

85 

82 

80 

78 

75 

73 

71 

69 

67 

65 

63 

104     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Relative  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 

Continued 

Pressure  =  23.0  inches  of  mercury 


!>epression  ol 

wet 

-bulb  thermometer  (I 

-/') 

( 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31  I  32 

80 

"42~ 

39 

~3r 

^r 

31 

29 

ir 

"24~ 

21 

19 

17 

15 

12 

10 

8 

6 

82 

43 

40 

38 

35 

33 

30 

28 

25 

23 

21 

19 

16 

14 

12 

10 

8 

S4 

44 

42 

39 

36 

34 

31 

29 

27 

24 

22 

20 

18 

16 

14 

12 

10 

86 

45 

43 

40 

38 

35 

33 

30 

28 

26 

24 

22 

20 

17 

15 

13 

12 

88 

46 

44 

41 

39 

36 

34 

32 

29 

27 

25 

23 

21 

19 

17 

15 

13 

90 

47 

45 

42 

40 

37 

35 

33 

31 

28 

26 

24 

22 

20 

18 

17 

15 

92 

48 

46 

43 

41 

38 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

16 

94 

49 

46 

44 

42 

39 

37 

35 

33 

31 

29 

27 

25 

23 

21 

19 

18 

96 

50 

47 

45 

43 

40 

38 

36 

34 

32 

30 

28 

26 

24 

22 

21 

19 

98 

50 

48 

46 

43 

41 

39 

37 

35 

33 

31 

29 

27 

25 

24 

22 

20 

100 

51 

49 

46 

44 

42 

40 

38 

36 

34 

32 

30 

28 

26 

25 

23 

21 

102 

52 

50 

47 

45 

43 

41 

39 

37 

35 

33 

31 

29 

27 

26 

24 

22 

104 

52 

50 

48 

46 

44 

42 

40 

38 

36 

34 

32 

30 

28 

27 

25 

23 

106 

53 

51 

49 

47 

44 

42 

40 

38 

37 

35 

33 

31 

29 

28 

26 

24 

108 

54 

51 

49 

47 

45 

43 

41 

39 

37 

36 

34 

32 

30 

29 

27 

25 

110 

54 

52 

50 

48 

46 

44 

42 

40 

38 

36 

35 

33 

31 

30 

28 

26 

112 

55 

53 

51 

48 

46 

45 

43 

41 

39 

37 

35 

34 

32 

30 

29 

27 

114 

55 

53 

51 

49 

47 

45 

43 

41 

40 

38 

36 

34 

33 

31 

30 

28 

116 

56 

54 

52 

50 

48 

46 

44 

42 

40 

39 

37 

35 

34 

32 

30 

29 

118 

56 

54 

52 

50 

48 

46 

45 

43 

41 

39 

38 

36 

34 

33 

31 

30 

120 

57 

55 

53 

51 

49 

47 

45 

43 

42 

40 

38 

37 

35 

33 

32 

30 

122 

57 

55 

53 

51 

49 

48 

46 

44 

42 

41 

39 

37 

36 

34 

33 

31 

124 

58 

56 

54 

52 

50 

48 

46 

45 

43 

41 

39 

38 

36 

35 

33 

32 

126 

58 

56 

54 

52 

50 

49 

47 

45 

43 

42 

40 

39 

37 

35 

34 

33 

128 

59 

57 

55 

53 

51 

49 

47 

46 

44 

42 

41 

39 

38 

36 

35 

33 

130 

59 

57 

55 

53 

51 

50 

48 

46 

45 

43 

41 

40 

38 

37 

35 

34 

132 

59 

57 

56 

54 

52 

50 

48 

47 

45 

43 

42 

40 

39 

37 

36 

34 

134 

60 

58 

56 

54 

52 

51 

49 

47 

46 

44 

42 

41 

39 

38 

36 

35 

136 

60 

58 

56 

55 

53 

51 

49 

48 

46 

44 

43 

41 

40 

38 

37 

36 

138 

61 

59 

57 

55 

53 

51 

50 

48 

46 

45 

43 

42 

40 

39 

37 

36 

140 

61 

59 

57 

55 

54 

52 

50 

49 

47 

45 

44 

42 

41 

^9 

38 

37 

In  Coed  Age  there  appeared  the  following  simple  formula  for 
calculating  humidities  of  the  air  from  the  ordinarj^  hygrometer 
readings:  this  is: 

100  -  H  =  ^  (d  -  u-)"" 
a 

in  which  d  and  w  are  the  dr}'-  and  wet-bulb  readings  (Fahren- 
heit) and  H  is  the  percentage  humidit}'.  This  formula  requires 
logarithms,  and  is  for  sea-level.  A  simpler  one  can  be  devi.sed 
to  suit  the  underground  conditions  of  the  mines,  where  neither 
the  temperature  nor  the  humidity  varies  much. 


PHYSICAL  CONSTANTS 


10.-) 


Relative  Humidity,  Per  Cent. — Fahrenheit  Temperatures. 
Continued 


Pressure  = 

23.C 

inc 

les  of  mercuri 

Air 

Depression  of  wet-bulb  thermometer  (t 

-t') 

temp., 
t 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

80 

4 

2 

0 

82 

6 

4 

2 

0 

84 

8 

6 

4 

2 

1 

86 

11 

8 

6 

4 

2 

1 

88 

11 

10 

8 

6 

4 

3 

1 

90 

13 

11 

9 

8 

6 

4 

3 

1 

92 

14 

13 

11 

9 

8 

6 

5 

3 

2 

0 

94 

16 

14 

12 

11 

9 

8 

6 

5 

3 

2 

0 

96 

17 

15 

14 

12 

11 

9 

8 

6 

5 

3 

2 

1 

0 

98 

18 

17 

15 

14 

12 

11 

9 

8 

6 

5 

4 

2 

1 

100 

20 

18 

16 

15 

13 

12 

10 

9 

8 

6 

5 

4 

2 

1 

102 

21 

19 

18 

16 

15 

13 

12 

10 

9 

8 

6 

5 

4 

3 

'1 

0 

104 

22 

20 

19 

17 

16 

14 

13 

12 

10 

9 

8 

6 

5 

4 

3 

2 

106 

23 

21 

20 

18 

17 

16 

14 

13 

11 

10 

9 

8 

7 

5 

4 

3 

108 

24 

22 

21 

19 

18 

17 

15 

14 

12 

11 

10 

9 

8 

7 

5 

4 

110 

25 

23 

22 

20 

19 

18 

16 

15 

14 

12 

11 

10 

9 

8 

7 

6 

112 

26 

24 

23 

21 

20 

19 

17 

16 

15 

14 

12 

11 

10 

9 

8 

7 

114 

27- 

25 

24 

22 

21 

20 

18 

17 

16 

15 

13 

12 

11 

10 

9 

8 

116 

27 

26 

25 

23 

22 

20 

19 

18 

17 

15 

14 

13 

12 

11 

10 

9 

118 

28 

27 

25 

24 

23 

21 

20 

19 

18 

16 

15 

14 

13 

12 

11 

10 

120 

29 

28 

26 

25 

23 

22 

21 

20 

18 

17 

16 

15 

14 

13 

12 

11 

122 

30 

28 

27 

26 

24 

23 

22 

21 

19 

18 

17 

16 

15 

14 

13 

12 

124 

30 

29 

28 

26 

25 

24 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

126 

31 

30 

28 

27 

26 

25 

23 

22 

21 

20 

19 

18 

16 

15 

14 

13 

128 

32 

30 

29 

28 

26 

25 

24 

23 

22 

20 

19 

18 

17 

16 

15 

14 

130 

32 

31 

30 

28 

27 

26 

25 

23 

22 

21 

20 

19 

18 

17 

16 

15 

132 

33 

32 

30 

29 

28 

27 

25 

24 

23 

22 

21 

■20 

19 

18 

17 

16 

134 

34 

32 

31 

30 

28 

27 

26 

25 

24 

23 

21 

20 

19 

18 

17 

16 

136 

34 

33 

32 

30 

29 

28 

27 

25 

24 

23 

22 

21 

20 

19 

18 

17 

138 

35 

33 

32 

31 

30 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

140 

35 

34 

33 

31 

30 

29 

28 

27 

26 

24 

23 

22 

21 

20 

19 

18 

The  following  formula  is  for  27  in.  barometer,  or  about  3,000 
ft.  above  sea-level  (but  1,000  ft.  more  or  less  makes  little  differ- 
ence) and  holds  true  for  all  readings  likely  to  occur  in  the  mines. 


100  -  H  =  {d 


,  /165  -  d\ 

"H^o-j 


Thus,  if  d  =  7.5  and  w  =  7.3,  100  -  H  =  2  X  4..5,  and  H  =  91 
per  cent.,  and  if  d  =  9.5  and  w  =  92,  100  -  H  =  3  X  3..5,  H  = 
89.5  per  cent.  These  both  agree  very  closely  with  the  data  in 
the  Smithsonian  tables;  therefore  the  formula  must  be  correct 
f9r  all  dry-bulb  readings  between  75°  and  95°F.,  especially 
since  the  wet-biilb  carmot  be  read  with  sufficient  accuracy  to 
give  H  within  Yi  per  cent. 


lOG     METALLURCIS'I'S  AND  C'lIKMISTS'  HANDliOOK 


T.vBLE  XI. — Pressure  of  Aqueous  Vapor  for  Temperature 
FROM  100"  to  445"^.,  IN  Inches  of  Mercury 


0 

1 

2 

3 

1 

4 

Inches 
100     1.916 


no 

120 
130 
140. 

150 
160 
170 
180 
190' 


2.576 
3.425 
4.504 
5.862 

7.5,52 
9.637 
12.187 
15.279 
19.001 


200  23.45 
210'  28.75 
220{  35.01 
230;  42.34 
2401  50.89 

250 '  60.82 
260 :  72.26 
•270 1  85.41 
280  100.41 
290  117.50 

I 
300  136.8 
310  158.7 
320  183.1 
330  210.6 
340  241.1 

I 
350  275.1 
360  312.6 
370  354.1 
380  399.7 
390  449.7 

400  .504.4 
410  5G4.1 
420  628.8 
4:J0  609.2 
440  775.3 


Inches  Inches  Indies 

1.975!    2.035!     2.097 

2.730 

3.621 

4.752 

6.171 


2.652 
3.522 
4.627 
6.015 


7.742 
9.870 
12.470 
15.621 
19.412 

23.94 
29.33 
35.69 
43.14 
51.82 

61.89 
73.50 
86.82 
102.03 
119.33 

138.9 
161.0 
185.8 
213.5 
244.3 

278.7 
316.5 
358.4 
404.5 
454.9 

510.1 
,570.3 
635.6 
706.6 
783.2 


7.936 
10.108 
12.759 
15.970 
19.830 

24.44 

29.92 
30.38 
43.94 
52.76 

62.98 
74.75 
88.25 
103.66 
121.18 

141.0 
162.3 
188.4 
216.4 
247.6 

282.3 
320.5 
362.8 
409.3 
460.1 

515.9 
,576.6 
642.5 
714.0 
791.3 


2.810 
3.723 
4.880 
6.331 


8.133 
10.350 
13.0,54 
16.325 
20.255 

24.95 
30.52 
37.08 
44.76 
53.72 

64.08 
76,02 
89.70 
105.32 
123.05 

143.1 
165.7 
191.1 
219.4 
250.9 

285.9 
324.6 
367.3 
414.1 
465.5 

521.7 
,582.9 
649.4 
721.4 
1799.3 


Inches  Inches 


2.100 
2.891 
3.827 
5.011 
6.495 

8.335 
10.597 
13.3.54 
16.6.87 
20.688 

25.46 
31.13 
37.79 
45.59 
54.69 

65.20 
77.31 
91.18 
100.99 
124.94 

145.2 
168.1 
193.8 
222.4 
254.2 

289.6 
328.7 
371.8 
419.1 
470.9 

527.6 
589.3 
656.3 
728.9 
807.4 


2.225 
2.975 
3.933 
5.145 
6.662 

8.541 
10.8,'50 
13.660 
17.055 
21.129 

25.99 
31.75 
38.52 
46.44 
55.67 

66.33 
78.61 
92.67 
108.69 
126.86 

147.4 
170.6 
196.5 
225.4 
257.6 

293.3 
332.8 
376.4 
424.1 
476.4 

533.6 
.595.7 
663.3 
736.5 
815.5 


Inches 
2.292 
3.061 
4.042 
5.282 
6.832 

8.752 
11.107 
13.972 
17.430 
21.578 

26.52 
32.38 
39.26 
47.31 
56.67 

67.48 
79.93 
94.18 
110.41 
128.81 

149.6 
173.0 
199.3 
228.5 
261.1 

297.1 
.337.0 
380.9 
429.1 
481.9 

539.5 
602.3 
670.4 
744.2 


Inches  Inches 
2.360  2.431 
3.148 
4.1.54 
5.422 
7.006 


3.239 
4.268 
5.565 
7.184 


11.369 
14.289 
17.812 
22.034 

27.06 
33.02 
40.01 
48.19 
57.68 

68.66 
81.27 
95.70 
112.15 
130.78 

151.8 
175.5 
202.1 
231.6 
264.5 

300.9 
341.2 
385.5 
434.1 
487.4 

,545.6 
008. 9 
677.5 
751.9 


9.186 
11.636 
14.613 
18.202 
22.499 

27.62 
33.67 
40.77 
49.08 

58.71 

69.85 
82.63 
97.25 
113.91 
132.78 

154.1 
178.0 
204.9 
234.7 
268.0 

304.8 
345.4 
390.2 
439.2 
493.0 

551.7 
615.5 
684.7 
750.6 


Inches 
2.503 
3.331 
4.385 
5.712 
7.366 

9.409 
11.909 
14.943 
18.598 
22.972 

28.18 
34.33 
41.55 
49.98 
59.76 

71.04 
84.01 
98.82 
115.69 
134.80 

156.4 
180.5 
207.7 
237.9 
271.5 

308.7 
,349.7 
394.9 
444.4 
498.7 

,557.9 
622.1 
691.9 
767.4 


PHYSICAL  CONSTANTS 


107 


\\  EIGHT  OF  A  Cubic  Foot  of  Aqueous  Vapor  at  Different 
Temperatures  axd  Saturations  (in  Grains) 


Temp., 


Percentage  of  saturation 


"F. 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

-20 

0.017 

0.033 

0.050 

0.066 

0.083 

0.100 

0.116 

0.133 

0.149 

0.166 

—19 

0.017 

0.035 

0.052 

0.070 

0.087 

0.104 

0.122 

0.139 

0.157 

0.174 

—18 

0.018 

0.037 

0.055 

0.074 

0.092 

0.100 

0.129 

0.147 

0.166 

0.184 

-17 

0.020 

0.039 

0.059 

0.078 

0.098 

0.118 

0.137 

0.157 

0.176 

0.196 

—16 

0.021 

0.041 

0.062 

0.083!  0.104 

0.124 

0.145 

0.166 

0.186    0.207 

-15 

0.022 

0.044 

0.065 

0.087    0.109 

0.131 

0.153 

0.174 

0.196    0.218 

— U 

0.023 

0.046 

0.069 

0.0921  0.116 

0.139 

0.162 

0.185 

0.2081  0.231 

—13 

0.024 

0.049 

0.073 

0.0971  0.122 

0.146 

0.170 

0.194 

0.219    0.243 

—12 

0.026 

0.051 

0.077 

0.103,  0.128 

0.1.54 

0.180 

0.206 

0.231    0.257 

—11 

0.027 

0.054 

0.081 

0.108;  0.135 

0.162 

0.189 

0.216 

0.243    0.270 

—10 

0.028 

0.057 

0.086 

0.114    0.142 

0.171 

0.200 

0.228 

0.2.56    0.2S5 

—  9 

0.0.30 

0.060 

0.090 

0.120;  0,150 

0.180 

0.210 

0.240 

0.270    0.300 

-8 

0.032 

0.063 

0.095 

0.126;  0.15S 

0.190 

0.221 

0.2.53 

0.284    0.316 

-  7 

0.033 

0.066 

0.100 

0.133    0.166 

0.199 

0.2.32 

0.266 

0.299    0.,332 

—  6 

0.035 

0.070 

0.105 

0.140|  0.175 

0.210 

0.245 

0.280 

0.315 

0.350 

-5 

0.037 

0.074 

0.111 

0.148    0.185 

0.222 

0.259 

0.296 

0.333 

0.370 

—  4 

0.039 

0.078 

0.117 

0.156   0.194 

0.233 

0.272 

0.311 

0.350 

0..389 

—  3 

0.041 

0.082 

0.123 

0.164    0.206 

0.247 

0.288 

0.329 

0.370 

0.411 

2 

0.043 

0.087 

0.130 

0.174    0.217 

0.260 

0.304 

0.347 

0.391 

0.434 

1 

0.046 

0.091 

0.137 

0.183    0.228 

0.274 

0.320 

0.366 

0.411 

0.457 

0 

0.048 

0.0% 

0.144 

0.192'  0.240 

0.289 

0.337 

0.38.5 

0.433,  0.481 

1 

0.050 

0.101 

0.152 

0.2021  0.252 

0.303 

0.354 

0.404 

0.4541  0.505 

2 

0.0.53 

0.106 

0.159 

0.212    0.264 

0.317 

0.370 

0.423 

0.476!  0.529 

3 

0.055 

0.111 

0.166 

O.222I  0.277 

0.332 

0.388 

0.443 

0.4991  0.554 

4 

0.058 

0.116 

0.175 

0.233|  0.291 

0.349 

0.407 

0.466 

0.524i  0.582 

5 

0.061 

0.122 

0.183 

0.244 

0.305 

0.366 

0.427 

0.488 

0.5491  0.610 

6 

0.064 

0.128 

0.192 

0.256 

0.320 

0.383 

0.447 

0.511 

0.575 

0.639 

7 

0.067 

0.134 

0.201 

0.268 

0.336 

0.403 

0.470 

0.537 

0.604 

0.671 

8 

0.070 

0.141 

0.211 

0.282 

0.352 

0.422 

0.493 

0.563 

0.634 

0.704 

9 

0.074 

0.148 

0.222 

0.296 

0.370 

0.443 

0.517 

0.591 

0.665,  0.739 

10 

0.078 

0.155 

0.233 

0.310 

0.388 

0.466 

0.543 

0.621 

0.698!  0.776 

11 

0.082 

0.163 

0.245 

0.326 

0.408 

0.490 

0.571 

0.653 

0.7341  0.816 

12 

0.086 

0.171 

a.  257 

0.342 

0.428 

0.514 

0.599 

0.685 

0.770   0.856 

13 

0.090 

0.180 

0.269 

0.3.59 

0.449 

O..539 

0.629 

0.718 

0.808   0.898 

14 

0.094 

0.188 

0.282 

0.376 

0.470 

0.565 

0.659 

0.753 

0.847    0.941 

15 

0.099 

0.197 

0.296 

0.394 

0.493 

0.592 

0.690 

0.789 

0.887 

0.986 

16 

0.103 

0.206 

0.310 

0.413 

0.516 

0.619 

0.722 

0.826 

0.929 

1.032 

17 

0.108 

0.216 

0..324 

0.4.32 

0..540 

0.648 

0.7.56 

0.864 

0.972 

1.080 

18 

0.113 

0.226 

0.338 

0.451 

0.564 

0.677 

0.790 

0.902 

1.015 

1.128 

19 

0.118 

0.236 

0.354 

0.472 

0.590 

0.709 

0.827 

0.845 

1.063 

1.181 

20 

0.124 

0.247 

0.370 

0.494 

0.618 

0.741 

0.864 

0.988 

1.112 

1.235 

21 

0.129 

0.2.59 

0.388 

0.518 

0.647 

0.776 

0.906 

1.035 

1.165 

1.294 

22 

0.1.36 

0.271 

0.406 

0..542 

0.67S 

0.813 

0.948 

1.084 

1.220 

1.355 

23 

0.142 

0.284 

0.425 

0..567 

0.709 

0.851 

0.993 

1.134 

1.276 

1.418 

24 

0.148 

0.297 

0.445 

0.593    0.742 

0.890 

1.038 

1.186 

1.335 

1.483 

25 

0.155 

0.310 

0.465 

0.620    0.776 

0.931 

1.086 

1.241 

1.396 

1.551 

26 

0.162 

0.325 

0.487 

0.649i  0.812 

0.974 

1.136 

1.298 

1.461 

1.623 

27 

0.170 

0..339 

0.509 

0.679   0.848 

1.018 

1.188 

1.358 

1.527 

1.697 

108     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Weight  of  a  Cubic  Foot  of  Aqueous  Vapor  at  Different 
Tf-mteratures  and  Saturations  (in  Grains).     Continued 


Percentage  of  saturation 

Temp., 

10    1     20 

30 

40    1     50 

60 

70 

80 

90    1  100 

Gr. 

Gr. 

Gr. 

Gr.   1   Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

28 

0.177 

0.355 

0.532 

0.709   0.886 

1.064 

1.241 

1.418 

1.596 

1.773 

29 

0.185 

0.371 

0.556 

0.741 

0.926 

1.112 

1.297 

1.482 

1.668 

1.853 

30 

0.194 

0.387 

0.580 

0.774 

0.968 

1.161 

1.354 

1.548 

1.742 

1.935 

31 

0.202 

0.404 

0.607 

0.809 

1.011 

1.213 

1.415 

1.618 

1.820 

2.022 

32 

0.211 

0.422 

0.634 

0.845 

1.056 

1.268 

1.479 

1.690 

1.902 

2.113 

33 

0.219 

0.4.'?9 

0.6.58 

0.878 

1.097 

1.316 

1.536 

1.755 

1.975 

2.194 

34 

0.228 

0.456 

0.6S4 

0.912 

1.140 

1.367 

1.595 

1.823 

2.051 

2.279 

35 

0.2.37 

0.473 

0.710 

0.946 

1.183 

1.420 

1.656 

1.893 

2.129 

2.366 

36 

0.246 

0.491 

0.737 

0.983 

1.228 

1.474 

1.720 

1.966 

2.211 

2.457 

37 

0.2.55 

0.510 

0.765 

1.020 

1.275 

1.530 

1.785 

2.040 

2.295 

2.550 

38 

0.2R5 

0..529 

0.794 

1.058 

1.323 

1.588 

1.8.52 

2.117 

2.381 

2.646 

39 

0.275 

0.549 

O.S24 

1.098 

1.373 

1.648 

1.922 

2.197 

2.471 

2.746 

40 

0.285 

0.570 

0.8.55 

1.140 

1.424 

1.709 

1.994 

2.279 

2.564 

2.849 

41 

0.296 

0.591 

0.886 

1.182 

1.478 

1.773 

2.068 

2.364 

2.660 

2.955 

42 

0.306 

0.613 

0.919 

1.226 

1.532 

1.838 

2.145 

2.451 

2.758 

3.064 

43 

0.318 

0.6.35 

0.9.53 

1.271 

1..588 

1.906 

2.224 

2.542 

2.8.59 

3.177 

44 

0.329 

0.659 

0.988 

1.318 

1.647 

1.976 

2.306 

2.635 

2.965 

3.294 

45 

0.341 

0.683 

1.024 

1.366 

1.707 

2.048 

2.390 

2.731 

3.073 

3.414 

46 

0.354 

0.708 

1.062 

1.416 

1.770 

2.123 

2.477 

2.831 

3.185   3.539 

47 

0.367 

0.7.33 

1.100 

1.467 

1.834 

2.200 

2.567 

2.934 

3.300   3.667 

48 

0.380 

0.760 

1.140 

1..520 

1.900 

2.280 

2.660 

3.040 

3.420   3.800 

49 

0.394 

0.787 

1.181 

1..574 

1.968 

2.362 

2.755 

3.1491  3.542    3.936 

50 

0.408 

0.815 

1.223 

1.630!  2.038 

2.446 

2.853 

3.261 

3.6681  4.076 

51 

0.422 

0.844 

1.267 

1.689 

2.111 

2.533 

2.9.55 

3.378 

3.S00i  4.222 

52 

0.437 

0.874 

1.312 

1.749 

2.186 

2.623 

3.060 

3.498 

3.9351  4.372 

53 

0.4.53 

0.907 

1.358 

1.810 

2.263 

2.716 

3.168 

3.621 

4.073   4.526 

54 

0.468 

0.937 

1.406 

1.874 

2.342 

2.811 

3.280 

3.748 

4.216 

4.685 

55 

0.485 

0.970 

1.455 

1.940 

2.424 

2.909 

3.394 

3.879 

4.364 

4.849 

56 

0.502 

1.003 

1.505 

2.006 

2.508 

3.010 

3.511 

4.013 

3.514 

5.016 

57 

0.519 

1.038 

1..5.57 

2.076 

2.596 

3. 115 

3.634 

4.153 

4.672 

5.191 

58 

0..537 

1.074 

1.611 

2.148^  2.6S5 

3.222 

3.7.59 

4.296 

4.8.33 

5.370 

59 

0.556 

1.111 

1.666 

2.222|  2.778 

3.333 

3.888 

4.444 

5.000 

5.555 

00 

0.574 

1.149 

1.724 

2.298 

2.872 

3.447 

4.022 

4.596 

5.170 

5.745 

61 

0..594 

1.188 

1.782 

2.376 

2.970 

3.565 

4.159 

4.753 

5.347 

5.941 

62 

0.614 

1.228 

1.843 

2.4.57 

3.071 

3.685 

4.299 

4.914 

5.. 528 

6.142 

63 

0.635 

1.270 

1.905 

2.. 540 

3.174 

3.809 

4.444 

5.079 

5.714 

6.349 

64 

0.656 

1.313 

1.969 

2.625!  3.282 

3.938 

4.594 

5.250 

5.907 

6. 563 

65 

0.678 

1.3.56 

2.035 

2.7131  3.391 

4.069 

4.747 

5.426 

6.104 

6.782 

66 

0.701 

1.402 

2.103 

2.804 

3.504 

4.205 

4.906 

5.607 

6.3081  7.009 

67 

0.724 

1.448 

2.172 

2.896 

3.620 

4.. 345 

5.069 

5.793 

6.517i  7.241 

68 

0.74S 

1.4% 

2.244 

2.992 

3.740 

4.488 

5.236 

5.984 

6.732 

7.480 

69 

0.773 

1.545 

2.318 

3.090 

3.863 

4.636 

5.408 

6.181 

6.953 

7.728 

70 

0.798 

1.596 

2.394 

3.192!  3.990 

4.788 

5.586 

6.384 

7.182 

7.980 

71 

0.824 

1.648 

2.472 

3.296 

4.120 

4.944 

5.768 

6.592 

7.416 

8.240 

72 

0.851 

1.702 

2.5.52 

3.403 

4.2.54 

5.105 

5.9.56 

6.806 

7.6.57 

8.508 

73 

0.878 

1.7.56 

2.635 

3.513 

4.391 

5.269 

6.147 

7.026 

7.904 

8.782 

74 

0.907 

1.813 

2.7201  3.626 

4.533 

5.440 

6.346 

7.253 

8.159 

9.066 

PHYSICAL  CONSTANTS 


109 


Weight  of  a  Cubic  Foot  of  Aqueous  Vapor  at  Different 
Temperatures  and  Saturations  (In  Grains).     Conlinued 


Percentage  of  saturation 

Temp., 

" 

°F 

10 

20    1    30    1    40 

50 

60 

70 

80 

90 

100 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

Gr. 

75 

0.936 

1.871 

2.807 

3.742 

4.678 

5.614 

6.549 

7.485 

8.420 

9.356 

76 

0.966 

1.931 

2.896 

3.862 

4.828 

5.703 

6.758 

7.724 

8.690 

9.655 

77 

0.996 

1.992 

2.989 

3.98.5 

4.981 

5.977 

6.973 

7.970 

8.966 

9.962 

78 

1.028 

2.0.55 

3.083 

4.111 

5.138 

6.166 

7.194 

8.222 

9.249 

10.277 

79 

1.060 

2.120 

3.180 

4.240 

5.300 

6.361 

7.421 

8.481 

9.541 

10.601 

80 

1.093 

2. 187 

3.280 

4.374 

5.467 

6.560 

7.6.51 

8.747 

9.841 

10.934 

81 

1.128 

2.2.55 

3.382 

4.510 

5.638 

6.765 

7.892 

9.020 

10.148 

11.275 

82 

1.163 

2.325 

3.488 

4.6.50 

5.813 

6.970 

8.138 

9. .301 

10.463 

11.626 

83 

1.199 

2.307 

3.596 

4.795 

5.994 

7.102 

8.301 

9.. 590 

10.788 

11.987 

84 

1.236 

2.471 

3.707 

4.942 

6.178 

7.414 

8.649 

9.885 

11.120 

12.356 

85 

1.274 

2.547 

3.821 

5.094 

6.. 368 

7.642 

8.915 

10.189 

11.462 

12.736 

86 

1.313 

2.625 

3.938 

5.251 

6.. 564 

7.877 

9.189 

10.. 502 

11.814 

13.127 

87 

1.353 

2.705 

4.058 

5.410 

6.763 

8.116 

9.46S 

10.821 

12.173 

13.526 

88 

1.394 

2.787 

4.181 

5.575 

6.068 

8.362 

9.7.56 

11.1.50 

12.. 543 

13.937 

89 

1.436 

2.872 

4.308 

5.744 

7.180 

8.615  10.051 

11.487 

12.923 

14.359 

90 

1.479 

2.9.58 

4.437 

5.916 

7.395 

8.874  10.353 

11.8.32 

13.311 

14.790 

91 

1..523 

3.047 

4.570 

6.094 

7.617 

9.140  10.664 

12.187 

13.711 

15.234 

92 

1.569 

3.1.38 

4.707 

6.276 

7.844 

9.413  10.982 

12.. 551 

14.120 

15.6S9 

93 

1.616 

3.231 

4.846 

6.462 

8.078 

9.603  11.. 308 

12.924 

14.. 540 

16.155 

94 

1.663 

3.327 

4.990 

6.654 

8.317 

9.980  11.644 

13.307 

14.971 

16.634 

95 

1.712 

3.425 

5.137 

6.8.50 

8.562 

10.274  11.987 

13.699 

15.412 

17.124 

96 

1.763 

3.. 525 

5.288 

7.0.50 

8.813 

10.576  12., 338 

14.101 

15.863 

17.626 

97 

1.814 

3.628 

5.443 

7.257 

9.071 

10.885  12.600 

14.514 

16.. 328 

18.142 

98 

1.867 

3.734 

5.601 

7.468 

9.336 

11.203  13.070 

14.9.37 

16.804 

18.671 

99 

1.921 

3.842 

5.764 

7.685 

9.606 

11.527  13.448 

15.370 

17.291 

19.212 

100 

1.977 

3.9.52 

5.930 

7.906 

9.883 

11.860.13.836 

15.813 

17.789 

19.766 

101 

2.034 

4.067 

6.100 

8.1.34  10.168 

12.201,14.2.34 

16.268 

18.302 

20.335 

102 

2.092 

4.183 

6.275 

8.. 367  10.4.58 

12..5.i0,14.642 

16.7.34 

18.825 

20.917 

103 

2.151 

4.303 

6.4.54 

8.606  10.7.57 

12.908:15.060 

17.211 

19.363 

21.514 

104 

2.212 

4.425 

6.638 

8. SoO  11.062 

13.275  15.488 

17.700 

19.912 

22.125 

105 
106 

2.275 
2.339 

4.550 

6.825 
7.018 

9.100  11.375 

13.6.50!15.925 

18.200 
18.714 

20.475 

22.750 

4.678 

9.357  11 .696 

14.035  16.374 

21 .053 

23.392 

107 

2.405 

4.809 

1.2H 

9.610  12.024 

14.420  16.8.34 

19.23S 

21.643 

24.048 

108 

2.472 

4.944 

7.416 

9.888  12.360 

14. .832, 17.304 

10.776 

22.24*5 

24.720 

109 

2.541 

5.082 

7.622 

10.163  12.704 

15.245  17.786 

20.326 

22^867 

25.408 

110 

2.611 

5.222 

7.834  10.445*13.056' 

1 

15.667  18.278 

I            1 

20.890 

1 

23.501 

1 

26.112 

no     METALLURGISTS  AND  CHEMISTS' HANDBOOK 
Tension  of  Aqueous  Vapor  at  Various  Temperatures' 


Temperature, 
degrees  C. 


Tension  of  aque-       Temperature, 
ous  vapor  in  mm.  degrees  C. 


Tension  of  aque- 
ous vapor  in  mm. 


0 

4 .  525 

21 

18.505 

1 

4.867 

22 

19.675 

2 

5.231 

23 

20 . 909 

3 

5.619 

24 

22.211 

4 

6.032 

25 

23 . 582 

6 

6.471 

26 

25 . 026 

6 

6.939 

27 

26.547 

7 

7 .436 

28 

28.148 

8 

7.964 

29 

29.832 

9 

8.525 

30 

31.602 

10 

9.126 

31 

33 . 464 

11 

9.751 

32 

35.419 

12 

10.421 

33 

37 . 473 

13 

11.130 

34 

39.630 

14 

11.882 

35 

41.893 

15 

12.677 

36 

44 . 268 

16 

13.519 

37 

46.758 

17 

14.409 

38 

49 . 368 

18 

15.351 

39 

52 . 103 

19 

16 . 345 

40 

54 . 969 

20 

17.396 

'  Winkler,  "Technical  Gas  Analysis." 

BAROMETRIC  CORRECTIONS 

Corrections  for  Temperature 


(Mercury,  brass 

scale  correct  at  0°C.) 

Temperature 

Millimeters 

73 

74 

75 

76 

77 

78 

7!) 

15° 

0.178 

0.181 

0.183 

0.186 

0.188 

0.191 

0.193 

16 

0.190 

0.193 

0.196 

0.198 

0.201 

0.203 

0.206 

17 

0.202 

0.205 

0.208 

0.210 

0.213 

0.216 

0.218 

18 

0.214 

0.217 

0.220 

0.223 

0.226 

0.229 

0.231 

19 

0.226 

0.229 

0.232 

0.235 

0.238 

0.241 

0.244 

20 

0.238 

0.241 

0.244 

0.247 

0.251 

0.254 

0.257 

21 

0.250 

0 .  253 

0.256 

0.260 

0.263 

0.207 

0,270 

22 

0.261 

0.205 

0.269 

0.272 

0.276 

0.279 

0.283 

23 

0.273 

0.277 

0.281 

0.284 

0.288 

0.292 

0.296 

24 

0.289 

0.289 

0.293 

0.297 

0.301 

0.305 

0.309 

Corrections   must   be   subtracted   from   observed   readings,   if   reading   at 
19°C.  is  76  cm.,  the  corrected  reading  is  76  -  0.235. 


PHYSICAL  CONSTANTS 


111 


Effect  of  Altitude  ^ 

Table  of  altitudes  in  feet  above  sea-level;  with  corresponding  approxi- 
mate barometric  readings,  atmospheric  pressures  and  proportionate  densities. 

(The  capacity  of  an  internal  combustion  engine  at  higher  altitudes,  as 
compared  with  its  capacity  at  sea-level,  is  practically  proportional  to  the 
atmospheric  densities.) 


Altitude  in  feet 


Barometer 
in  inches 


Atmospheric  pres- 
sure in  pounds  per 
square  inch 


Proportionate 

atmospheric 

density 


0.00 

30.0 

14.72 

1.00 

500.0 

29.5 

14.45 

0.98 

1,000.0 

28.9      ■! 

14.18 

0.96 

1.500.0 

28.4 

13.94 

0.94 

2,000 . 0 

27.9 

13.69 

0.93 

2,. 500.0 

27.4 

13.45 

0.91 

3,000.0 

26.9       i 

13.20 

0.89 

4,000.0 

26.0 

12.75 

0.86 

5.000.0 

25.1 

.12.30 

0.83 

6,000.0 

24.2 

11.85 

0.80 

7,000.0 

23 . 3 

11.44 

0.77 

8,000.0 

22.5       1 

11.04 

0.75 

9,000.0 

21.7       ! 

10.65 

0.73 

10,000.0 

20.9 

10.26 

0.70 

•  From  the  "Diesel  Engine,"  Busch-Sulzer  Bros.  Diesel  Engine  Co. 


Correction- 

TO  BE 

Added  for  C 

\PILLARITY 

Diameter 

Height  of  meniscus  in  inches 

tube  in 
inches 

0.01    j    0.02 

0.03 

0.04       0.05 

0.06    '    0.07 

1 

o.os 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 


0.024 
0.011 
0.006 
0.004 


0.047,0.069  0.092 


0.022 
0.012 
0.008 
0.005 
0.004 


0 .  033 
0.019 
0.013 
0.008 
0.006 
0.003 
0,002 


0.045 
0 .  028 
0.018 
0.012 
0.008 
0.005 
0.004 


0.116 
0.059 
0 .  037 
0.023 
0.015 


0.079 

0.047 

0.029 

0.019 
0.01010.012 
0.00710.008 
0.005  0.006  0.006 


0.059 
0 .  035 
0.022 
0.014 
0.010 


0.042 
0.027 
0.016 
0.012 
0.007 


0.001  0.002  0.003  0.004  0.005  0.005 


From 
Xo.  103. 


Ellenwood's  "Steam    Charts,"   abbr.    from    Smithsonian    table 


112     MET.\LLURGISTS  AND  CHEMISTS' HANDBOOK 

B.\ROMETER   Correction  for  Variation  in  g — Correct  at 
45°  N.  OR  S.  Latitude 


35°  or  55° 
40°  or  50° 


0  065  0 . 066  0 . 066;  0 . 067  0 . 068' 0 . 069i0 .  070 
0.032,0.033  0.033: 0.034  0.035  0  035:0.035 


Subtract  the  correction  for  35°  and  40°. 
.\dd  the  correction  for  50°  and  55°. 

Batteries,  E.m.f.  of  Standard  Cells 


CeU 

Descriptiou 

■c  m  f      1     Resist- 
^•">f-     1       ance 

Bichromate  . 

Zn  and  C  in  1  vol.  strong  HiSO*  and 

20  vol.  sat.  KiCnO?  sol. 
Zn  in  1  vol.  strong  H:SO« :  12  vol.  HsO 

C  in  strong  HNOj. 
Zn  amalgam  and  Hg  in  eat.  ZnSOi  sol. 
Zn  in  ZnS046ol.  or   HsSO*  (1:12)  Cu  in 

sat.  Cu.SOi  sol. 
Like  Bunsen,  C  replaced  by  Ft. 
Zn  and  C  in  NH4CI,  C  and  MnOj. 
Pb  and  PbOj  in  HjSO*  of  density  1.2 
Zn  and  C  with  sat.  CaCl;  sol. 
Cd  amalgam,  and  Hg  in  sat.  CdSOi  sol. 
CuO  and  Zn  in  NaOH. 

2.0 

1.8-1.9 

1.433 
1.07-1.08 

1.8-1.9 

1.5 
2.2-1.9 

1.4 
1.018 
1.12    . 

Very  low 

Clark 

Daoiell 

About  500 
About  4 

LeclanchC..  .  . 
Secondary.  .  . 

0.25-0.4 

Weston 

Edison 

About  500 
0.02-0.00 

Hydrometer  Conversion  Factors 
140  t;^m;h«  r^  1*5 


sp.  gr. 


Liquids 
lighter    I  B(i.°  +  130 
than       1     140       _  130^3^ 


water      I 


sp.   gr. 


Liquids    f  Sn   cr  = 
heavier  I     '     *"  '         145  -  Bf. 

than       1  D, o  _  ,,=         1^5 

water     [  ^^      -  ^^^  ~ 


sp.  gr 
To  correct  B6.  readings  to  60°:  Correct  reading  =  observed  reading  H 

For  the  Twaddell  hydrometer: 

Tw.°    ^  , 

--  +  1   =  sp.  gr. 

200(sp.  gr.  -  1)   =  Tw.° 
For  the  Gay-Lussac  (standardized  at  4°C.): 
100 


10 


G.-L.°  +  100 
100 


sp.  gr. 


-  100  =  G.-L 
sp.  gr. 

For  the  Sikes  hydrometer:  1°  =  0.002  of  sp.  gr. 

170 
For  the  Beck  (12.5°C.):  sp.  gr.    = 


For  the  Cartier  (12.5°):  sp.  gr. 


170  +  Beck" 

136 

126.1  +  Cart." 


For  the  Brix  and  the  Fisher  (15.6°C.):  sp.  gr.  = 


400 


400  +  n" 


PHYSICAL  CONSTANTS 

113 

CoxvERSiON  Table  for  Degrees  Baume^ 

(Liquids  lighter  than  wate 

r^) 

Degrees 
Baum4 

Pounds  in  1 
Sp.  gr.        gal.  Ameri- 
can' 

Degrees 
Baum6 

Sp.  gr. 

Pounds  in  1 
gal.  Ameri- 
can* 

10 

1.0000 

8.33 

43 

0.8092 

6.74 

11 

0.9929 

8.27 

44 

0.8045 

6.70 

12 

0.9859 

8.21 

45 

0.8000 

6.66 

13 

0.9790 

8.16 

46 

0.7954 

6.63 

14 

0.9722 

8.10 

47 

0.7909 

6.59 

15 

0.9655 

8.04 

48 

0.7865 

6.55 

16 

0.9589 

7.99 

49 

0.7821 

6.52 

17 

0.9523 

7.93 

50 

0.7777 

6.48 

18 

0.9459 

7.88 

51 

0.7734 

6.44 

19 

0.9395 

7.83 

52 

0.7692 

6.41 

20 

0.9333 

7.78 

53 

0.7650 

6.37 

21 

0.9271 

7.72 

54 

0.7608 

6.34 

22 

0.9210 

7.67 

55 

0.7567 

6.30 

'      23 

0.9150 

7.62 

56 

0.7526 

6.27 

24 

0.9090 

7.57 

57 

0.7486 

6.24 

25 

0.9032 

7.53 

58 

0.7446 

6.20 

26 

0.8974 

7.48 

59 

0.7407 

6.17 

27 

Q.8917 

7.43 

60 

0.7368 

6.14 

28 

0.8860  1      7.38 

61 

0.7329 

6.11 

29 

0.8805  !      7.34 

62 

0.7290 

6.07 

30 

0.8750          7.29 

63 

0.7253 

6.04 

31 

0.8695          7.24 

64 

0.7216 

6.01 

32 

0.8641 

7.20 

65 

0.7179 

5.98 

33 

0.8588 

7. 15 

66 

0.7142 

5.95 

34 

0.8536  !      7.11 

67 

0.7106 

5.92 

35 

0.8484          7.07 

68 

0.7070 

5.89 

36 

0.8433  ,       7.03 

69 

0.7035 

5.86 

37 

0.8383  i      6.98 

70 

0.7000 

5.83 

38 

0.8333         6.94 

75 

0.6829 

5.69 

39 

0.8284          6.90 

80 

0.6666 

5.55 

40 

0.8235         6.86 

85 

0.6511 

5.42 

41 

0:8187          6.82 

90 

0.6363 

5.30 

42 

0.8139          6.78 

95 

0.6222 

5.18 

'  The  Baai 

n^  scale  is  entirely  arbitrary,  so  varioL 

s  authoritie 

s  give  various 

values  for  th< 

;  above  table.     These  given  above  are 

from  a  table 

'  specially  cal- 

culated  for  tl 

le  "Petroleum  Year  Book,  1914"  by 

T.\GLIABCE 

of  New  York. 

The  formulas 

on  p.  112  were  also  furnished  by  him  f 

or  the  same 

work. 

2  For  liqui 

is  heavier  than  water,  see  the  sulphur 

ic  acid  table 

on  page  115. 

'  Sp.  gr.  X 
8 

10  =  poun 

ds  per  imperis 

d  gallon. 

Ill     METALLURGISTS  AND  CHEMISTS' HANDBOOK 

Specific  Gr.wity  of  Sulphuric  Acid*  at  15°C.,  Compared  tu 
Water  at  4°C. 


8p.  Kr.  at. 
15° 

Degrees 
Bauni6 

Degrees 
Twaddell 

100  part 

3  of  c.p.  acid  contain 

,  per  cent. 

'i° 

SO, 

HiSOi 

60''B6. 
acid 

50»B^. 
acid 

1.000 

0.0 

0 

0.07 

0.09 

0.12 

0.14 

1.005 

0.7 

1 

0.68 

0.83 

1.06 

1.33 

1.010 

1.4 

2 

1.28 

1.57 

2.01 

2.51 

1.015 

2.1 

3 

1.88 

2.30 

2.95 

3.68 

1.020 

2.7 

4 

2.47 

3.03 

3.88 

4.85 

1.025 

3.4 

5 

3.07 

3.76 

4.82 

6.02 

1.030 

4.1 

6 

3,67 

4.49 

5.78 

7.18 

1.035 

4.7 

7 

4.27 

5.23 

6.73 

8.37 

1.040 

5.4 

8 

4.87 

5.96 

7.64 

9.54 

1.045 

6.0 

9 

5.45 

6.67 

8.55 

10.67 

1.050 

6.7 

10 

6.02 

7.37 

9.44 

11.79 

1.055 

7.4 

11 

6.59 

8.07 

10.34 

12.91 

1.060 

8.0 

12 

7.16 

8.77 

11.24 

14.03 

1.065 

8.7 

13 

7.73 

9.47 

12.14 

15.15 

1.070 

9.4 

14 

8.32 

10.19 

13.05 

16.30 

1.075 

10.0 

15 

8.90 

10.90 

13.96 

17.44 

1.080 

10.6 

16 

9.47 

11.60 

14.87 

18.56 

1.085 

11.2 

17 

10.04 

12.30 

15.76 

19.68 

1.090 

11.9 

18 

10.60 

12.99 

16.65 

20 .  78 

1.095 

12.4 

19 

11.16 

13.67 

17.52 

21.87 

1.100 

13.0 

20 

11.71 

14.35 

18.39 

22.96 

1.105 

13.6 

21 

12.27 

15.03 

19.26 

24.05 

1.110 

14.2 

22 

12.82 

15.71 

20.13 

25.14 

1.115 

14.9 

23 

13.36 

16.36 

20.96 

26.18 

1.120 

15.4 

24 

13.89 

17.01 

21.80 

27.22 

1.125 

16.0 

25 

14.42 

17.66 

22.63 

28.26 

1.130 

16.5 

26 

14.95 

18.31 

23.47 

29.30 

1.135 

17.1 

27 

15.48 

18.96 

24.29 

30.34 

1.140 

17.7 

28 

16.01 

19.61 

25.13 

31.38 

1.145 

18.3 

29 

16.54 

20.26 

25.96 

32 .  42 

1.150 

18.8 

30 

17.07 

20.91 

26.79 

33. 4G 

1.155 

19.3 

31 

17.59 

21.55 

27.61 

34. 4s 

1.160 

19.8 

32 

18.11 

22.19 

28.43 

35 .  50 

1.165 

20.3 

33 

18.64 

22.83 

29.35 

36 .  53 

1.170 

20.9 

34 

19.16 

23.47 

30.07 

37 .  55 

1.175 

21.4 

35 

19.69 

24.12 

30.90 

38.59 

PHYSICAL  CONSTANTS 


115 


Specific  Gravity  of  Sulphuric  Acid^  at  15°C.,  Compared  to 
Water  at  4°C.     Continued 


Sp.  gr.  at 
15° 

100  parts  of  c.p.  acid  contain 

per  cent. 

Degrees 
Bauni6 

Degrees 
Tvvaddell 

4°" 

SO3 

H2SO4 

60°B6. 
acid 

SO^Bfi. 
acid 

1.180 

22.0 

36 

20.21 

24.76 

31.73 

39.62 

1.185 

22.5 

37 

20.73 

25.40 

32.55 

40.64 

1.190 

23.0 

38 

21.26 

26.04 

33.37 

41.66 

1.195 

23.5 

39 

21.78 

26.68 

34.19 

42.69 

1.200 

24.0 

40 

22.30 

27.32 

35.01 

43.71 

1.205 

24.5 

41 

22.82 

27.95 

35 .  83 

44.72 

1.210 

25.0 

42 

23 .  33 

28.58 

36.66 

45.73 

1.215 

25.5 

43 

23.84 

29.21 

37.45 

46,74 

1.220 

26.0 

44 

24.36 

29.84 

38.23 

47.74 

1.225 

26.4 

45 

24.88 

30.48 

39.05 

48.77 

1.230 

26.9 

46 

25.39 

31.11 

39.86 

49.78 

1.235 

27.4 

47 

25.88 

31.70 

40.61 

50.72 

1.240 

27.9 

48 

26,35 

32.28 

41.37 

51.65 

1.245 

28.4 

49 

26.83 

32.86 

42.11 

52.58 

1.250 

28.8 

50 

27.29 

33.43 

42.84 

53.49 

1.255 

29.3 

51 

27.76 

34.00 

43.57 

54.40 

1.260 

29.7 

52 

28.22 

34.57 

44.30 

55.31 

1.265 

30.2 

53 

28.69 

35,14 

45.03 

56.22 

1.270 

30.6 

54 

29.15 

35.71 

45.76 

57.14 

1.275 

31.1 

55 

29.62 

36.29 

46.50 

58.06 

1.280 

31.5 

56 

30.10 

36.87 

47.24 

58.99 

1.285 

32.0 

57 

30.57 

37 ,  45 

47.99 

59.92 

1.290 

32.4 

58 

31.04 

38,03 

48.73 

60.85 

1.295 

32.8 

•59 

31.52 

38.61 

49.47 

61.78 

1.300 

33.3 

60 

31.99 

39.19 

50.21 

62.70 

1.305 

33.7 

61 

32.46 

39.77 

50.96 

63.63 

1.310 

34.2 

62 

32.94 

40.35 

51.71 

64.56 

1.315 

34.6 

63 

33.41 

40.93 

52.45 

65.45 

1.320 

35.0 

64 

33.88 

41.50 

53.18 

66.40 

1.325 

35.4 

65 

34.35 

42.08 

53.92 

67.33 

1.330 

35.8 

66 

34.80 

42.66 

54.67 

68.26 

1.335 

36.2 

67 

35.27 

43.20 

55.36 

69.12 

1.340 

36.6 

68 

35.71 

43.74 

56.05 

69.98 

1.345 

37.0 

69 

36.14 

44.28 

56.74 

70,85 

1.350 

37.4 

70 

36.58 

44.82 

57.43 

71.71 

1.355 

37.8 

71 

37.02 

45.35 

58.11 

72.56 

IIG     METALLURGISTS   AND  CHEMISTS' HANDBOOK 


Specific 

Gravity  of  Sulphuric  Acid 

1   AT  15°C.,C0MP 

ARED  TO 

W 

'.VTER  AT  4°C.     Continued 

yp 

Kr.  at 
15° 

Degrees 
Bauni6 

Degrees 
Twaddell 

100  parts  of  c.p.  ac 

d  contain,  per  cent. 

4° 

SOa 

H-SO« 

60"  B6. 
acid 

50°  B4. 
acid 

.360 

38.2 

72 

37.45 

45.88 

58.79 

73.41 

.365 

38.6 

73 

37.89 

46.41 

59.48 

74 .  26 

.370 

39.0 

74 

38.32 

46.94 

60.15 

75.10 

.375 

39.4 

75 

38.75 

47.47 

60.83  1  75.95 

.380 

39.8 

76 

39.18 

48.00 

61.51 

76.80 

.385 

40.1 

77 

39.62 

48.53 

62.19 

77.65 

.390 

40.5 

78 

40.05 

49.06 

62.87 

78.50 

.395 

40.8 

79 

40.48 

49.59 

63.55 

79.34 

.400 

41.2 

80 

40.91 

50.11 

64.21 

80.18 

.405 

41.6 

81 

41.33 

50.63 

64.88 

81.01 

410 

42.0 

82 

41.76 

51.15 

65.55 

81.86 

415 

42.3 

83 

42.17 

51.66 

66.21 

82.66 

420 

42.7 

84 

42 .  57 

52.15 

66.82 

83.44 

425 

43.1 

85 

42.96 

52.63 

67.44 

84.21 

430 

43.4 

86 

43.36 

53.11 

68.06 

84.98 

435 

43.8 

87 

43 .  75 

53.59 

68.68 

85.74 

440 

44.1 

88 

44.14 

54.07 

69.29 

86.51 

445 

44.4 

89 

44.53 

54.55 

69.90 

87.28 

450 

44.8 

90 

44.92 

55.03 

70.52 

88.05 

455 

45.1 

91 

45.31 

55.50 

71.12 

88.80 

460 

45.4 

92 

45.69 

55.97 

71.72 

89.55 

.465 

45.8 

93 

46.07 

56.43 

72.31 

90.29 

470 

46.1 

94 

46.45 

56.90 

72.91 

91.04 

475 

46.4 

95 

46.83 

57.37 

73.51 

91.79 

480 

46.8 

96 

47.21 

57.83 

74.10 

92.53 

485 

47.1 

97 

47 .  57 

58 .  28 

74.68 

93 .  25 

490 

47.4 

98 

47.95 

58.74 

75.27 

93.98 

495 

47.8 

99 

48.34 

59.22 

75.88 

94.75 

500 

48.1 

100 

48.73 

59.70 

76.50 

95.52 

505 

48.4 

101 

49.12 

60.18 

77.12 

96.29 

510 

48.7 

102 

49.51 

60.65 

77.72 

97.04 

515 

49.0 

103 

49.89 

61.12 

78.32 

97.79 

520 

49.4 

104 

50.28 

61.59 

78.93 

98.54 

525 

49.7 

105 

50  06 

62  06 

79.52 

99.30 

1 

530 

50.0 

106 

51.04 

62.53 

80.13 

100. 0.T 

PHYSICAL  CONSTANTS 


117 


Specific  Gravity  of  Sulphuric  Acid^  at  15°C.,  Compared  to 
Water  at  4°C.     Continued 

Sp.  gr.  at 
15° 

Degrees 
Baum^ 

Degrees 
Twaddell 

100  parts  of  c.p.  acid  contain,  per  cent. 

"4° 

SO3 

H2SO4 

60°B6. 
acid 

50°B^. 
acid 

1.535 
1.540 
1.545 
1.550 

50.3 
50.6 
50.9 
51.2 

107 
108 
109 
110 

51.43 
51.78 
52.12 
52.46 

63.00 
63.43 
63.85 
64.26 

80.73 

81.28 
81.81 
82.34 

100.80 
101.49 
102.16 
102.82 

1.555 
1.560 
1.565 
1.570 
1.575 

51.5 
51.8 
52.1 
52.4 
52.7 

111 
112 
113 
114 
115 

52.79 
53.12 
53.46 
53.80 
54.13 

64.67 
65.08 
65.49 
65.90 
66.30 

82.87 
83.39 
83.92 
84.44 
84.95 

103.47 
104.13 
104.78 
105.44 
106.08 

1.580 
1.585 
1.590 
1.595 
1.600 

53.0 
53.3 
53.6 
53.9 
54.1 

116 
117 
118 
119 
120 

54.46 
54.80 
55.18 
55.55 
55.93 

66.71 
67.13 
67.59 
68.05 
68.51 

85.48 
86.03 
86.62 
87.20 
87.79 

•106.73 
107.41 
108.14 
108.88 
109.62 

1.605 
1.610 
1.615 
1.620 
1.625 

54.4 
54.7 
55.0 
65.2 
55.5 

121     ' 

122 

123 

124 

125 

56.30 
56.68 
57.05 
57.40 
57.75 

68.97 
69.43 
69.89 
70.32 
70.74 

88.38 
88.97 
89.56 
90.11 
90.65 

110.35 
111.09 
111.82 
112.51 
113.18 

1.630 
1.635 
1.640 
1.645 
1.650 

55.8 
56.0 
56.3 
56.6 
56.9 

126 
127 
128 
129 
130 

58.09 
58 .  43 
58.77 
59.10 
59.45 

71.16 
71.57 
71.99 
72.40 

72 .  82 

91.19 
91.71 
92 .  25 
92.77 
93.29 

113.86 
114.51 
115.18 
115.84 
116.51 

1.655 
1.660 
1.665 
1.670 
1.675 

57.1 
57.4 

57.7 
57.9 
58.2 

131 
132 
133 
134 
135 

59.78 
60.11 
60.46 
60.82 
61.20 

73.23 
73.64 
74.07 
74.51 
74.97 

93.81 

94 .  36 
94.92 

95 .  48 
96.07 

117.17 
117.82 
118.51 
119.22 
119.95 

1.680 
1.685 
1.690 
1.695 
1.700 

58.4 
58.7 
58.9 
59.2 
59.5 

136 
137 
138 
139 
140 

61.57 
61.93 
62 .  29 
62.64 
63.00 

75.42 
75.86 
76.30 
76.73 
77.17 

96.65 
97.21 
97.77 
98 .  32 
98.89 

120.67 
121.38 
122.08 
122.77 
123.47 

1,705 
1.710 

59.7 
60.0 

141 
142 

63.35 
63.70 

77.60 
78.04 

99.44 
100.00 

124.16 
124.86 

118     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Specific  Gravity  op  Sulphuric  Acid^  at  15°C.,  Compared  to 
Water  at  4°C.     Conlinued 


Sp.  gr.  at 
15° 


Degrees 
Baumd 


Degrees 
Twaddell 


100  parts  of  c.p.  acid  contain,  per  cent. 


SOs 


H2SO1 


acid  acid 


1.715 
1.720 
1.725 

1.730 
1.735 
1.740 
1.745 
1.750 

1.755 
1.760 
1.765 
1.770 
1.775 

1.780 
1.785 
1.790 
1.795 
1.800 

1.805 
1.810 
1.815 
1.820 
1.821 

1.822 
1.823 
1.824 
1.825 
1.826 

1.827 
1.828 
1.829 
1.830 
1.831 

1.832 
1.833 


60.2 
60.4 
60.6 

60.9 
61.1 
61.4 
61.6 
61.8 

62.1 
62.3 
62.5 
62.8 
63.0 

63.2 
63.5 
63.7 
64.0 
64.2 

64.4 
64.6 
64.8 
65.0 


65.1 


65.2 


65.3 


65.4 


65.5 

65 .6 


143 
144 
145 

146 
147 
148 
149 
150 

151 

152 
153 
154 
155 

156 
157 
158 
159 
160 

161 
162 
163 
164 


165 


166 


64.07 
64.43 
64.78 

65.14 
65.50 
65.86 
66 .  22 
66.58 

66.94 
67.30 
67.65 
68.02 
68.49 

68.98 
69.47 
69.96 
70.45 
70.94 

71.50 
72.08 
72.69 
73.51 
73.63 

73.80 
73.96 
74.12 
74.29 
74.49 

74.69 
74.86 
75.03 
75.19 
75.35 

75 .  53 
75.72 


78.48 
78 .  92 
79.36 

79.80 
80.24 
80.68 
81.12 
81.56 

82.00 
82.44 
82.88 
83.32 
83.90 

84.50 
85.10 
85.70 
86.30 
86.90 

87.60 
88.30 
89.05 
90.05 
90.20 

90.40 
90.60 
90.80 
91.00 
91.25 

91.50 
91.70 
91.90 
92.10 
92.30 

92.52 
92.75 


100.56 
101.13 
101.69 

102.25 
102.82 
103.38 
103 . 95 
104.52 

105.08 
105.64 
106.21 
106.77 
107.51 

108.27 
109 . 05 
109 . 82 
110.58 
111.35 

112.25 
113.15 
114.11 
115.33 
115.59 

115.84 
116.10 
116.35 
116.61 
116.93 

117.25 
117.51 
117.76 
118.02 
118.27 

118.56 
118.85 


PBCIFIC 

PHYSICAL  CONSTANTS                       119 

Gravity  of  Sulphuric  Acid^  at  15°C.,  Compared  to 
Water  at  4^C.     Continued 

3p.  gr.  at 
15° 
4° 

Degrees 
Baumfi 

Degrees 
Twaddell 

100  parts  of  c.p.  acid  contain,  per  cent. 

SO3 

H2S04 

60°B6.    1     SOOfiS. 
acid       1     acid 

1.834 
1.835 
1.836 

1.837 
1.838 
1.839 
1.840 
1.8405 

1.8410 
1.8415 
1.8410 
1.8405 
1.8400 

1.8395 
1.8390 
1.8385 

75.96 

76.27 
76.57 

76.90 
77.23 
77.55 
78.04 
78.33 

79.19 

79.76 
80.16 
80.57 
80.98 

81.18 
81.39 
81.59 

93.05 
93.43 
93.80 

94.20 
94.60 
95.00 
95.60 
95.95 

97.00 
97.70 
98.20 
98.70 
99.20 

99.45 
99.70 
99.95 

119.23 
119.72 
120.19 

120.71 
121.22 
121.74 
122.51 
122.96 

124.30 
125.20 
125.84 
126.48 
127.12 

127.44 
127.76 
128.08 

148  88 

65.7 

167      . 

149.49 
150  08 

150  72 

65.8 

151.36 
152  00 

65.9 

168 

152 . 96 
153.52 

155  20 

156  32 

157  12 

157  92 

158  72 

159.12 

159  52 

159  92 

'  According  to  Lunge  and  Isle r;  and  Lunge  and  Naef.  Lunge,  "The 
Manufacture  of  Sulphuric  Acid  and  Alkali,"  D.  Van  Nostrand  &  Co.,  New 
i'ork. 

To  reduce  specific  gravities  observed  at  other  temperatures 
than  15°C.  to  15°C.,  roughly:  For  each  degree  above  or  below 
15°,  add  to  or  subtract  from  the  specific  gravity  observed: 
0 .  0006  with  acids  to  1 .  170 
0.0007  withacids  from  1 .  170  to  1 .450 
0 .  0008  with  acids  from  1 .  450  to  1 .  580 
0 .  0009  with  acids  from  1 .  580  to  1 .  750 
0. 0010  with  acids  from  1 .  750  to  1 . 840 


Per  cent.  Per  cent.     Per  cent.  Boils  Melts 

H2SO4  66°  acid      60°  acid  at  at 

66°  acid  =  93.19  =  100.00  =  119.98  538°r.  -29°F. 

60°  acid  =  77.67  =  83.35  =  100.00  386°F.  +12°F. 

50°  acid  =  62.18  =  66.72  =    80.06  295°F.  -27°F. 


Sp.  gr. 

1.8354 
1 . 7059 
1 . 5263 


Note. — The  table  given  on  pp.  114  to  119  is  used  by  the  dye- 
tnakers,  that  on  pp.  120  and  121  by  the  acid  manufacturers 
and  powder  plants.  The  differences  are  in  the  third  or  fourth 
figures  and  are  probably  less  than  the  errors  of  observation. 
The  New  Jersey  Zinc  Co.  uses  figures  differing  slightly  from 
both  tables. 


120     METALLrRGISTS  AND  CHEMISTS'  HANDBOOK 

Specific  Gramtv  of  Sulphuric  Acid  at  GOT.,  Compaukp 
WITH  Water  at  60° F. 

Tiiia  table  is  the  one  approved  and  adopted  as  a  standard  by  the  Manu- 
facturing Chemists  Association  of  the  United  States.     (See  note  on  p.  119.) 


Degrees 
Baum6 

Sp.  gr.  at 
60° 
60° 

Degrees 
Twaddell 

W>.  of 

1  cu.  ft.  in 
11).  Avoir. 

Per  cent. 
H2SO4 

I.b.  of  6f>° 
acid  in 
1  cu.  ft. 

Mtlting 

(or  frcczinc^ 

point,  °1'. 

0 

1.0000 

0.0 

62.37 

0.00 

0.00 

32.0 

1 

1.0069 

1.4 

62.80 

1.02 

0.68 

31.2 

2 

1.0140 

2.8 

63.24 

•   2.08 

1.41 

30.5 

3 

1.0211 

4.2 

63 .  69 

3.13 

2.14 

29.8 

4 

1.0284 

5.7 

64.14 

4.21 

2.90 

28.9 

5 

1.0357 

7.1 

64.60 

5.28 

•  3.66 

28.1 

6 

1.0432 

8.6 

65.06 

6.37 

4.45 

27.2 

7 

1.0507 

10.1 

65.53 

7.45 

5.24 

26.3 

8 

1.0584 

11.7 

66.01 

8.55 

6.06 

25.1 

9 

1.0662 

13.2 

66.50 

9.66 

6.89 

24.0 

10 

1.0741 

14.8 

66.99 

10.77 

7.74 

22.8 

11 

1.0821 

16.4 

67.49 

11.89 

8.61 

21.5 

12 

1.0902 

18.0 

68.00 

13.01 

9.49 

20,0 

13 

1.0985 

19.7 

68.51 

14.13 

10.39 

18.3 

14 

1.1069 

21.4 

69 . 04  • 

15.25 

11.30 

16,6 

15 

1.1154 

23.1 

69.57 

16.38 

12.23 

14.7 

16 

1 . 1240 

24.8 

70.10 

17.53 

13.19 

12.6 

17 

1.1328 

26.6 

70.65 

18.71 

14.18 

10.2 

18 

1.1417 

28.3 

71.21 

19.89 

15.20 

7.7 

19 

1 . 1508 

30.2 

71.78 

21.07 

16.23 

4.8 

20 

1.1600 

32.0 

72.35 

22.25 

17:27 

+  1.6 

21 

1 . 1694 

33.9 

72.94 

23.43 

18.34 

-1.8 

22 

1.1789 

35.8 

73 .  53 

24.61 

19.42 

-6.0 

23 

1.1885 

37.7 

74.13 

25.8] 

20.53 

-11.0 

24 

1 . 1983 

39.7 

74.74 

27.03 

21.68 

-16.0 

25 

1.2083 

41.7 

75.36 

28.28 

22.87 

-23.0 

26 

1.2185 

43.7 

76.00 

29.53 

24.08 

-30.0 

27 

1.2288 

45.8 

76.64 

30.79 

25.32 

-39,0 

28 

1.2393 

47.9 

77.30 

32,05 

26.58 

-49,0 

29 

1.2500 

50.0 

77.96 

33.33 

27.88 

-61,0 

30 

1.2609 

52.2 

78.64 

34.63 

29.22 

-74,0 

31 

1.2719 

54.4 

79.33 

35.93 

30.58 

-82,0 

32 

1.2832 

56.6 

80.03 

37.26 

32.00 

-96.0 

33 

1.2946 

58.9 

80.74 

38.58 

33.42 

-97.0 

34 

1.3063 

61.3 

81.47 

39.92 

34.90 

-91.0 

35 

1.3182 

63.6 

82.22 

41.27 

36.41 

-81.0 

36 

1.3303 

66.1 

82.97 

42.63 

37.95 

-70.0 

37 

1.3426 

68.5 

83.74 

43.99 

39.53 

-60,0 

38 

1.3551 

71.0 

84.52 

45 .  35 

41.13 

-53  0 

39 

1.3679 

73.6 

85.32 

46.72 

42.77 

-47,0 

40 

1.3810 

76.2 

86.13 

48.10 

44.45 

-41,0 

PHYSICAL   CONSTANTS" 


121 


Specific  GRA\^TY  of  Sulphuric  Acid  at  60°  F.,   Compared 
vriTK  Water  at  60°F. 

This  table  is  the  one  approved  and  adopted  as  a  standard  by  the  Manu- 
facturing Chemists  Association  of  the  United  States.     (See  note  on  p.  119.) 


Degrees 
Baum6 

Sp.  gr.  at 
60° 
60° 

Degrees 
Twaddell 

Wt.  of 
I  cu.  ft.  in 
lb.  Avoir. 

Per  cent. 
.  H2SO4 

Lb.  of  66° 
acid  in 
1  cu.  ft. 

Melting 

(or  freezing) 

point,  °F. 

41 

1.3942 

78.8 

86.96 

49.47 

46.16 

-35.0 

42 

1 . 4078 

81.6 

87.80 

50.87 

47.92 

-31.0 

43 

1.4216 

84.3 

88.67 

52.26 

49.72 

-27.0 

44 

1.4356 

87.1  ; 

89.54 

53.66 

51.56 

-23.0 

45 

1.4500 

90.0 

90.44 

55.07 

53.44 

-20.0 

46 

1. '646 

92.9 

91.35 

56.48 

55.36 

-14.0 

47 

1.4796 

95.9 

92.28 

57.90 

57.33 

-15.0 

48 

1 . 4948 

99.0 

93 .  23 

59.32 

59.34 

-18.0 

49 

1.5104 

102.1 

94.20 

60.75 

61.40 

-22.0 

50 

1.5263 

105.3 

95.20 

62.18 

63.52 

-27.0 

51 

1 . 5426 

108.5 

96.21 

63.66 

65.72 

-33.0 

52 

1.5591 

111.8 

97.24 

65.13 

67.96 

-39.0 

53 

1.5761 

115.2 

98.30 

66.63 

70.28 

-49.0 

54 

1 .  5934 

118.7    : 

99.38 

68.13 

72.66 

-59.0 

55 

1.6111 

122.2 

100.48 

69.65 

75.10 

56 

1 . 6292 

125.8  i 

101.61 

71.17 

77.60 

57 

1.6477 

129.5  1 

102.77 

72.75 

80.23 

58 

1 .  6667 

133.3 

103.95 

74.36 

82.95 

59 

1.6860 

137.2  ; 

105.16 

75.99 

85 .  75 

-7.0 

60 

1.7059 

141.2 

106.40 

77.67 

88.68 

+  12.6 

61 

1.7262 

145.2 

107.66 

79.43 

91.76 

+27.3 

62 

1 . 7470 

149.4  1 

108 . 96 

81.30 

95.06 

+39.1 

63 

1.7683 

153.7 

110.29 

83.34 

98.63 

+46.1 

64 

1 .  7901 

158.0  i 

111.65 

85 .  66 

102.63 

+46.4 

65 

1.8125 

162.5 

113.05 

88.65 

107 . 54 

+33.1 

66 

1 . 8354 

167.1 

114.47 

93.19 

114.47 

-29.0 

HiS04  •  HoO 
H2SO4  •  2H2O 


63.2°Be.  approx.  =83.74  per  cent.  H2SO4. 
56.9°B6.  approx.  =72.59  per  cent.  H2SO4. 


Temperature  Corrections 
For  each  degree  in  observed  temperature  above  60°F.  add  the 
correction  to  the  observed  specific  gravity  to  get  the  true  specific 
gravity  at  60°.     For  each  degree  below  60°,  subtract. 

For  10°Be.  acid.  0.029  Be.  or  0.00023  sp.  gr.  per  deg.  F. 
Be.  or  0 .  00034  sp.  gr.  per  deg.  F. 
Be.  or  0 .  00039  sp.  gr.  per  deg.  F. 
Be.  or  0.00041  sp.  gr.  per  deg.  F. 
B6.  or  0.00045  sp.  gr.  per  deg.  F. 
Be.  or  0.00053  sp.  gr.  per  deg.  F. 
B6.  or  0 .  00057  sp.  gr.  per  deg.  F. 


For  20°Be.  acid,  0.036 
For  30°Be.  acid,  0.035 
For  40°Be.  acid,  0.031 
For  50^Bc.  acid,  0.028 
For  60°Be.  acid,  0 .  026 
For  63°Be.  acid,  0.026 


For  66°Be.  acid,  0.0235  Be.  or  0.00054  sp.  gr.  per  deg.  F. 


122     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Specific 

Gr.wity  of  Hydrochlori 

c  Acid 

Sp.  gr. 
15° 

Degrees 

Degrees 

100  parts  acid  contain  by 

veight 

Baurn6 

Twaddell 

Per  cent., 

Per  cent., 

Per  cent,. 

Per  cent. 

4° 

HCl 

18°  a  id 

20°  acid 

22°  acid 

1.000 

0.0 

0.0 

0.16 

0.57 

0.49 

0.45 

005 

0.7 

1 

1.15 

4.08 

3.58 

3.25 

010 

1.4 

2 

2.14 

7.60 

6.66 

6.04 

015 

2.1 

3 

3.12 

11.08 

9.71 

8.81 

020 

2.7 

4 

4.13 

14.67 

12.86 

11.67 

025 

3.4 

5 

5.15 

18.30 

16.04 

14.55 

030 

4.1 

6 

6.15 

21.85 

19.16 

17.38 

035 

4.7 

7 

7.15 

25.40 

22.27 

20,20 

040 

5.4 

8 

8.16 

28.99 

25.42 

23,00 

045 

6.0 

9 

9.16 

32.55 

28.53 

25 ,  88 

050 

6.7 

10 

10.17 

36.14 

31.68 

28,74 

055 

7.4 

11 

11.18 

39.73 

34,82 

31,59 

060 

8.0 

12 

12.19 

43.32 

37.97 

34,44 

065 

8.7 

13 

13.19 

46.87 

41.09 

37,27 

070 

9.4 

14 

14.17 

50.35 

44.14 

40,04 

075 

10.0 

15 

15.16 

53.87 

47.22 

42,84 

080 

10.6 

16 

16.15 

57.39 

50.31 

45,63 

085 

11.2 

17 

17.13 

60.87 

53.36 

48,40 

090 

11.9 

18 

18.11 

64.35 

56.41 

51.17 

095 

12.4 

19 

19.06 

67.73 

59.37 

53 .  86 

100 

13.0 

20 

20.01 

71.11 

62.33 

56.54 

105 

13.6 

21 

20.97 

74.52 

65.32 

59.26 

110 

14.2 

22 

21.92 

77.89 

68.28 

61.94 

115 

14.9 

23 

22.86 

81.23 

71.21 

64.60 

120 

15.4 

24 

23,82 

84.64 

74.20 

67.31 

125 

16.0 

25 

24.78 

88.06 

77.19 

70.02 

130 

16.5 

26 

25 .  75 

91.50 

80.21 

72.76 

135 

17.1 

27 

26.70 

94.88 

83.18 

75.45 

140 

17.7 

28 

27 .  06 

98.29 

86.17 

78.16 

145 

18.3 

29 

28.61 

101.67 

87.66 

79.51 

150 

18.8 

30 

29 .  57 

105.08 

92.11 

83 ,  55 

155 

19.3 

31 

30,55 

108.58 

95.17 

86.32 

160 

19.8 

•     32 

31.52 

112.01 

98.19 

89.07 

165 

20.3 

33 

32.49 

115.46 

101.21 

91,81 

170 

20.9 

34 

33 ,  46 

118.91 

104.24 

94.55 

175 

21.4 

35 

34.42 

122 . 32 

107.22 

97.26 

180 

22.0 

36 

35.39 

125.76 

110.24 

100.00 

185 

22.5 

37 

36.31 

129.03 

131.11 

102.60 

190 

23.0 

38 

37.23 

132.30 

115.98 

105.20 

195 

23.5 

39 

38.16 

135.61 

118.87 

107.83 

200 

24.0 

40 

39.11 

138.98 

121.84 

110.51 

Thi.s  table  is  taken  from  Lun^e.  Other  authorities  differ, 
giving  in  one  case  as  much  as  40.78  per  cent,  of  HCl  in  1.20 
sp.  gr.  acid. 


PHYSICAL  < 

30XSTAXTS 

123 

Specifi 

c  Gravity  of  Xitric  Acid 

AT    15° 

CoMP.\RED    WITH 

W.\TER  .\T  4^^ 

Sp.  gr. 
15° 

1 

100  parts  ( 

jf  acid  contain  by  w 

eight 

Degrees 

Degrees 

1°" 

Baum6 

Twaddell 

N2O6 

HNO3 

38°  acid 

[  40°  acid 

1 

48.5° 
acid 

1.000 

0.0 

0 

0.08 

0.10 

0.19 

0.16 

0.10 

1.005 

0.7 

1 

0.85 

1.00 

1.89 

1.61 

1.03 

1.010 

1.4 

2 

1.62 

1.90 

3.60 

3.07 

1.95 

1.015 

2.1 

3 

2.39 

2.80 

5.30 

4.52 

2.87 

1.020 

2.7 

4 

3.17 

3.70 

7.01 

5.98 

3.79 

1.025 

3.4 

5 

3.94 

4.60 

8.71 

7.43 

4.72 

1.030 

4.1 

6 

4.71 

5.50 

10.42 

8.88 

5.64 

1.035 

4.7 

7 

5.47 

6.38 

12.08 

10.30 

6.54 

1.040 

5.4 

8 

6.22 

7.26 

13.75 

11.72 

7.45 

1.045 

6.0 

9 

6.97 

8.13 

15.40 

13.13 

8.34 

1.050 

6.7 

10 

7.71 

8.99 

17.03 

14.52 

9.22 

1.055 

7.4 

11 

8.43 

9.84 

18.64 

15.89 

10.09 

1.060 

8.0 

12 

9.15 

10.68 

20.23 

17.25 

10.95 

1.065 

8.7 

13 

9.87 

11.51 

21.80 

18.59 

11.81 

1.070 

9.4 

14 

10.57 

12.33 

23.35 

19.91 

12.65 

1.075 

10.0 

15 

11.27 

13.15 

24.91 

21.24 

13.49 

1.080 

10.6 

16 

11.96 

13.95 

26.42 

22.53 

14.31 

1.085 

11.2 

17 

12.64 

14.74 

27.92 

23.80 

15.12 

1.090 

11.9 

18 

13.31 

15.53 

29.41 

25.08 

15 .  93 

1.095 

12.4 

19 

13.99 

16.32 

30.91 

26.35 

16.74 

1.100 

13.0 

20 

14.67 

17.11 

32.41 

27.63 

17.55 

1.105 

13.6 

21 

15.34 

17.89 

33.89 

28.89 

18.35 

1.110 

14.2 

22 

16.00 

18.67 

35.36 

30.15 

19.15 

1.115 

14.9 

23   . 

16.67 

19.45 

36.84 

31.41 

19.95 

1.120 

15.4 

24 

17.34 

20.23 

38.31 

32.67 

20.75 

1.125 

16.0 

25 

18.00 

21.00 

39.77 

33.91 

21.54 

1.130 

16.5 

26 

18.66 

21.77 

41.23 

35.16 

22.23 

1.135  , 

17.1 

27 

19.32 

22.54 

42.69 

36.40 

23.12 

1.140 

17.7 

28 

19.98 

23.31 

44.15 

37.65 

23.91 

1.145 

18.3 

29 

20.64 

24.08 

45.61 

38.89 

24.70 

1.150 

18.8 

30 

21.29 

24.84 

47.05 

40.12 

25.48 

1.155  1 

19.3 

31 

21.94 

25.60 

48.49 

41.35 

26.26 

1.160 

19.8 

32 

22.60 

26.36 

49.92 

42.57 

27.04 

1.165 

20.3 

33 

23.25 

27.12 

51.36 

43.80 

27.82 

1.170 

20.9 

34 

23.90 

27.88 

52.80 

45.03 

28.59 

1.175 

21.4    1 

35 

24.54.28.63 

54.22 

46.24 

29.36 

1.180 

22.0    ! 

36      : 

25.18,29.38 

55.64 

47.45 

30.13 

124     MEIWLLURGISTS  AND  CHEMISTS'  HANDBOOK 


Specific   Gravity  of  Nitric  Acid  at  15"   Compared  with 
Water  at  4".     Conlitnicd 


J50  ■'   j  Degrees  |   Degrees 
—5-      ;   Baum6   ,  Twaddell 


100  parts  of  acid  contain  by  weight 


NjOf      HNO3     38°  acid    40°  acid       ^°^P^ 


1.185 
1.190 
1.195 
1.200 

1.205 
1.210 
1.215 
1.220 
1.225 

1.230 
1.235 
1.240 
1.245 
1.250 

1 .  255 
1.260 
1.2G5 
1 .  270 
1.275 

1.280 
1.285 
1.290 
1.295 
1.300 

1.305 
1.310 
1.315 
1.320 
1.325 

1.330 
1 .  335 
1.340 
1.345 
1.350 


22.5 
23.0 
23.5 
24.0 

24.5 
25.0 
25.5 
26.0 
26.4 

26.9 

27.4 
27.9 
28.4 
28.8 

29.3 
29.7 
30.2 
30.6 
31.1 

31.5 
32.0 
32.4 
32.8 
33.3 

33.7 
34.2 
34.6 
35.0 
35.4 

35.8 
36.2 
36.6 
37.0 
37.4 


37 
38 
39 
40 

41 

42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 

57 
58 
59 
60 

61 
62 
63 
64 
65 

66 
67 
68 
69 
70 


25.83  30.13 
26.47  30.88 
27.10131.62 
27. 74|  32.36 

28.36  33.09 
28.99133.82 
29.61  34.55 


30.24 
30.88 

31.53 
32.17 
32.82 
33.47 
34.13 


35.28 
36.03 

36.78 
37.53 
38.29 
39.05 
39.82 


34.78  40.58, 
35.44  41.34, 


36.09 
36.75 
37.41 

38.07 
38.73 
39.39 
40.05 
40.71 


42.10 
42.87 
43.64 

44.41 
45.18 
45.95 
46.72 
47.49 


41.37148.28 
42.06  49.071 
42.76  49. 89[ 
43.471  50.711 
44.17151.53' 
1 

44.89  52.37 
45.62  53.22 
46.35  54.07 
47.08  54.93 
47.82,55.79 


57.07 
58.49 
59.89 
61.29 

62.67 
64.05 
65 .  44 
66.82 
68.24 

69.66 
71.08 
72.52 
73 .  96 
75.42 

76.86 
78.30 
79.74 
81.20 
82.65 

84.11 

85.57 
87.03 
88.48 
89.94 

91.40 
92.94 
94 .  49 
96 .  05 
97.60 

99.19 
100.80 
102.41 
104.04 
105.67 


1.355      37.8    '      71       48.57,56.66  107.31 


48.66 
49.87 
51.07 
52.26 

53.23 
54  21 
55.18 
56.16 
57.64 

59.13 
60.61 
61.84 
63.07 
64.31 

65.54 
66.76 
67.99 
69.23 
70.48 

71.72 
72 .  96 
74.21 
75.45 
76.70 

77.94 
79 .  25 
80.57 
81.90 
83.22 
I 

84.581 
85.95 
87 . 32  I 
88.71 1 
90.101 

91.51, 


PHYSICAL  CONSTANTS 


125 


Specific  Gravity  of  Nitric  Acid  at  15°  Compared  with 
Water  at  4°.     Continued 


Sv   •" 

100  parts  of  acid  contain  by  weight 

op 

15°' 

Degrees 

Degrees 

4° 

Baum6 

Twaddell 

NiOs     HNO3 

38°  acid 

40° -"d       48. .5° 

360 

38.2 

72 

49 

35 

57.57 

109 

03 

92.97 

59.05 

365 

38.6 

73 

50 

13 

58.48 

110 

75 

94.44 

59.98 

370 

39.0 

74 

50 

91 

59.39 

112 

48 

95.91 

60.91 

375 

39.4 

75 

51 

69  60.30 

114 

20 

97.38 

61.85 

380 

39.8 

76 

52 

52 

61.27 

116 

04 

98.95 

62.84 

385 

40.1 

77 

53 

35 

62.24 

117 

88 

100.51 

63.84 

390 

40.5 

78 

54 

20 

63.23 

119 

75 

102.12 

64.85 

395 

40.8 

79 

55 

07 

64.25 

121 

68 

103.76 

65.90 

400 

41.2 

80 

55 

97 

65.30 

123 

67 

105.46 

66.97 

405 

41.6 

81 

56 

92 

66.40 

125 

75 

107.24 

68.10 

410 

42.0 

82 

57 

86 

67.50 

127 

84 

109.01 

69.23 

415 

42.3 

83 

58 

83 

68.63 

129 

98 

110.84 

70.39 

420 

42.7 

84 

59 

83 

69.80 

132 

19 

112.73 

71.59 

425 

43.1 

85 

60 

84 

70.98 

134 

43 

114.63 

72.80 

430 

43.4 

86 

61 

86 

72.17 

136 

68 

116.55 

74.02 

435 

43.8 

87 

62 

91 

73.39 

138 

99 

118.52 

75.27 

440 

44.1 

88 

64 

01 

74.68 

141 

44 

120.61 

76.59 

445 

44.4 

89 

65 

13 

75.98 

143 

90 

122.71 

77.93 

450 

44.8 

90 

66 

24 

77.28 

146 

36 

124.81 

79.26 

455 

45.1 

91 

67 

38 

78.60 

148 

86 

126.94 

80.62 

460 

45.4 

92 

68 

56 

79.98 

151 

47 

129.17 

82.03 

465 

45.8 

93 

69 

79 

81.42 

154 

20 

131.49 

83.51 

470 

46.1 

94 

71 

06 

82.90 

157 

00 

133.88 

85.03 

.475 

46.4 

95 

72 

39 

84.45 

159 

04 

136.39 

86.62 

.480 

46.8 

96 

73 

76 

86.05 

162 

97 

138.97 

88.26 

.485 

47.1 

97 

75 

13 

87.70 

166 

09 

141.63 

89.95 

.490 

47.4 

98 

76 

SO 

89.60 

169 

69 

144.70 

91.90 

.495 

47.8 

99 

78 

52  91.60 

173 

48 

147.93 

93.95 

.500 

48.1 

100 

80 

65  94.09 

178 

19 

151.99 

96.50 

.505 

48.4 

101 

82 

63  96.39 

182 

55 

155.67 

98.86 

.510 

48.7 

102 

84 

09  98.10 

185 

.79 

158.43 

100 . 62 

.515 

49.0 

103 

84 

92  99.07 

187 

.63 

160.00 

101.61 

.520 

49.4 

104 

85 

44  99.67 

188 

.77 

160.97 

102.23 

126     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Specific  Gravity  of  Ammonia  Water  at  15°C.  Compared 
WITH  NVater  of  15°C. 


Spr.  gr. 
15° 
15° 

Per  cent. 
NH.OH 

Correction 

to  sp.  gr.  for 

±1°C. 

Sp.  gr. 
15° 
15° 

Per  cent. 
NH4OH 

Correction 

to  sp.  gr.  for 

±  1°C. 

1.000 

0.00 

0.00018 

0.940 

15.63 

0.00039 

0.998 

0.45 

0.00018 

0.938 

16.22 

0.00040 

0.996 

0.91 

0.00019 

0.936 

16.82 

0.00041 

0.994 

1.37 

0.00019 

0.934 

17.42 

0.00041 

0.992 

1.84 

0.00020 

0.932 

18.03 

0.00042 

0.990 

2.31 

0.00020 

0.930 

18.64 

0.00042 

0.988 

2.80 

0.00021 

0.928 

19.25 

0.00043 

0.986 

3.30 

0.00021 

0.926 

19.87 

0.00044 

0.984 

3.80 

0.00022 

0.924 

20.49 

0.00045 

0.982 

4.30 

0.00022 

0.922 

21.12 

0,00046 

0.980 

4.80 

0.00023 

0.920 

21.75 

0.00047 

0.978 

5.30 

0.00023 

0.918 

22.39 

0.00048 

0.976 

5.80 

0.00024 

0.916 

23.03 

0.00049 

0.974 

6.30 

0.00024 

0.914 

23.68 

0.00050 

0.972 

6.80 

0.00025 

0.912 

24.33 

0.00051 

0.970 

7.31 

0.00025 

0.910 

24.99 

0 . 00052 

0.968 

7.82 

0.00026 

0.908 

25.65 

0.00053 

0.966 

8.33 

0.00026 

0.906 

26.31 

0.00054 

0.964 

8.84 

0.00027 

0.904 

26.98 

0.00055 

0.962 

9.35 

0.00028 

0.902 

27.65 

0.00056 

0.960 

9.91 

0.00029 

0.900 

28.33 

0.00057 

0.958 

10.47 

0.00030 

0.898 

29.01 

0.00058 

0.956 

11.03 

0.00031 

0.896 

29.69 

0.00059 

0.954 

11.60 

0.00032 

0.894 

30.37 

0.00060 

0.952 

12.17 

0.00033 

0.892 

31.05 

0.00050 

0.950 

12.74 

0.00034 

0.890 

31.75 

0.00061 

0.948 

13.31 

0.00035 

0.888 

32.50 

0.00062 

0.946 

13.88 

0.00036 

0.886 

33.25 

0.00063 

0.944 

14.46 

0.00037 

0.884 

34.10 

0.00064 

0.942 

15.04 

0.00038 

0.882 

34.95 

0.00065 

This  and  the  nitric-acid  table  immediately  preceding  are  reprinted  by  courtesy 
of  the  D.  van  Nostrand  Co.,  New  York,  from  Lunge's  "Sulphuric  Acid  and 
Alkali." 


PHYSICAL  CONSTANTS 


12: 


Specific  Gravity  of  Caustic  Potash  Solutions  at  15°C.i 

( Grams  KOH  per  100  grams  solution) 


Sp.  gr. 

Per  cent., 
KOH 

a      „,           Per  cent*., 
Sp-  er-       1       KOH 

Sp.  gr. 

Per  cent., 
KOH 

1.036 
1.077 
1 .  124 
1.175 
1  230 

5 
10 
15 
20 
25 

1.288 
1.349 
1.411 
1.475 
1.539 

30 
35 
40 
45 
50 

1.604 
1.667 
1.729 
1.790 

55 
60 
65 
70 

1 

'  This  and  the  succeeding  14  tables  are  from  Cremer  &  Bicknell's 
Chemical  and  Metallurgical  Handbook.  They  are  originally  from  the  work  of 
Kohlrausch  and  Holborn,  Gerlach,  Schiff,  etc. 

Specific  Gravity  of  Caustic  Soda  Solutions  at  15°C. 


•      Sp.  gr. 

Per  cent., 
NaOH 

Sp.  gr. 

Per  cent., 
NAOH 

Q„    „        1  Per  cent.. 

1.059 
1.115 
1.170 
1.225 
1  279 

5 
10 
15 

20 
25 

1.332 

1.384 
1.437 
1.488 
1.540 

30 

35 
40 
45 
50 

1.591 
1.643 
1.695 

1.748 

55 
60 
65 
70 

1 

Specific  Gr-wit-j 

•  of  Hydrofluosilicic  Acid  at  15°C. 

e„    „,           Per  cent., 
SP-«^-       1     H=SiF6 

s.,    „,           Per  cent., 
■■^P.  gr...    1      jj.SiFe 

J                  '  Per  cent., 
■^P-S^-        1     H2SiF. 

1.0407 
1.0834 
1.1281 

5 

10 
15 

1.1748     1       20 
I . 2235            25 

1 . 2742 

1.3162 

30 
34 

Specific  Gravity  of  Sodiu.m  Chloride  Solutions  at  15°C. 


Per  cent.. 

Per  cent.. 

Sp.  gr. 

Per  cent., 

Sp.  gr. 

XaCI 

Sp.  gr. 

NaCl 

NaCl 

1.00725 

1 

1.07335 

10 

1.14351 

19 

1.01450 

2 

08097 

11 

1.15107 

20 

1.02174 

3 

0S859 

12 

1.15931 

21 

1.02899 

4 

09522 

13 

1.16755 

22 

1.03624 

5 

10384 

14 

1.17580 

23 

1.04366 

6 

11146 

15 

1.18404 

24 

1.05108 

7 

11938 

16 

1.19228 

25 

1.05851 

8 

12730 

17 

1.20098 

26 

1.06593 

9 

13523 

18 

1 . 20433 

26.3951 

'  (Sat.) 


128     MET.\LLURGISTS  AND  CHEMISTS' HANDBOOK 


Specific  Gravity  of  C.\lcium  Chloride  SoLtrTiONS  at  15°C. 


Q„    „,        '  Pp""  pent., 

Cr,    „,         '  Per  cent.. 
^P-  e---        j       CaCh 

Sp.  gr. 

Per  opnt., 
CaClj 

1.01704 
1.03407 
1.05146 
1.06921 
1 . 08695 
1 . 10561 
1.12427 

2 

4 

6 

8 

10 

12 

14 

1.14332 
1.16277 
1.18222 
1.20279 
1.22330 
1.24450 
1.26619 

16 
18 
20 
22 
24 
26 
28 

1.28789 
1.31045 
1 . 33302 
1.35610 
1.37970 
1.40330 
1.41104 

30 
32 
34 

36 

38 

40 

46.46 

Specific  Gravity  of  Zixc  Chloride  at  19. 

5°C. 

Sp.  gr. 

Per  cent., 

Sp.  gr. 

Per  cent., 

ZnCh 

ZnCh 

.•>p.  gr. 

1      ZnCh 

1.045 

5 

1.238 

25 

1.488 

45 

1.091 

10 

1.291 

30 

1.566 

1       50 

1.137 

15 

1.352 

35 

1.650 

1       55 

1.187 

20 

1.420 

40 

1.740 

1       00 

Specific  Gr.wity  of  Ferric  Chloride   Solutions  at  17.5°C. 


Per  cent., 

Per  cent., 

Per  cent.. 

Sp.  gr. 

FeClj 

Sp.  gr. 

FeClj 

Sp.  gr. 

FeCU 

1.0146 

2 

1 . 1746 

22 

1.3870 

42 

1.0292 

4 

1.1050 

•     24 

1.4118 

44 

1.0439 

6 

1.2155 

26 

1 . 4367 

46 

1.0587 

8 

1 . 2365 

28 

1.4617 

48 

1.0734 

10 

1 . 2568 

30 

1 . 4867 

50 

1.0894 

12 

1.2778 

32 

1.5153 

52 

1.1054 

14 

1 . 2988 

34 

1 . 5439 

54 

1.1215 

16 

1.3199 

36 

1 . 5729 

56 

1.1378 

18 

1.3411 

38 

1 . 6023 

58 

1.1542 

20 

1.3622 

40 

1.0317 

00 

Specific  Gravity  of  Cuprous  Chloride  Solutions  at  17.5°C. 


Per  cent.. 

Per  cent., 

Sp.  gr. 

CuClj 

Sp.  gr. 

CuCh 

Sp.  gr. 

CuCU 

1.0182 

2 

1.1696 

16 

1.3618 

30 

1.0364 

4 

1.1958 

18 

1.3050 

32 

1.0548 

6 

1 . 2223 

20 

1.4287 

34 

1.0734 

8 

1 . 2501 

22 

1.4615 

36 

1.0020 

10 

1.2779 

24 

1.4049 

38 

1.1178 

12 

1.3058 

26 

1 . 5284 

40 

1    1436 

14 

1 .  3338 

28 

PHYSICAL  CONSTANTS 


129 


Specific  Gravity  of  Lead  Acetate  Solutions  at  15°C. 


f  er  cent., 

Per  cent., 

Per  cent., 

Sp.  gr. 

PbAj 

Sp.  gr. 

PbA2 

Sp.  gr. 

PbA2 

1.0127 

2 

1 . 1384 

20 

1 . 2967 

38 

1.0255 

4 

1 . 1544 

22   ■ 

1.3163 

40 

1.0386 

6 

1.1704 

24 

1.3376 

42 

1.0520 

8 

1.1869 

26 

1.3588 

44 

1.0654 

10 

1 . 2040 

28 

1.3810 

46 

1.0796 

12 

1.2211 

30 

1.4041 

48 

1.0939 

14 

1.2395 

32 

1.4271 

50 

1.1084 
1.1234 

16 

18 

1.2578 
1 . 2768 

34 
36 

Specific  Gravity  of  Ferric  Sulphate  Solutions  at  17.5°C. 


Per  cent., 

Per  cent., 

Per  cent.. 

Sp.  gr. 

Fe2(S04)3 

Sp.  gr. 

Fe2(S04)3 

Sp.  gr. 

Fe2(S04)3 

1.0170 

2 

1.2066 

22 

1 . 4824 

42 

1.0340 

4 

1.2306 

24 

1.5142 

44 

1.0512 

6 

1 . 2559 

26 

1 . 5468 

46 

1.0684 
1.0854 

8 

1 . 2825 

28 
30 

1.5808 
1.6148 

48 

10 

1.3090 

50 

1 . 1042 

12 

1.3368 

32 

1 . 6508 

52 

1 . 1230 

14 

1.3646 

34 

1 . 6868 

54 

1.1424 

16 

1.3927 

36 

1.7241 

56 

1.1624 

18 

1.4217 

38 

1 . 7623 

58 

1,1826 

20 

1 . 4506 

40 

1 . 8006 

60 

Specific  Gravity  of  FeSO^^HjO;  CuS04-5H20  and  ZNSaj 
7H2O  .Solutions  at  15°C. 


Per  cent., 

Sp.  gr.- 

Per  cent.. 

Sp.  gr. 

Per  cent.. 

Sp.  gr. 

ZnS04-7H20 

CuS04-5H20 

FeS04-7H20 

1.0288 

5 

1.0126 

2 

1 .  Ull 

1.0593 

10 

0254 

4 

1.021 

4 

1.0905 

15 

0384 

6 

1.032 

6 

1.1236 

20 

0516 

8 

1.043 

8 

1.1574 

25 

0649 

10 

1.054 

10 

1.1933 

30 

0785 

12 

1.065 

12 

1.2310 

35 

0923 

14 

1.082 

15 

1.2709 

40 

1063 

16 

1.112 

20 

1.3100 

45 

1208 

18 

1.143 

25 

1.3522 

50 

1354 

20 

1.174 

30 

1.3986 

55 

1501 

22 

1 .  206 

35 

1.4451 

60 

1659 

24 

1.239 

40 

130     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Specific  Gravity  of  Sodium  Carbonate  Solutions  at  15°C,. 


Sp.  gr. 

Per  cent., 
NnaCOs 

Sp.  gr. 

Per  cent., 
NajCOa 

Sp.  gr. 

Per  cent,. 
NatCOj 

1.01050 
1.02101 
1.03151 
1,04201 
1,05255 

1 
2 
3 
4 

5 

1 . 06309 
1.07369 
1.08430 
1 . 09500 
1.10571 

6 

7 
8 

9 
10 

1.11655 
1 . 12740 
1.13845 
1.14950 
1.15360 

11 
12 
13 
14 

14.354 

Specific  Gravity  of  Dihydrogen  Sodium  Arsenate 
Solutions  at  17°C. 


Sp.  gr. 

Per  cent., 
HiNaAsOiHjO 

Sp.  gr. 

Per  cent., 
HiNaAsOiHaO 

1 . 0226 
1 . 0460 
1  0577 

4.22 

8.44 

10  55 

1.9038 
1.1186 

16.88 

21.10 

Specific  Gravity  of  Solutions  of  Trisodium  Arsenate 
AT  17°C. 


'      Sp.  gr. 

NajABO«12H20 

Sp.  gr. 

Na3As04l2H20 

1.0193 
1.0393 
1  0495 

4.40 

8.80 

11.00 

1.0812 
1 . 1035 

17.60 

22.06 

Specific  Gravity  of  Disodium  Arsenate  Solutions 
AT  14°C. 


1.0169 
1.0344 
1.0525 


12 


1.0714 
1.1102 
1.1722 


16 
23.9 
35.9 


PHYSICAL  CONSTANTS  131 

Densities  op  Some  Saline  and  Acid  Solutions^ 


Potassium  chloride .... 
Ammonium  chloride. .  . 

Sodium  bromide 

Potassium  Ijromide. .  .  . 

Potassium  iodide 

Sodium  nitrate 

Potassium  nitrate    .... 
Ammonium  nitrate. .  .  . 

Silver  nitrate 

Potassium  carbonate. . 
Magnesium  sulphate. . 

Sodium  sulphate 

Potassium  bichromate. 
Potassium  ferricyanide 

Hydrobromic  acid :    14 

Hydriodic  acid 13 

Phosphoric  acid 15 


.O'C, 
.0°C, 
.5°C. 
.5°C. 
.5°C. 
.2°C. 
.0°C, 
.5°C. 
.0°C, 
.0°C, 
.0°C, 
.0°C 
.5°C 
.0°C 
.0°C 
.0°C 
.0°C 


1.031 
1.015 
1.038 
1.035 
1  036 
1.031 
1  031 
1.020 
1.042 
1  .044 
1  .053 
1.045 


034 
025 
033 
036 
026 


065  1 
030  1 
078  1 
073  1 
076  1 


1  .407 


066 

064 

042 

089 

092 

107 

091 

071 

053 

072 

07611 

Oooil 


.135  . 
058;. 

.172  1.279 
.157  1.253 
.1641. 26911. 393  1  .7.S0 
>140;i.222  1.313 
.1351. 


086,1.131 


196 
192 
213 


.321 
300 


1.179 
1.476 
1.417 


113 

157  1.255 

164  1   209  1 .347 

lis  1.180  1.253 


1.283 
1.916 


1.420 


1  "  Annuaire  pour  1914,  Bureau  des  Longitudes." 

BOILING  POINTS 
Boiling  Points  of  the  Metals 


Visible 
ebullition 

Volatili- 
zation 
com- 
mences 

Visible 
ebullition 

Volatili- 
zation 
com- 
mences 

Antimony.    .  . 

1420°C.2 

1800°C.2 

1440°C.2 

2200°C.2 

2310°C.» 

2]00"'C.» 

1000°C. 

2450°C.2 

2850°C.6 

1525°C.2 

500°C.6 
1120°C.6 
1900°C.2 

357°C.6 

asso'c* 

2450°C.6 

Osmium 

Palladium 

Platinum 

Rhodium 

Rubidium. .  .  . 
Ruthenium  . . 

Selenium 

Silicon 

Silver 

2950°C.6 
2540°C.6 
26.50°C.6 
2750°C.' 

696°C. 
2780  C.s 

690°C.6 
.3800°C.6 
1955°C.2 

Aluminum..  .  . 

Bismuth 

,  1420''C.' 
960°C.' 
970°C.» 

Copper'  .    ... 

Gold 

Iron.  .  .  . 

1350°C.» 

Iridium 

850°C. 

Lead 

2200°C.' 

Lithium 

Tellurium .... 

Tin' 

Titanium 

Thallium 

Uranium 

Wolfram 

139d°'C.« 

2275°C.2 

2700°C.6 

1280°C.r?) 

3100"C.» 

3700°C.' 

Magnesium. .  . 

880°C.3 

1290°C.3 

Mercury 

Molybdenum  . 

Nickel 

2450°C.3 

t 

'  According  to  Tiede  and  Birnbrauer,  copper  boils  at  2000°. 

»  According  to  H.  C.  Gbeenwood. 

'  According  to  Tiede  and  Birnbrauer,  Zeit.  anorg.  chem.,  1914,  p.  129. 

*  DuLONQ  and  Petit. 

»  Watts,  Tr.  Electrochem.  Soc,  1907,  p.  141. 

•  Richards,  "Metallurgical  Calculations." 
'  Given  by  Carnelly  as  1550°C. 


132     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


Beginning  of 

evaporation 

in  caciio^ 


Boiling  point 
in  racuo' 


Boiling-point 
760°  mm. I 


Bismuth 

Cadmium 

Mercury 

Potassium 

Silver 

Sodium 

Zinc 

Sulphur 


993°C. 
450 
155 
365 
1360 
418 
550 


1440°C. 

749 

357 

667 
1955 

742 

920 

444.5 


'  According  to  11.  C.  Greenwood. 

BoiLixc  Points  of  the  Xon-mkt.\llic  Elenient-s^ 


Visible 
1       ebullition 

Visible 
ebullition 

Argon 

-  186. 0°C. 
450. 0°C. 

3500. 0°C. 

63.0°C. 

3700. 0°C. 

-  33.6°C. 

-  187. 0°C. 

-  268. 6°C. 

Hydrogen .    ... 

Iodine 

Krypton 

Neon 

-  252  7°C. 

Arsenic  sublimes 

Boron  sublimes(?)... 
Bromine 

184. 4°C. 

-  151. 7°C. 

-  239  0°C. 

Carbon 

Nitrogen 

Oxygen 

Phosphorus.  .  . 
Xenon 

-  195  7°C. 

Chlorine 

Fluorine 

Helium 

-  182. 9°C. 
287. 0°C. 

-  109. 0°C. 

'J.    W.    Richards,   "Metallurgical  Calculations' 
"Physical  and  Chemical  Constants." 


and  Kaye  and  L.uJY'a 


Boiling  Points  of  Some  Common  Compounds 

Ammonia —    29°F. 

Carbon  dioxide -  112°F. 

Sulphur  dioxide +    14°F. 

Water 212°F. 


Boiling    Point    of    Water    under 
Pressure.s 


Various    Barometric 


Pressure 

1 

mm.  of 

0           1            2      '      .3      1      4           .5           0           7      18 

9 

mercury 

°C. 

680 

96.91 

96.95 

97.00 

97.03    97.07 

97.11 

97.15 

97.20 

97.24 

97.28 

690 

97.32 

97.36 

97.40 

97.44 

97.48 

97.52 

97.56 

97.59 

97.63 

97.67 

700 

97.71 

97.75 

97.79 

97.83 

97.87 

97.91 

97.95 

97.99 

98.03 

98.07 

710 

98.11 

98.14 

98.18 

98.22 

98.26 

98.30 

98.34 

98.38 

98.42 

98.45 

720 

98.49 

98.53 

98.57 

98.61 

98.65 

98.69 

98.72 

98.76 

98.80 

98.84 

730 

98.88 

98.91 

98.95 

98.99 

99.03 

99.07 

99.10 

99.14 

99.18 

99.22 

740 

99.25 

99.29 

99.33 

99.37 

99.41 

99.44 

99.48 

99.52 

99.56 

99.59 

750 

99.63 

99.67 

99.70 

99.74 

99.78 

99.81 

99.85 

99.89 

99.93 

99.96 

760 

100.00  100.03100.07  100.11  100. 15  100.18'100.22'100.26'100.29'100.33 

770 

100.37  100.40  100.44  100.47  100.51  100.55  100.58  100.62  100.66  100.69 

780 

100.73  100.76  100.80  100.84  100. 87jl00. 91100.94  100.98101.01  101.05 

PHYSICAL  CONSTANTS 


133 


Regnault  gives  slightly  different  values,   as  shown  in   the 
following  table: 


Boiling   Point  of  Water  at  Different   Barometer 
Readings  (Regnault) 


Boiling  point 

Millimeters 

Boiling  point 

Millimeters 

100. 4°C. 

771 . 95 

99.4°C. 

743 . 83 

100 . 3° 

768.20 

99.3° 

741.16 

100.2° 

765 . 46 

99.2° 

738 . 50 

100.1° 

762 . 73 

99.1° 

735 . 85 

100.0° 

760.00 

99.0° 

733.21 

99.9° 

757.28 

98.9° 

730.58 

99.8° 

754.57 

98.8° 

727 . 96 

99.7° 

751.87 

98.7° 

725 . 35 

99.6° 

749.18 

98.6° 

722 . 75 

99.5° 

746.50 

98.5° 

720.15 

Boiling  Points  of  Nitric  Acid  Solutions  in  Water 

(160  mm.  pressure) 


Per  cent., 

Boiling  point, 

Per  cent., 

Boiling  point, 

HNOi 

degrees  C. 

HXO3 

degrees  C. 

19.37 

103 . 56 

67.74 

i         121.67 

30.43 

108 . 08 

68.18 

121.79 

41.38 

112.59 

69.24 

121.80 

51.63 

116.85 

71.10 

121.60 

56.01 

118.88 

73.56 

!         120.75 

59.77 

120.06 

80.50 

115.45 

63.89 

121.27 

85.51 

108.12 

65.17 

121.66 

90.06 

102.03 

95.45 

95  42 

1  Cbeightox  and  Githens,  "Journal  of  the  Franklin  Institute,"  Feb- 
ruary, 1915. 


134     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


.   NU50«00 

»o  o  »o  o  »o 

O  O  O  "5  O 

XX05C50 

IC  o  »o  o  »o 
o  — —  no 

Oi^lOifl  o 
TOTO  ■*  ■»0 

lOO 
lOtO 

u 

ts 

3 
1 

I 

_3 

CS 
IS 

■o 

a 

3 

o 

a 
a 

B 

d 

u 

"o 
i 

S 

£ 
II, 

Ci.l  :c  —  O 
■^rr:oonoo 

MCJ  — —  O 
W  CJ  M  M  M 

00  r^  •;;■.»<  :o 
Wt^<Nt^C» 

O  0-.  C5  X  X 

—  oxr»to 

t»  N  -O  —  O 

t~  t^  -.3  -XI  ira 

232§§ 

U5  TJi'^JiTOTO 

t»tO-.J"TOCI 
if3  O  IC  O  to 
MM  — —  O 

ox 

2§ 

^-  — .  -^  ^  -^ 

i-i»-l 

IS 

.2251 
.2219 
.2108 
.2110 
.2064 

M  — OXt^ 
—  O  —  O  O 
O  O!  O  X  X 

Mrt  «— 1  — 

tc  -r  CO  CI  o 
I.-  O  O  C  'O 

t»  r-  «£i  o  o 

O  1^  to  >-0  TO 

05'<JIC5'»'05 

•r  r-  TOTO  CI 

M  o  a  X  o 

•<)<  05  TO  X  TO 
M  — — OO 

OOTO 

O5  05 

OO 

O 

CCOi'SO'}" 
NC<-hOO 

o  u;  ec  c-i  o 

o-r  C5-*  03 
o>oxxt^ 

oxcom'O" 

TOXCCXM 
t^OOiOiO 

CI- oxr» 

XTOXCIt>. 

•»1<'<}<TOTON 

m-^TO  — o 

Mf~Mh.M 

M  — —  OO 

to- 
es 05 
OO 

—  xr:XM 

M  -<  —  C  O 
M  C-1  M  M  M 

05  0»XXt^ 

—  C5XOIO 
O  C:  —  to  — 
t~  to  to  O  U5 

1"  CI  —  O  X 
«0  —  to  —  1.0 
1<-*  TO  TOCI 

r^  1.';  t  TO  — 

COOiCO 
M  — —  OO 

OX 

o 

« 

X  — —  £  5 
C-)  M  CI  c;  C) 

i.-:  o  L^  o  io 

05  0-.  X  X  !>. 

O  ~  t^  -X  lO 

O  —  C  -r  05 
r-  to  o  >.- 1- 

TO  :■!  —  •-.  X 

-r  C5  -■  X  TO 

•!•  TO  TO  CI  CI 

to  u';  TO  CI  — 

XTO  XTO  X 
—  —  OC05 

C5t^ 

Mr^ 

C5X 
OO 

'^.'^.ll  . 

>-lOXt>.iO 

t»-«'XMoo 

—  -"OOO 

M0005X 
MXMt^lN 

oxxt^r» 

O  O  -l"  M  — 

t^cit^Mr^ 

O  to  i-T  o  ••»( 

O  X  X  O  ■^i 

CI  to-*  to  — 

•<1<TOCICICI 

1.1163 

1.1111 

1 . 1060 
1 .  1008 
1.0957 

UOtJI 

OO 

05X 
OO 

■^J-MOOOO 

•*  r.«  O  —  lO 

-H  — OOO 

r»  lO  Tf  CI  — 

OiOOiOO 
C5XX«^t^ 

O  X  t^  i-O  •* 

oo5'r  O'* 
to  O  O  'T  •1' 

TO— OC5h» 
Ol-l-OTOX 
TO  TO  CI  CI- 

tO-*TO  — O 

TO  XTO  XTO 

^228o 

xt^ 

t^M 

XX 
OO 

M  —  OXCO 

—  OOOOS 
MOM—  — 

>0  M  CI  O  05 
t^  CJ  t^  CI  o 
CO  Xt^l^O 

X  o  i"-:  TO  CI 
—  to- to  — 
to  uo  lO  ■*  •<f 

—  G)  X  t»  O 
«00>00i0 
TOTOCICI- 

1.1104 
1 . 1052 
1.1001 
1.0950 
1.0898 

tOi/t 
OO 

<* 

^3  M  o  o  r^ 

OOOCiM 
Nd  — — — 

O-JTO  — O 

cc  X  w  X  CO 
xt^t^oo 

xr^tO'f'co 

t~  CI  f»  CI  t^ 

cioot- to 
Nr»  — to  — 

TOCICI  — — 

"OTOMOOS 
to- to  — lO 
OOC5  05X 

—  —  ooo 

t^to 

CO 

OO 

>.-5 
^5 

.2024 
.  1993 
.1941 
.1889 
.1838 

O  lO  «o  CI  o 

xccxrcx 

t^  t^  «0  -O  'O 

O  X  to  O  TO 
CI  t^  CI  t^  M 

i.-J  -C  -^  TO  CO 

M  — 05Xt^ 

r»  CI  to  —  -o 
dd— —  o 

.1015 
.0904 
.0912 
.0801 
.0809 

X  to 
u^O 

OO 

U5 

oc  h-  o  ro  M 

ooioocct» 

O05t^«'* 

CIO— o  — 

t»  o  o  u;  u5 

TO  CI  O  C5  X 
to  —  to  O  "O 
•^-TTOTOM 

to  O  TO  CI  — 
O  "O  O  lO  o 
CI- —  OO 

o>  X  to  in  TO 

■*  05 -J-  05  ■<1< 

osxxr^t^ 

oocoo 

MO 

C5-J< 

to  to 

OO 

o 

X  t^  >o  ro  cj 

CI  •.£  —  O  — 
O  lO  o  ■*  ■<*< 

TO  CI  O  05  X 
to  —  to  O  "3 
TO  TO  CI  CI  — 

to  O  f  c<  — 

O  O  O  '-0  o 

—  00005 

—  «i-cOO 

05XtDinTO 
■*  05 1  0>  "l" 

X 1^  r~  to  to 

ooooo 

CIO 
C5T}< 
■OO 
OO 

3 

s 

o 

a 
S 

Ci      . 

o 

N  o  O  •-':  O 

C<5  CO  ■*■»(•  O 

Ul  O  O  O  lO 
lO  -.O  to  t~  h- 

XX  05  C50 

uj  O  to  o  >« 

O  — —  CICI 

o  "5  o  w  o 

MTOfJiiO 

lOO 
lOtO 

PHYSICAL  CONSTANTS  135' 


WO'^     NM<*"-oco     i^-oooo-*     Nw^into     r^ooo50i-<     nW'^ussd  t-oooiO"-* 

Ot^t^       t^t^h»t-*t^       t^t^t^XOO       0000000000       OOOOOOOSOi       C>C3Ci03Ci    OSOiOiOO 
l-lr-li-t        ,-lrtrHrtr-l        i-l  r^  i-(  rH  ,-H        r-(  rt  nH  r-l  ,-1        rH  rH  rt  ^  i-t        rH  rt  rt  rt '-<     rH  rH  rt  M  N 


lO-^-^COM  CCCCCSC^CJ  ,_(,-if-Hf-HO  0005CJOS  O000t>-t>.h*  «DtC)^o»O»0 

NwOOOO  t>-OiO-*C0  M-^00500  r-O^JiCOO)  •-HOrooOh-  «5>0-<1<«N 

ooooooh-r-  t- r- 1>. r~ t-»  t^r-i^oo  ooo  "  "  ----- 

ooooo  ooooo  ooooo  ooo 


•lOO  0505010000  O0t>-h-t-CD  OOOiO":)  •^TfTfCOM  TOC^cqiMr-i  i-HrtOOO 

OOMM  OOiOOt^tO  iO-i>03iNi-l  O0500r-C0  lO'J'MINi-l  OOJOOr^O  lO-^COMi-H 

QOoooo  oct>.f~t>.h-  h-t--t^r»r-  i^ooto<n  o-^ooto  oo>cioic  loioioioi.i 

ooo  ooooo  ooooo  ooooo  ooooo  ooooo  ooooo 


U5TOC0  COC^<NCM(N  i-Hi-Hr-ioO  O  C5  05  O  00  OO  OS  r^  l>- tv  O  <0  O  lO  lO  tO -^  ■^  rf  n 

«Oi-io  05ooi^o«:i  ^c^MrfO  oh-oiO"*  roc^  —  oos  oor-oiO'^  roc^^oo 

oowoo  t^i^t^i^t^  t^i^t^r^t^  ooooco  ooo - 

ooo  ooooo  ooooo  ooooo  ooo 

cooio  -rf^itnn  nc^oiiH'^  1^-h ooo  05C505Woo  cot^t»r»o  tooidoio 

"iiaioo  t^om-^iro  c^-hoooo  t^oo'i'co  --loooot^  toiOTfcoiN  i-iooooh- 

oor^t^  r, t>. h, t-. I-,  t^r^t^oo  oooco©  ooo "  "  " 

OOO  ooooo  ooooo  ooooo  ooo 

«^-»»<  ■^nnnoi  (NiN^-i'-irt  ooooo  ooooooor-  t>-t^ooo  o>o>0'>)"j< 

C<t»0  iC*CO(M>-i  OO00h»O  iO'^J'M-hO  OOOI^OiO  -^  n  Oi '-i  O  05»t>.0i0 

xr^t>-  r- 1- r>- 1^ t^  t>.oooo  ooooo  iooloioo      "  " 

OOO  ooooo  ooooo  OOOOO  OOOOO 

NrtO  0005005  oooooot»t>-  r-oooio  lOO'^'^Tfi  eocorcic^c^  (n^i-i^o 

co-^  TOM00500  r-oo-^eo  m  —  oooo  h-oo-^M  cirt005oor»0'C')'W 

OOlN.t*  t^r-h-OO  ooooo  O00ic«0  lOvOiOiOO  voiOO-^-^  Tj^'^'^'^M* 

ooo  ooooo  ooooo  ooooo  ooooo  ooooo  ooooo 

iorhco  rTrococTci  ,-i—<  1-1^0  ooooo  ooooaor-h.  t^oooo  10  m  ■»»'■*  tj< 

t-iN-H  005001^0  'O'^MiN^  oor^oo  -^coc^-ho  O5oor~oio  T}<ro(Ni-io 

^.^^^«  t>.oooo  ooooo  ooiooio  looiooio  •^•^•^•^^■tj*  Tf<-^'»^Tt<Tt< 

000  ooooo  ooooo  ooooo  ooooo  ooooo  ooooo 

M  M  -<  — I  -H  — 1  o^  ooTooToo  oooot^  t^r-  o  o  o  o  o 

tcooo  t^O'-o^co  (NOOoot--  om-fMc<i  i-ioo5cor»       _     ._    

1^00  ooooo  OOOiOiO  lO'CiOiCO  lO'O-'f^'^  -^T^T^Tf-^  ■^■^COCOM 

000  ooooo  ooooo  ooooo  ooooo  ooooo  ooooo 


>0  O  'O  ■<*'  ■*       ■^■^•^■^■^ 

ooooo     ooooo 


uinn  roc^oici-H  i-i^ooo  O050»oo  oot^r~t»o 

lf)005  OOt^OO-*  MM— 1005  t^-O'O'i'CO  (Ni-iOO!/3 

0010  LOOiOOuT  O'OiO'O'*  •^-f-^^>l<  ^^^t^c^ 

000  OOOOO  ooooo  ooooo  OOOOO       OOOOO     OOOOO 


Oit^t^  t^OOOiO  lOiO'^'^'Ti*  COCCCOC^C^  <Nt-H,-i^HO  000050  OOCCOOt^t^ 

OOMM  —lOOCOt^  OiO-tMM  — iO0500t^  OiO-fCTN  .-HOCOt^O  lO-^fCJC-lrH 

ujiraio  "Oloi"!"^  Tf-f-f-fT)"  Tf-^ccroco  rocorococo  wmmnc-i  (Mc<imc^w 

000  OOOOO  OOOOO  ooooo  ooooo  ooooo  ooooo 


lOlO'l'rl"-^         COCCMC-JO)         (Mi-l>-li-<0        000050     OOOOOOh-t-- 

0>0-*icOC^      >-iOO00t>-      ""   "    ■' ""      ~       


TjlTjirOMCO        COMTOMCO        MMMMC^J 

OOOOO  OOOOO  ooooo 


136     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


<NC5'<«'iOtD    h-OOOOfl    lOCOCO     0>OOU50    lOO>OOiO    OlOO 

ooooo  ooo-i«  — iMciMco   TfTcmioco  to^-t^oooo  omo 

CJM(NM(N    WWNCSM    WMMt^M     M  M  W  M  Ci    (N  N  M  IN  C^    C^  CI  CO 


-<ooat» 

o «.-;  ,.r  f  '»' 
OOOOO 

cocowN-< 

«io-*co^ 

■«•  tt  •* -r -»i 

ooooo 

CCCCCl  CJ— 1 

ooooo 

w  o  -.  o  — 

X  X  t^  t^  o 

o  o  o  o  o 

O  ■>*  X 

--  —  —  CO 

CI  c  r^  i.-;  f-i 

f  o  ct  X  CO 
X  t>.  r-  CO  o 
ooooo 

"o  -c  ci" 

t~  CIt- 

L":  o  -r 

OOOOC  00 
O  X  t^  O  lO 

•"J-  «r  ■<»•  ■»»■  ■»" 

ooooo 

00  t^  t^  »  o 

■*  c^  C)  -H  o 

ooooo 

.0365 
.0312 
.0201 
.0208 
.0157 

.0104 
.0052 
.9990 
.9947 
.9895 

<o O O  OO o c o  o c c 


ff'S'liCO  CO  CI  CI-"—  OOOOX  Xt^t^CsO 


ooooo  ooooo  ooooo  ooooo  ooooo  c-'oo 


-T'T'^MCO    eOCJM  —  <-i    Ot~OCOO    OtO'^CIO    t-1 


*  O  C  O    COCO  O  c  c  c 

D  c:  —T^ 

T.  -J  O  CO 

OOOOO   OOOOO   OOOOO  Soooo   ooooo  OJOO 


or^oco—   wococio 


ooooo   xxt^r-c   lOco  —  ot>- 
iN  —  oxr^   oo-tr:— I   xcoxor^ 


ooooo   o  o  c  o  o   o  o  o 


COCOCJCICl     — I  — —  OO    OOiOClO 

oxr»to>o   i-cocj-ho   ioooco 


OOOOO  ooooo  oco 


—I  —  ceo   oooxx   r^-n-rooo   «Dco- 
"  "      ooxr»i.o   cit^cit^-H   o  — i 


CO  cor:  r:  C5 

ooocc 

CO  CI  CI  CI  CI 

ooooo 

d—^OO 

ooooo 

O  O  X  X  t^ 

ooooo 

1^  o  1.0  ir:  r»i 
ooooo 

•*C0C2 

ooo 

CO  c  o  o 

c  c  c  c  c 

c  c  c 

.0322 
.0312 
.0301 
.0201 
.0281 

siyii 

c  c  5  5  o 

t-  —  CI  C  X 

CI  r-  cii^ 1 

~.  r.  X  1- 1^ 

o  o  o  o  o 

'■T  r  ■?  ^  '-^ 

£  5  ? 
o  ob 

op o  c  c_o c  coo  ooo 


CI  OO 

»o  o  -^ 

)  CI 


COC>C)Cl-<— lOOOOXtO-f  —  O-       --  -.  _-        --. 

t»-.oi.Ofco    (N  — ooo    cox  cox  CO   t^Cll^CIO  —  •.;  — >.oo 

CI  CI  CI  CI  CI    CI  CI  CI  —  —I   — >  o  o  o  o   X  X  r~  t^  o  -o  ■-  io  -r  -^    

ooooo  ooooo  ooooo  ooooo  ooooo  ooo 

rt^^^w  -I  —  -Hw-H  ^  —  wo  op  ccco  ccccc  c  o^c^ 

r:c 


h-  to  o  o  n 


o  -»■  -r  -1"  CO  cj  o  X  to  -1"  --I  o  to  >■":  CI  c  t~  to  ci  x 
._  _  -o-rcocio  t^  CI  to —  to  —1 1-0  ooo  "-oo-^oco  

CI  —  —  --—     wrtwww  OCOOX  Xl-«l>-tOtO  lOTjitrscO  CSCI  — 

ooooo  ooooo  ooooo  ooooo  ooooo  ooo 


o  oxr^to 


;  c  c  ooooo  ooooo  ooooo  ooo 
-I  ooooo  ooddd  ooooo   odo 


2  o  . 

3  ■**fci 

.5  a 

5.4,  a 
Ei:  o 


flCJCICICl    CIMCICIW    CICICJCJM    ClNOe^N    WdC^CICJ    MCICO 


PHYSICAL  CONSTANTS 


137 


*fa 


S  * . 


t»  'J*  O  ^  Cs 

M  M  M  O)  IN       CI  C-1  C^  . 


rt05ooo«o     cc(N--c-.  CO     r^-otrif 


O  «  t-  O  TJ>       C)  " 


OOMXC-lt'.       (Nt^CJt^CJ        t^  —  O  —  O        ^O 


M  -^  c.  oc  o 

TO  ro  M  c-i  -< 
M  M  M  0)  Cl 


■*:c  — O  o 
CO  xcccoM 

"-I  O  C  C  C5 


t-  '—  O  CO  N 
t^  M  t^  C-l  h- 
coaot^t^o 


O  O  «  •—  O        CO  C)  —  C.  GC 


— 'O 


OCOQGCOt-  C)t>.C-»t>.M  t-.—  -^  —  O  .-HO-HUIO  LOC-OOO  C.  -1" 

COCOMC->— I  ^OOC.  O  ODXt^t^O  Oi-OLOTfrlfl  COCOMMi-i  CO 

(NMMMM  OMC-li-trt  ,-ir-irtr-li-l  ,-irtrtrtrt  f-(,-(rHi-t.-l  i-h-h 

t^O-^MO  Or-'O'CCO  (NOCJXt^  OCOCOCIO  OXOitlcO  CJO 

o  M  t>-  c)  t>v  ■— o-ho—i  to-HLOcn  0'-ooi--to  rro-rO'^  c.  •• 

COCOMC-).-*  i-<OOOC3  XXt-t~0  O'-'Ji-T'^-^  C0C-1C-1-H.-1  CO 

(N(NC-iMM  cqrici— 1.-1  ,-irtrtrtFH  rt^rt^rt  rt^^rtrt  j-,^ 

— lO  XOMi  CO-H  o  xt>.  O^CO-jO  O  t^  O  Lt  CO  CI  C  C:  X  o  iclo" 

o-ho^o  r-io— <>-':o  lic-oc-o  c~.  -s-o-ro  -^ro  ^:xco  x?2 

cococici-H  — looc.  o  xxt^t^o  LOOrrTrco  cocirirtrH  ^o 

OC1C4C1CJ  ClMClr-!.-.  ,_rtrt«r-(  ^^wi-crt  .-H  —  —  i-Hi-l  C  — 

O  .-I  C!  X  O  ■>!<  CO  C)  O  C5  t^  O  uo  CO  M  .-i  O  X  -w  O  tj>  C)  —  Si  X  O  O 

tTi-huoCC  O'-OCi-'iO  ■^Ci'^C;  ■*  OCOXCOX  COXCOt-Cl  t^Cl 

coMcicii-i  -hooc;  X  xr^r~:ro  lootji-j-co  cociOf-n^  co 

C1CJOC1CJ  ClClCl.-i-^  rt,_^„rt  rt^,_i^rt  rtrt,_,^rt  r-r- 


COC^OXt-       OtJicI^O 
COCOCli-irt       CCCIOX 


cc  t~  t^  o  o 


i-H  O  O!  t-  o 
X  CO  t^  CI  w 
1-0  Tj".jico 


rfCO  — OO 
CJt^Cl  t>.i-l 
COCICI  -Hrt      oc 


C^MCJCICl  OC)-^.-lrt  l-Hl-ll-Irt^  rtrHrt.-1-H  l-Hl-Hrt^,-!  ,-l« 


■<j<  CO  —  C-.  r-     o '« CO  CI  o     C-.  t^  o  1-0  CO     ci  —  c.  x  o 


uO  -T  C)  rt  O       X  o 


OO-l-XCO       XCOXCOX      C)r-Clt~Cl      t^MO--0       — o  —  oo       loo 

ooc;c:  X     xt^t^oo     LOi-o-r-*co     cooc^r-^     co 


cct>.t^oo     1-oi-OTr'^ro     cocici.-irt     co 


cit-ior^o  -iici—icx  t^LO-ycort  cc^t^wO  cocico  t^  o-i< 

OOOi-OO  loOlOO-*  O-^O-^O  -^XCOXCO  XCOXOt-.  Ol^ 

NCJCI  —  ^  C0C5  0  X  t^t^OOO  UOI-^COCO  ClCl-o-iO  CO 

CICICIOO  CIO  —  rt,-(  ,-,rt,_„i-H  ^rtrt«,-i  rt.-lrt— l,-l  r^O 

OS  X  t»  LO  CO  O  O  C.  t~  O  LO  CO  CI  O  O  X  -w  "-0  -r  Cl  -n  c.  x  o  o  coo 

b-TfO'tO)  TfOCOXCO  XC-OX«t^  Clt^Cll^C)  t^^^rtO  — 'O 

dcj—iwo  CO  oxx  t^r^o^i-o  v-o-ji-j-coco  cici-".-io  oo 

c^cqcqcio  ci-^^rtrt  rti-irt—n-i  ,_  ^  •-<  i-.  i-h  ,-,-1^— i,-i  ,-ho 


138     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


: 
e 
c 
o 
E 

a 

O 

•OO-i 

r~»050-< 
^»^»^»oox 

X  X  X  X  X 

r^Xfflo  — 

XXXOlOS 

OSOSOsO 

-3 
u 

"S 

3 
S3 

1 

'S 

"o 
•3 

a 

3 

a 
a 

_c 

E 

u 

1 

3 
n 

u 

2§§ 

W^J'-OOS 

§§§§§ 

oot^tous-* 

OCX  XXX 

ooooo 

■*  CO  CO  CO  CO 
COM  — OC5 

xxxxr^ 
ooooo 

MMM  — — 

xr- to  !';■>«< 
ooooo 

—  OOO 
COM  — O 

oooo 

«  — « 

25§ 

c:  C5  C-.  c;  X 
oocco 

O  3:  r:  X  X 
r~  -^  L-  ^  CO 

X  X  X  X  X 

oooco 

Xt-t^I^tO 

C-1  —  O  ~  X 

X  X  xr~t^ 

OOOOO 

to  to  LO  LO  LO 

t^  to  LO  -r  CO 

ooc  oo 

^  'T  't  CO 
M— COS 

r~  t^  t^to 

oooo 

10 
IM 

OOO 

o  —  c  r.  X 

O  C~.  ~  X  X 

ooooo 

X  X  X  X  X 

oooco 

CI  —  c  X  r~ 

X  X  X  t~  t^ 

occco 

CT  X  X  X  t^ 

occoo 

t^  r^  to  to 

r^  ft  £  to 

ooco 

in 

ess:  OS 

OOO 

O  --D  ro  --D  >ri 

—  oosxt^ 

OlOXX  X 

ooooo 

<0  IC  rf  ?;  M 

xxxxx 
ooooo 

CO  CO  CO  M  M 

—  OCsXt^ 

xxt^t~»- 

ooooo 

M  —  —  —  O 

to  LO  ..r  CO  M 

OOOOO 

OC  OSOS 

—  oxt^ 
t^t^toto 
oooo 

§ 
M 

—  oo 

OCIOJ 
OOO 

C-.  c:  C.  X  X 
o  CI  X  r-  --o 

C-.  X  X  X  X 

ooooo 

X  r^  r»  i^  - -1 

1.0  -r  CO  M  — 

X  X  X  X  X 

oocco 

O  to  i-o  lO  o 
O  c:  X  r^  to 
xt^r^t^r^ 

OOOOO 

■<« -C  -J- CO  CO 
LO  Tf  CO  M  — 

OOOOO 

CO  MMM 

CCsXt» 

r^  to  to  to 

oooo 

o  O  X  ft  o 
c:  X  X  X  X 

ooooo 

o  r-  r.  X  X 

t  CO  M  —  C 
X  X  X  X  X 

ooooo 

X  t-  r^  ^^  o 
C-.  X  r^  to  >o 

OOOOO 

to  to  LO  lo  <n 

TJ-COM- o 

ooooo 

■*•» -r  CO 
OS  Xl^tO 

to  to  to  to 
oooo 

X 

S2S 

§§3 

(N-.  — —  O 

CI  X  t^  e  >.- 
CC  X  X  X  X 

oocco 

OC  r:O05 
■*C0— CCS 
X  X  X  X  t^ 

ooooo 

X  X  X  X  t^ 

X  t^  to  >.o  ^ 

OOOOO 

1^  t^  to  to  LO 

CO  M  —  O  CS 

t^r^t^r^to 

OOOOO 

LO  LO  ■*  .^ 

Xt^tCiO 

occo 

"•-iocs 

OOO 

!M  M  CI  -1  — • 

X  t^   C   L~   f 

(X  X  X  X  X 

oooco 

—  COCO 
CO  M  —  C  CS 

X  X  X  X  r^ 

oocco 

O  O  CS  X  X 
t^  to  >0  T  CO 

OOOOO 

X  t^  r~  t^  to 

M  —  C  Ct  X 

1^  r^  r-  to  to 

OOOOO 

to  to  LO  LO 

to  to  to  to 
oooo 

>Of  CO 

•*C~.  XI 

2222 

OOO 

CO  M  «  ?>  M 

1^  o  n  ■<r  CO 

OOXXX  X 

ooooo 

M  --  —  —  O 
M  -<  o  C-.  X 
X  X  X  h-  1^ 

oooco 

OOSSOSCS 
t^  to -r  cool 

OOOOO 

X  X  X  r~  t» 

—  O  C  X  t- 

r^  r~  to  to  to 

OOOCO 

1,  -o  to  to 

to  lo  -r  CO 

to  to  to  to 
oooo 

i!5 

•ororo 
roxt>. 

CSXX) 
OOO 

CO  CO  ^)  MM 

oin-j"  CO  M 

00  50XX» 

ooooo 

—  —  —  CO 

—  ocsxr- 
xxt^r-h- 

ooooo 

OCSCSCSX 
to  -r  COIN  — 

OOOOO 

X  xt^t^t^ 

O  CS  X  t^  to 

r^  to  to  to  o 

ooooo 

to  to  to  us 

LO'l-COM 

to  to  to  to 
oooo 

>o 

CO  —  -H 

O  X  X 
OOO 

OOOOOS 
•n  -r  CO  c-i  o 
CC  X  X  X  XI 

oooco 

o  0>  X  X  X 
C-.  X  r^  to  i-o 
t~  t>.  r^  r~  t- 

ooooo 

r~  t^  t^  to  to 

tcoc^-O 

OOOOO 

to  110  lO  "O  ^ 

CS  X  t^  to  lO 

to  to  to  to  o 
oooco 

TC-r  coco 

■«>COM  — 

to  to  to  to 
oooo 

l<5 

n 

OOSQO 

o»oo 

OOO 

COM  — O05 
00  00  00  CC  h* 

ooooo 

O  to  to  to  LO 

X  r~  to  >o  I- 

ooooo 

LO  LO  .^  -r  •»• 
COM  — CCS 

r^  1^  r~  t^  o 

cocoo 

CO  ^:  CO  01 01 
X  t^  to  LO  -*• 

to  to  to  to  to 
ooooo 

01  —  — — 
COM  —  O 

to  -o  to  to 

c  c  oo 

o 

3 

o 

a 
E 

1^^ 

T3£ 

"•a 

o 

•OO-H 

N  CO  •*  1.0  ■£> 

l^XOSO  — 
|.»  t^  t^  X  X 

M  CO  •>»'  lO  to 
XXXXX 

t~xoo  — 

X  X  X  CSCS 

MCO'^'O 
OS  OS  CS  ^ 

PHYSICAL  CONSTANTS  139 


CO    t^C00)O'-<    NC<5'<*<>OCO    r-OOOlOC^    U50»00"5    OU50100    loomcus    OiOO 


CO    ooooo    000»0»0    iO"^»OU5iO    Tj- -^  ^^  CC  (N    W  ^-h  ,-t  c  O    OOiCOOO^*    i>-oo 
O    ooooo    ooooo    OOOOO    ooooo    OOOOO    0;0s0005    05030 

■1      1-I>H<-I  l-HrH      ^rt-<-C«      rtrt^,-(r-       rt-H-Hl-Hl-l      «rH— Cl-I-H      OOOO  Q      OOO 


eo    C<5(N<NOr-i  >-c-h0001  OiOOOOOt-  OtJiNOOO  OTO^C-O  ■*"-iC:OM  OOO-* 

00    t^-Om-^J'ffO  N-HOCit-  O^O'^CO-H  00CO00r;t^  (Nt^MO"  O-hiOO'O  o-^j-C". 

o   ooooo  oooiOLO  io»CiOioio  ■^■^rrcccci  cir- »— oo  oooooot^  r^oo 

ooooo  ooooo  ooooo  ooooo  ooooo  aa-c-.G-.a  osc-. 


^ 

^  r~,  ^H1-I  1~1 

ooooo 

oco 

o 

iO  lO  »0  Ti<  Tj< 

•<)<m«i^:  N 

N  N  -<  —  o 

SB  t^  L-  ^t  -H 

00  O  ?t  M  C-. 

t-  TT  <N  c;  uo 

coot^ 

O  O  •*  M  N 

O  O  ■*  TO  -^ 

t^  <M  t~  C^)  t^ 

—  o  —  o  o 

IC  CmO'* 

CiTrcO 

OOiOiO  "fl 

»0  lO  »^  lO  lO 

■*  ■*  ^:  ^T  (M 

IN  — —  OO 

o  c.  00 1- 1^ 

O  OiO 

o 

ooooo 

ooooo 

ooooo 

ooooo 

ooooo 

CS  O  C:  C.  05 

OC3C-. 

ooooo    OOO 


Oi  oooot-*t^t^  ooooio  io^-«t*-^co  c^oiMio-^  ^o:Ol'0c^i  or*"^c^oo  ocoo 

o  ujtj'cocS'h  00500r-o  ■O'reoNO  t-.—'O'-io  ^-ujoico  lOO'^cco  oOMoo 

O  ooooo  0»0i0»0i0  iOiC»OiOiO  -^Tt^CCCCW  C^^"00  OOOXt^t^  OOO 

O  ooooo  ooooo  ooooo  ooooo  ooooo  0500005  OOO 


ooooo  ooo 


^^    ^-hOOO    OOOWOO    00t^t>.OO    UKN^OOt^    ■*  —  o:  t-O    NCt^ifl-H    OOON 


o   u5-*<«(N"-i   ooot^oio   Tj-rte^rto   Ort00"0   Oico-wo  -^o ccx^5  r»e^t~ 

—   ._ ._ -_--_--_-  _.      — j_,  c.ocat^t^  ooio 

)  O  ooooo  OOO 

<0  OOCOO  OOO 


o   ooooo   loious'f^o  oiOiCiOTji   •^■»i'r?rcc^)   M  —  OOO   oocxr^t^  ooo 

O  ooooo  ooooo  ooooo  OOOOO  ooooo  ooooo  OOO 


cc  roMMc^-<  M  —  ooo  oooxt^  t^TfCJCX  o^:  —  or~  ^^oocc  OoOt)< 

>n  -^roiN-^o  oxt>-oic  cc(N— OOO  lOOi'O-T"  o-'i'occoo  ccac^t~N  r»  —  o 

o  ooooo  loioioioio  »OL':icio-^  ■^■^^tcc'N  — •-'OOo  ooooot^-r*  ooo 

O  ooooo  OOOOO  OOOOO  OOOOO  OOOOO  CiC:C-^Ci<J>  OOO 


^ 

_,-i  M»0 

OOOOO 

OOO 

•* 

MCOCOON 

f,  _  _  _  o 

oooooo 

t^lOPO  -H  05 

t*M< «— '  o  t^ 

lr)C^Ot~r|^ 

—  ooio 

MCM-.00 

oor^oio  ■* 

COMOOt^ 

rifci^oyy 

00  CO  00  cc  t^ 

(N  t~  IN  O  -H 

oom 

IOIOU5  10U5 

T}<CC^t  N(N 

-"HCOO 

ooooct^t>. 

OOO 

O 

OOOOO 

OOOOO 

OOOOO 

OOOOO 

ooooo 

ooooo 

OOO 

<0    ooooo    OOO 


lO  'a"*«CC-#  INC^N  — -H  -hOCOO  00OtJ<^O  I>  O  N  — ■  00  O  OC  O  00  •*  <N  O  O 

ro  N  —  OOOO  t^Oii^TfW  W-<0  0  0  CCOOOCOOrt  t^Olt^INO  .-^O  —  OO  lOO'* 

O  ooooo  ooooo  OOO-^TJ^  -^rccCINC^  '-"^OOO  OOOOOt-t*  OOO 

O  OOOOO  OOOOO  ooooo  OOOOO  OOOOO  ooooo  OOO 

^  —1^^^^  ^^^^^  rtrt^^^  ^^w-H.H  ^r-i_,-.ei  OOOOO  o oo^ 

O  00'<J'T)<r)<  rOCCNNN  rtrH-HOO  OOO  IN —I  OOOM  —  O  Orr  —  OO  INOO 

e^  — OOOOt-  Oit^Ti-r^lN  -hOOOOO  lNt~Mt^lN  0"-iO  —  O  OOO-rO  -^OTO 

O  ooooo  ooooo  OO-^-^-^  -^CCCCINC^  '-'^COO  OOOCOt^O  OOO 

o  OOOOO  OOOOO  ooooo  OOOOO  ooooo  ooooo  O-OO 


^      rt  -H  .-ll-ll-l 

o   o  1"  •«}<■*  CO 
»— 1    O  O  00 1^  o 
o  ooooo 
o  ooooo 

.0553 
.0543 
.0532 
0522 
0511 

-^-<ooo 

OO00t~'<J< 

O  Tf  •>*>  Tj"  ■* 

ooooo 

OOO-'fOO 
—  O  — O  — ' 
Tf  CO  COCHIN 

ooooo 

0158 
0105 
0053 
0001 
9948 

o  CO  —  00  o 
o  •*  o  CO  00 
oooot^t-o 
ooooo 

MOO 

CO  ooM 

OOO 

OOO 

<o  ooooo  ooo 


PO    lNC^C^-4-H  -hOOOO  CiOOoeoOt-  OCOINOOO  OCOOOO  t—OOOM  Ot^'* 

O    OOOt^OO  Tt<C0NOO  OOt^tOOCO  0  0  0-:CO  -fl-O-rOOCO  OOCOt^lNt^  iNO— 1 

O    ooooo  OOOO'^  '*'*'<r'T-'*  -^COCOIN-H  — OOOO  OOOOt»t^O  OOO 

O    0  00  0_0  OOOOO  ooooo  ooooo  OOOOO  ooooo  OOO 

-<    -<-<-ii-l-H  wH^w^  ^.-,rt_i^  _^^^^  ^.-<^00  OOOOO  o  o__o_ 

OOOOO  ooooi^i^r^  ooooo  '*■— -ot^-o  cocooo-r  -"oo-ro  t»o  — 


O    OOt^O  —  CO     M  —  cox     l^OO-riN     o-*OC0X    COXMt^M     t^ O  —  O  OOO 

-    -    -                                                 .__--_                  500  XXt^t^O  OOO 

;00  ooooo  OOO 

■•OO  ooooo  OOO 


o  o  o  lO  o   OOO-"—    Tf  -r  -r  •*  -H    nnc-ic^^   •—  c  o  o  o    x  x  t»  t^  o    _    .    . 

O    ooooo    OOOOO    ooooo    OOOOO    OOOOO     ooooo    OOO 


50  t^WOO-H  NWt)<0  0  t-OOOON  OOOOO  OOOOO  ooooo  OOO 
O  ooooo  ooooo  OOO— i-H  — NMCOCO  ri<Tj<0  00  Ol^t^XCO  OOO 
r4    ,«rt,-iMcq    iNmnmm    NMNMN    NiNMMN    NMNININ    INMINININ    minco 


140     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Boiling  and  Mkltinu  Points  of  Organic  Bodies* 


Acetone .... 
Acid: 

Acetic. . 

Benzoic. 

Butyric. 


Carbonic. 
Formic. .  . 
Stearic.  .  . 
Succinic. . 
Alcohol: 

Amyl. ... 
Ethyl.... 


Methyl. 
Aldehyde. .  . 

Aniline 

Benzene. .  .  . 


16.71 
121.0 

-  3.12 

-  78.2 

8.51 

68.4 

185.0 


-130.0 
(about) 


-     6.0 
5.4 


57.1 


118.1 
249 .  1 
162.0 
(about) 
-67.0 
100.6 


132.0 

78.2 

64.7 

20,8 

183.7 

80.0 


Camphor 

Chloroform 

Cyanogen 

Ethane 

Ether 

Ethylene 

Ethylene  dibro- 
niide     

Glycerin 

Methane 

Naphthalene 

Nitrobenzene. .  .  . 

Phenol 

Carbon  disul- 
phidc 

Carbon  tetra- 
chloride  

Toluene 


177.7 
63.2 
•34.4 
■177.5 
•117.6 
■169.0 


-  20.0 
-184.11 

80.1 
5.17 

41.1 


22.0 
98.0 


205 . 0 

61.2 

-20.7 

-93.0 

34   6 

-102.5 

IGO.O 
291.0 
-164.7 
217.72 
208.3 
181.4 

46.3 

76.7 
110.0 


0.00002  ]  10 


'  For  the  molting  points  of  the  elements,  see  p.  254.  For  mcltinK  points 
of  inorganic  compounds,  see  p.  216  et  seq.  This  table  was  taken  from  the 
"  Annuaire  pour  1914,  Bureau  des  Longitudes." 

The  Thermal  Properties  of  Steam 

Probably  the  most  critical  investigation  yet  made  of  the 
thermal  properties  of  steam  was  that  of  G.  A.  Goodenough  of 
the  University  of  Illinois,  from  whose  work  the  following  for- 
mulas are  taken: 

The  relation  found  between  the  pressure  and  temperature 
of  the  steam  is  as  follows: 

log  p  =  10.5688080  -  ^^I^^  _  0.0155  log  T 
-  0.004062587'  +  0. 00000400555 T^ 

[  ^    \     100    /    ^L     100    JJ 

where  p  is  the  pressure  in  pounds  per  square  inch,  and  T  the 
absolute  temperature  in  Fahrenheit  units,  while  t  is  the  tempera- 
ture in  Fahrenheit  degrees.  The  absolute  zero  is  taken  as 
—  459. 0°F.  For  the  specific  volume  of  the  steam  Professor 
Goodenough  gives  the  expression : 

V  -  0.017  =  0.59465-   -  (1  +  OMUQpV^)  -— 
p  1 

where  v  denotes  the  volume  in  cubic  feet  per  pound,  and  log 
Ci  =  10.82500.  The  "heat  content"  of  steam  at  different 
temperatures  and  pressures  is: 

i  =  0.320r  +  0.00006372  _  _^^ 
_  Cspd  +  a0342p^^)  ^  Q  ^jQ333^  ^  ^^g  ^ 


PHYSICAL  CONSTANTS 


141 


where 

log  Cz  =  10.79155 

The  entropy  of  superheated  steam  is  given  by  the  relation: 

1 1  7Q1 ^ 
s  =  0.73683  log  T  +  0.0001267  -    ^^-  '^^'^ 


-  0.25355  log  p  - 


C«p(l  +  0.0342p) 


0.08085 


where 


log  C4  =  10.69464 


The  thermal  properties  of  steam  at  very  high  pressures  and 
temperatures  are  stated  to  be  as  follows: 


Tempera- 
ture, 
degrees  F. 


Pressure, 
lb.  per 
sq.  in. 


Volume 
of  1  lb., 
cu.  ft. 


Weight 

of  1 
cu.  ft., 

lb. 


Heat  content  of 


Liquid,       Vapor, 
B.t.u.  B.t.u. 


Latent 
heat, 
B.t.u. 


600.0 

1540.4 

0.272 

3.68 

604.5 

1164 

560 

620.0 

1658.7 

0.241 

4.15 

633.0 

1151 

518 

640.0 

2056.6 

0.187 

5.35 

663.0 

1136 

473 

660.0 

2360.8 

0.151 

6.63 

700.0 

1112 

412 

680.0 

2699 . 1 

0.118 

9.86 

745.0 

1080 

335 

700.0 

3074.5 

0.080 

12.46 

823.0 

1016 

193 

706.3 

3200.0 

0.048 

20.92 

921.0 

921 

0 

The  following  note  and  table,  giving  the  constants  of  steam  at 
ordinary  temperatures,  is  from  "Lubricants,"  1914,  p.  10. 

The  temperature  of  steam  in  contact  with  water  depends  upon 
the  pressure  under  which  it  is  generated.  At  ordinary  atmos- 
pheric pressure  (14.7  lb.  per  square  inch)  the  temperature  is 
212°F.,  but  as  the  pressure  increases  the  temperature  of  both 
the  steam  and  the  water  also  increases. 

Saturated  steam  is  steam  of  the  temperature  due  to  its  pres- 
sure, while  superheated  steam  is  steam  heated  to  a  temperature 
above  that  due  to  its  pressure.  Saturated  steam  cannot  be 
cooled  except  by  lowering  its  pressure.  Steam  in  contact  with 
water  cannot  be  heated  above  the  temperature  due  to  its 
pressure. 

The  latent  heat  or  heat  of  vaporization  is  obtained  by  sub- 
tracting from  the  total  heat  at  any  given  temperature  the  heat 
of  the  liquid.  Since  the  "total  heat"  is  greater  as  the  pressure 
increases,  it  will  take  more  heat  and  consequently  more  fuel,  to 
make  a  pound  of  steam  as  the  pressure  increases. 


142     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Table  of  Properties  of  Saturated  Steam> 

Pres- 

Tem- 

Total heat  in  heat 
units  above  32°F. 

Heat  of 
vaporiza- 

Density 
or  weight 

Volume 
in  cubic 

Factor 

sure  in 
pounds 

pera- 

tion of 
latent 

of  equiv- 
alent 

ture, 
Fahren- 

in 

per 

In  the 

In  the 

heat  (L) 

pounds 

feet  of 

evapor- 

square 
inch 

heit 

steam 

water 

in  heat 
units 

of  1 
cu.  ft. 

1  lb. 

ation  at 
212°F. 

1 

101.99 

1113.1 

70.0 

1043.0 

0.00299 '334. 5 

0.9661 

2 

126.27 

1120.5 

94.4 

1026.1 

0.00576 

173.6 

0.9738 

3 

141.62 

1125.1 

109.8 

1015.3 

0.00844:118.5 

0.9786 

4 

153.09 

1128.6 

121.4 

1007.2 

0.01107 

90.33 

0.9822 

5 

162.34 

1131.5 

130.7 

1000.8 

0.01366 

73.21 

0.9852 

6 

170.14 

1133.8 

138.6 

995.2 

0.01622 

61.65 

0.9876 

7 

176.90 

1135.9 

145.4 

990.5 

0.01874 

5.3 .  39 

0.9897 

8 

182.92 

1137.7 

151.5 

986.2 

0.02125 

47.06 

0.9916 

9 

188.33 

1139.4 

156.9 

982.5 

0.02374 

42.12 

0.9934 

10 

193.25 

1140.9 

161.9 

979.0 

0.02621 

38.15 

0.9949 

15 

213.03 

1146.9 

181.8 

965.1 

0.03826 

26.14 

1.0003 

20 

227.95 

1151.5 

196.9 

954.6 

0.05023 

19.91 

1.0051 

25 

240.04 

1155.1 

209.1 

946.0 

0.06199 

16.13 

1.0099 

30 

250.27 

1158.3 

219.4 

938.9 

0.07360 

13.59 

1.0129 

35 

259.19 

1161.0 

228.4 

932.6 

0.08508 

11.75 

1.0157 

40 

267.13 

1163.4 

236.4 

927.0 

0.09644 

10.37 

1.0182 

45 

274.29 

1165.6 

243.6 

922.0 

0.1077 

9.285 

1.0205 

50 

280.85 

1IG7.6 

2,50.2 

917.4 

0.1188 

8.418 

1.0225 

55 

286.89 

1109.4 

256.3 

913.1 

0.1299 

7.698 

1.0245 

60 

292.51 

1171.2 

261.9 

909.3 

0.1409 

7.097 

1 . 0263 

65 

297.77 

1172.7 

267.2 

905.5 

0.1519 

6.583 

1.0280 

70 

302.71 

1174.3 

272.2 

902.1 

0.1628 

6.143 

1.0295 

75 

307.38 

1175.7 

276.9 

898.8 

0.1736 

5.760 

1 . 0309 

80 

311.80 

1177.0 

281.4 

895.6 

0.1843 

5.426 

1.0323 

85 

216.02 

1178.3 

285.8 

892.5 

0.1951 

5.126 

1.0337 

90 

320.04 

1179.6 

290.0 

889.6 

0.2058 

4.859 

1.0.3.50 

05 

323.89 

1180.7 

294.0 

886.7 

0.2165 

4.619 

1 . 0362 

100 

327.58 

1181.9 

297.9 

884.0 

0.2271 

4.403 

1 . 0374 

105 

331.13 

1182.9 

301.6 

881.3 

0.2378 

4.205 

1 . 0385 

110 

334.56 

1184.0 

305.2 

878.8 

0.2484 

4.026 

1.0396 

115 

337.86 

1185.0 

308.7 

876.3 

0.2589 

3.862 

1.0406 

120 

341.05 

1186.0 

312.0 

874.0 

0.2695 

3.711 

1.0416 

125 

344.13 

1186.9 

315.2 

871.7 

0.2800 

3.571 

1.0426 

130 

347.12 

1187.8 

318.4 

869.4 

0.2904 

3.444 

1.0435 

140 

352.85 

1189.5 

324.4 

865.1 

0.3113 

3.212 

1.0453 

150 

358.26 

1191.2 

330.0 

861.2 

0.3321 

3.011 

1.0470 

IGO 

363.40 

1192.8 

335.4 

857.4 

0.3530 

2.833 

1.0486 

170 

308.29 

1194.3 

340.5 

853.8 

0.3737 

2.676 

1 . 0502 

ISO 

372.97 

1195.7 

345.4 

850.3 

0.3945 

2.535 

1.0517 

190 

377.44 

1197.1 

350.1 

847.0 

0.4153 

2.408 

1.0531 

200 

381.73 

1198.4 

354.6 

843.8 

0.4359 

2.294 

1.0545 

225 

391.79 

1201.4 

365.1 

836.3 

0.4876 

2.051 

1.0576 

250 

400.99 

1204.2 

374.7 

829.5 

0.5393 

1.854 

1.0605 

275 

409.50 

1206.8 

383.6 

823.2 

0.5913 

1.691 

1.0632 

300 

417.42 

1209.3 

391.9 

817.4 

0.644 

1.553 

1.0657 

325 

424.82 

1211.5 

399.6 

811.9 

0.696 

1.437 

1.0680 

350 

431.90 

1213.7 

406.9 

806.8 

0.748 

1.337 

1.0703 

375 

438.40 

1215.7 

414.2 

801.5 

0.800 

1.250 

1.0724 

400 

445.15 

1217.7 

421.4 

796.3 

0.853 

1.172 

1.0745 

500 

406.57 

1224.2 

444.3 

779.9 

1.065 

0.939 

1.0812 

•  Kent,  "Mechanical   Engineer's  Pocket-Book, "    New  York,  1913,  p.  836. 


PHYSICAL  CONSTANTS 


143 


Vapor  Tensions  op  Various  Metals^ 

(As  calculated  by  J.  W.  Richards,  "Metallurgical  Calculations") 


Vapor  tension, 

Mercury 

Lead 

Silver 

Gold 

Cadmium 

Zinc 

mm.  of  mercury 

at  C.° 

at  C.° 

at  C.° 

at  C.° 

at  C.° 

at  C.» 

0.0002 

0 

625 

729 

942 

183 

248 

0 . 0005 

10 

658 

766 

987 

200 

267 

0.0013 

20 

691 

802 

1031 

216 

286 

0.0029 

30 

724 

839 

1075 

233 

305 

0.0063 

40 

757 

876 

1120 

250 

324 

0.013 

50 

790 

913 

1165 

267 

344 

0.026 

60 

822 

949 

1209 

283 

363 

0.050 

70 

855 

986 

1254 

300 

382 

0.093 

80 

888 

1023 

1298 

317 

401 

0.165 

90 

921 

1059 

1343 

333 

420 

0.285 

100 

954 

1096 

1387 

350 

439 

0.478 

110 

987 

1133 

1432 

367 

458 

0.779 

120 

1020 

1169 

1476 

383 

477 

1.24 

130 

1053 

1206 

1520 

400 

496 

1.93 

140 

1086 

1243 

1565 

417 

516 

2.93 

150 

1119 

1280 

1611 

433 

535 

4.33. 

160 

1151 

1316 

1654 

450 

554 

6.41 

170 

1184 

1353 

1699 

467 

573 

9.23 

1801 

12171 

13901 

17431 

4831 

592» 

14.84 

190 

1250 

1427 

1788 

500 

611 

19.90 

200 

1283 

1463 

1832 

517 

630 

26.25 

210 

1316 

1500 

1877 

533 

649 

34.70 

220 

1349 

1537 

1921 

550 

668 

45.35 

230 

1382 

1574 

1965 

567 

687 

58.82 

240 

1415 

1610 

2010 

584 

706 

75.75 

250 

1448 

1647 

2055 

600 

726 

96.73 

260 

1480 

1684 

2099 

617 

745 

123.0 

270 

1513 

1720 

2144 

634 

764 

155.0 

280 

1546 

1757 

2188 

650 

783 

195.0 

290 

1579 

1794 

2233   ■ 

667 

802 

242.0 

300 

1612 

1830 

2277 

684 

821 

300.0 

310 

1645 

1867 

2322 

700 

840 

369.0 

320 

1678 

1904 

2366 

717 

859 

451.0 

330 

1711 

1941 

2410 

734 

878 

548.0 

340 

1744 

1977 

2455 

750 

897 

663.0 

350 

1777 

2014 

2500 

767 

915 

760.0 

357> 

18002 

20402 

25302 

7802 

9302 

J 

V.tmosph( 

ires  pressL 

re 

2.1 

400 

1951 

2197 

2722 

851 

1012 

4.25 

450 

2116 

2380 

2945 

934 

1107 

8.0 

500 

2280 

2564 

3167 

1018 

1203 

13.8 

550 

2445 

2747 

3390 

1101 

1298 

22.3 

600 

2609 

2931 

3612 

1185 

1394 

34.0 

650 

2774 

3114 

3835 

1268 

1489 

50.0 

700 

2938 

3298 

4057 

1352 

1585 

72.0 

750 

3103 

3481 

4280 

1435 

1680 

102.0 

800 

3267 

3665 

4502 

1519 

1776 

137.5 

850 

3436 

3848 

4725 

1602 

1871 

162.0 

880 

3525 

3958 

4858 

1652 

1928 

1  Approximate  boiling  points  in  vacuo. 

2  Approximate  boiling  points  at  normal  pressures. 


144     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Mean  Values  of  the  Vapor  Pressure  op  AsjOj 


Temper- 
ature 

Vapor 
pressure 

AsjOi  per 
1000  cu. 
ft.  of  gas 

Temper- 
ature 

Vapor 
pressure 

AssOi  per 
1000  cu. 
ft.  of  gas 

100 
120 
140 
160 
180 
200 

Mm.  of  mer- 
cury 
0 . 000266 
0.00180 
0.01035 
0.0473 
0.186 
0.653 

Pounds 

0.000386 

0.00261 

0.0150 

0.0685 

0.270 

0.947 

°C. 

220 
240 
260 
280 
300 

Mm.  of  mer- 
cury 

2.065 

5.96 
15.7 
38.5 
89.1 

Pounds 

3.00 
8.71 
23.2 
58.6 
144.0 

1 

This  table,  from  "Tech.  Paper  81,"  U.  S.  Bureau  of  Mines,  may  be  used 
as  a  rough  basis  for  the  calculation  of  arsenic  in  smeltery  gases.  The  vapor 
pressure  of  arsenic  volatilized  from  flue  dust  at  a  given  temperature  is  about 
half  of  the  value  in  the  table  for  that  temperature.  The  heat  of  sublimation 
of  arsenic  varies  from  about  28,000  gram-cal.  at  110°C.  to  about  25,000  at 
290°C.  per  gram-molecule  of  arsenic  (396  grams). 

Cryohydr.\tes.     Salt  and  Ice  Mixtures' 


Name  of  salt 

Cryohydric  point, 
degrees  C. 

Percentage  an- 

liydrous  salt  in 

ice  mixture 

Calcium  chloride 

-55.0 
-24.0 
-22.0 
-17.5 
-15.0 
-   5.0 

29   8 

Sodium  bromide 

Sodium  chloride 

Sodium  nitrate 

41.33 
23.60 
40.80 

Ammonium  chloride 

Magnesium  sulphate 

19.27 
21.86 

'  General  Electric  Review"  1915. 

Cooling  Mixtures  of  Salt  and  Water' 


Mixed  with 
100  parts  water 


Temperature  falls 


From  C." 


ToC 


Alum-crystallized 

Ammonium  carbonate 

chloride 

nitrate 

sulphate 

sulphocyanate 

Calciurn  chloride  crystallized 

Magnesium  sulphate  crystallized... 

Potassium  chloride 

iodide 

nitrate 

sulphate 

sulphocyanate 

Sodium  acetate,  cryst 

carbonate,  cryst 

chloride 

hyposulphite,  cryst 

nitrate 

phosphate,  cryst 

sulphate,  cryst 


14 
30 
30 
60 
75 

133 

250 
85 
30 

140 
16 
12 

150 
85 
40 
36 

110 
75 
14 
20 


10.8° 

15.3 

13.3 

13.6 

13.2 

13.2 

10.8 

11.1 

13.2 

10.8 

13.2 


10.8 
12.5 


9.0 
3.2 

-  5.1 
-13.6 

6.8 
-18.0 
-12.4 
-3.1 
-3.0 
-11.7 

-  3.0 
-11.7 
-23.7 

-  4.7 
1.6 

10.1 

-  8.0 

-  5.3 
7.1 
5.7 


>  Cbemeb  and  Bicknell's  "Chemical  and  Metallurgical  Hand  Book.* 


PHYSICAL  CONSTANTS 


145 


Capillary  Constants  for  Molten  Metals 

(Given  by  Landolt,  r  X  h  =  a-)^ 
These  are  the  products  of  the  rise  (or  degression)   of  the  metal  by  the 
radius  of  the  tube,  or  the  rise  or  depression  in  tubes  of  1  cm.  radius. 


Metal         S.W.Smith     Quincke      Siedentopf    Grunmach 


Selenium. . 
Antimony. 

Bismuth. . . 


Lead 

Mercury. 

Tin 


Cadmium.. 
Aluminum. 

Zinc 

Silver 


Copper. 

Gold... 
Iron. . . 


8.65 

6.91 

7.53 

8.36 

8.12 

6.72 

6.73 

14.57 

14.55 

[14.97 


19. 

19. 

/28. 
130. 

15. 

14. 

/25. 
\27. 


.41 
.90 

.76 
.98 
.234 

43 


8.755 
9.778 


17.87 


/    7.39 
\    6.09, 

10.27 


21.25 
No  values  given 


StSckle 
6.548 


Gradenwitz 
14.5 


Heydweiller 
6.90 


Comparison  of  Values  for  Surface  Tensions 
Obtained  by  Various  Workers 

(Given    by  Landolt)' 


of  Metals 


Metal 

S.W.Smith 

Quincke 

Siedentopf 

Grunmach 

Dynes  per 
centimeter 

Dynes  per 

centimeter 

92.5 

317.2 

464.9 

r  535.9 

457'"^- 
I          mm. 

547.2 

C  681.2 

598  '"^- 
1,          mm. 

No  1 
/    967.4  \ 
\  1103.7/ 
815.0 

782.4 

Dynes  per 
centimeter 

Dynes  per 
centimeter 

Dynes  per 
centimeter 

274.0 
346.0 

424.5 
447.5 

480.0 

520.0 
707.5 

429.5 
509.5 

519  ""^- 
mm. 

Lead 

]  482'"^- 
J          mm. 

[491.2  1 
1405.0/ 

352  1 

359/ 

led 

Mercury 

StSckle 

612.4 

624  '"^- 
mm. 

/alues  recorc 

435.6 

Zinc 

Cadmium.. . . 

832.0 

Silver 

858.0 
1018.0 

1178.0 
1350.0 

Gradenwitz, 
751.0 

Gold 

581.0 

Heydweiller 
612.2 

Copper 

•  Sydney  W.  Smith,  paper  before  the  Institute  of  Metals,  September,  1914. 
10 


146     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


The  surface  tensions  of  liquid  metals  are  periodic  functions  of 
their  atomic  weights.  In  each  period  the  surface  tension 
decreases  slightly,  the  metal  of  lowest  atomic  weight  having  the 
highest  surface  tension. 

Heat  Conductivity  (K) 
A  plate  of  the  given  substance  1  cm.  thick,  with  parallel  sides 
having  a  difference  in  temperature  of  1°C.,  conducts  enough 
heat  per  square  centimeter  per  second  to  heat  K  grams  of  water 
from  0°  to  1°C.  The  table  is  one  compiled  from  various  sources. 
See  also  Bering's  Thermal  Resistivity  Table  on  p.  148. 


Metals 


Temperature, 
degrees  C. 


Aluminum 

Aluminum 

Aluminum 

Antimony 

Antimony 

Bismuth 

Bismuth 

Bismutn 

Brass,  red 

Brass,  red 

Brass,  yellow 

Brass,  yellow 

Cadmium 

Cadmium 

Cadmium 

Copper 

Copper 

Copper ; 

Copper  (containing  iron) 

Copper  (phosphor  bronze) 

Copper  (phosphor  bronze) 

German  silver 

German  silver 

Gold 

Iron 

Iron,  wrought  (1  per  cent.  C.) 
Iron,  wrought 


Iron,  wrought 

Iron,  wrought 

Iron,  wrought 

Iron,  wrought 

Iron  (pure) 

Iron  (Bessemer  steel) 

Iron  (puddled) 

Lead 

Lead 

Magnesium 

Mercury 

Mercury 

Mercury 

Nickel 

Palladium 

Platinum 

Silver 

Steel  (1  per  cent.  C.) 

Tin 

Tungsten 

Wood  8  metal  (99.0.5  Bi  +  0.95  Sn) . 
Wood's  metal  (93.86  Bi  +  6.14  Sn). 
Zinc 


18 

100 

-IGO 

0  to  30 

100 

0 

100 

-186 

0 

100 

0 

100 

0 

100 

-160 

0 

100 

-160 

0  to  30 

0 

100 

31 

100 

18 

-160 

18 

50 

100 

150 

200 

275 

18 

15 

15 

18 

100 

0  to  100 

0 

50 

100 

0 

18 

10  to  97 

10  to  97 

18 
0  to  30 
18 


0  to  30 


0.501 

0.492 

0.514 

0.044 

0.040 

0.0177 

0.0161 

0.025 

0.2460 

0.2847 

0.2041 

0.2540 

0.02213 

0 . 02045 

0.239 

1.0405 

0.908 

1.079 

0.954 

0.7198 

0.7226 

0.081 

0.0887 

0.700 

0.152 

0.144 

0.1772 

0.1567 

0.1447 

0.1357 

0.1240 

0.161 

0 . 0964 

0.1375 

0.083 

0.076 

0.376 

0.01479 

0.01893 

0.024 

0.14 

0.17 

0.19 

1.096 

0.115 

0.151 

0.36 

0.008 

0.012 

0.303 


PHYSICAL  CONSTANTS 


147 


Xon-metals 


Temperature, 
degrees  C. 


Air 

Cement 

Coal 

Cotton  (compressed). 

Cotton  wool 

Felt 

Flannel - 

Glass  (crown) 

Glass  (flint) 

Ic 


Plaster  of  Paris 

Paraffin 

Quartz  sand 

Slate 

Sulphuric  acid 

Water 

Water 

Wood  (dry  pine),  dry  walnut 

Alumina  brick 

Asbestos  paper 

Cardboard 

Coke  powdered 

Cork 

Firebrick 

Firebrick 

Firebrick  dust 

Gas  retort  carbon,  solid 

Graphite 

Graphite-retort  dust 

Infusorial  earth 

Infusorial  earth 

Magnesia  brick 

Magnesia-calcined  Grecian  granular. 

Magnesia-calcined  light  porous 

Magnesite-brick  dust 

Mica  (perpen.  to  cleavage) 

Paper 

Rubber,  Para 

Sawdust 

Slag  wool 


0 

below  0° 
below  0° 
below  0° 


below  0° 
10-15 
10-15 


0 

18-98 

below  0° 

9-15 

0 
40.8 


0°-700° 


0°-100° 


0°-1300° 
0°-500° 
20°-98° 
0°-100° 


20°- 100° 
17°-98° 
0°-6.50° 
0°-1300° 
20°-100° 
20°- 100° 
20°- 100° 


0.00057 

0.0001625 

0 . 000405 

0.00055 

0.0004 

0 . 00009 

0 . 000355 

0.00163 

0.00143 

0.005 

0.0013 

0 . 0006 

0 . 00060 

0.00481 

0 . 000765 

0.001203 

0.001555 

0 . 0004 

0 . 00204 

0 . 0006 

0 . 0005 

0 . 00044 

0.00013 

0.00310 

0.00140 

0 . 00028 

0.0177 

0.012 

0 . 00040 

0.00013 

0 . 00038 

0 . 00620 

0.00045 

0.00016 

0 . 00050 

0.018 

0.0003 

0 . 00045 

0.00012 

0.00019 


148     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 

Table  of  Thermal  Resistivities^ 
Approximately  i\  Order  of  Resistivity 

(Ti'iiiperature  in  Centigrade  degrees) 


Thermal   ohms' 


Silver,  O'-lOO" 

Copper  (electrode  mean),  100°-197° 

Copper  (electrode  mean),  100°-837° 

Copper,  0°-100°.  about 

Copper 

Copper,  cast 

Copper,  rolled 

Copper,  rolledi 

Aluminum,  0°-100° 

Graphite,  Acheson  (electrode  mean),  10O°-390' 
Graphite,  Acheson  (electrode  mean),  100°-914' 

Brass,  0°-100° 

Iron  (electrode  mean),  100°-398° 

Iron  (electrode  mean),  lOC-SgS' 

Iron,  wrought 

Iron,  wrought,  0° 

Iron,  wrought,  275° 

Iron,  wrought 

Iron,  cast 

Iron,  cast,  30° 

Steel 

Steel 

Steel,  various 

Steel,  10  per  cent,  manganese 

Platinum 

Platinum,  18°-100» 

Platinum 


'  Hering  uses  an  expression,  the  thermal  ohm,  which  is  the  resistance 
through  which  1  watt  of  heat  flow  will  pass  when  the  temperature  drop 
is  1°C.  Hence,  if  R  is  the  thermal  resistance  in  thermal  ohms,  W  the 
flow  of  heat  in  watts  and  T  the  temperature  in  Centigrade  degrees: 

T 

Or  if  r  is  the  specific  thermal  resistance  in  thermal  ohms  i>er  centimeter 
cube  then 

where  L  is  length  and  S  is  cross  section. 

To  reduce  a  thermal  conductivity  in  gram  calories  per  second  to  resistivity 
in  thermal  ohms,  mujtiply  the  reciprocal  of  the  conductivity  by  0.2388, 
when  both  are  for  1  cm.'  To  reduce  gram  calories  to  watts,  multiply  by 
4.186.  In  order  to  compare  thermal  resistivities  Mr.  Herino  called  that  of 
silver  the  unit,  and  reduced  all  values  to  this  base. 

To  use  the  data  of  the  table  for  all  purposes  it  may  be  remembered  that 
watts  X  0.00134111  =  horse  power 
watts  X  0.0568776     =  B.t.u.  per  minute. 


PHYSICAL  CONSTANTS 


149 


Thermal    ohms' 


Inch 
cube 

Centi- 
meter 
cube 

Refer- 
ence 

0.72 

1.9 

H 

1.05 

2.7 

H 

0.33 

0.83 

CJ 

1.10 

2.8 

WP 

1.2 

3.0 

LB 

3.8 

9.6 

WQ 

4.1 

10.3 

WQ 

5.5 

14.1 

LB 

5.9 

15.0 

LB 

8.0 

21.0 

LB 

9.1 

23.0 

LB 

13.0 

34.0 

WQ 

16.0 

42.0 

P 

16.0 

42.0 

WQ 

16.0 

42.0 

LB 

9.8 

25.0 

P 

12.0 

31.0 

P 

19.0 

48.0 

LB 

20.0 

51.0 

P 

21.0 

53.0 

D 

22.0 

57.0 

WQ 

23.0 

57.0 

Z 

30.0 

77.0 

Z 

44.0 

112.0 

CE 

67.0 

171.0 

Z 

24.0 

61.0 

WQ 

25.0 

63.0 

WQ 

26.0 

67.0 

LB 

29.0 

72.0 

WQ 

35.0 

89.0 

WQ 

38.0 

96.0 

LB 

41.0 

104.0 

WQ 

43.0 

109.0 

LB 

44.0 

110.0 

N 

132.0 

336.0 

LB 

47.0 

120.0 

LB 

47.0 

120  0 

WQ 

52.0 

133.0 

WQ 

62.0 

160.0 

W 

72.0 

180.0 

LB 

87.0 

220.0 

LB 

96.0 

240.0 

0 

109.0 

276.0 

0 

110.0 

280.0 

0 

131.0 

333.0 

LB 

105.0 

266.0 

LB 

221.0 

562.0 

0 

178.0 

453.0 

N 

169.0 

430.0 

N 

187.0 

477.0 

LB 

204.0 

518.0 

P 

139.0 

353.0 

0 

166.0 

422.0 

N 

221.0 

562.0 

N 

416.0 

1016.0 

S 

239.0 

606.0 

LB 

Carbon  (electrode  mean)  100°-942'' 

Carbon  (electrode  mean)  100°-360° 

Lead 

'Lead 

Lead,  O^-lOO" 

Plumbago  brick,  about  1000° 

Carborundum  brick,  about  1000° 

Mercury,  0°-50° 

8uartz,  0° 
raphite  (probably  plumbago)  7° 

Retort  carbon,  0° 

Magnesia  brick,  about  1000° 

Stone,  calcareous,  fine 

Chromite  brick,  about  1000° 

Ice 

Marble,  fine  grained,  gray 

Marble,  coarse  grained,  white 

Marble,  30° 

Stone,  calcareous,  ordinary 

Firebrick,  probably  room  temperature 

Firebrick,  about  1000° 

Firebrick,  mean  for  500°-1300° 

Firebrick,  mean  for  0°-1300° 

Firebrick,  about  400°-800° 

Firebrick,  mean  for  0°-500° 

Checker  brick,  about  1000° 

Gas  retort  brick,  about  1000° 

Slate,  94° 

Building  brick,  about  1000° 

Glass  pot,  about  1000° 

Porcelain,  95° 

Terracotta,  about  1000° 

Chalk,  solid 

Cement,  Portland,  neat,  35° 

Cement,  Portland,  90° 

Lava 

Silica  brick,  about  1000° 

Kieselguhr  brick,  about  1000° 

Red  brick  wall,  average  8-in.-40-in.  walls 

Water,  room  temperature 

Glass,  28° 

Plumbago,  20°-155°,  26.1  per  cent,  solid  matter 
Fine  sand,  20°-155°,  51.4  per  cent,  solid  matter 
Coarse  sand,   20°-155°,   52.9   per  cent,   solid 

matter 

Cork,  solid 

Plaster  of  Paris,  0° 

Plaster  of  Paris,  20°-155°,  36.8  per  cent,  solid 

matter 

Slag  concrete,  1  slag:  0.61  cement  by  weight,  50° 

Pumice  stone,  18.2  lb.  per  cu.  ft.,  50° 

Pumice  stone 

Brick  dust,  sifted 

Asbestos,  20°-155°,  34.2  per  cent,  solid  matter 

Asbestos,  36  lb.  per  cu.  ft.,  600° 

Asbestos,  36  lb.  per  cu.  ft.,  50° 

Asbestos  with  air  cells 

Cardboard,  below  0° 


150     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Thermal   ohms.' 


Inch 
cube 


Centi- 
meter 
cube 


Ebonite,  48° 

Petroleum,  13" 

Wood  pine,  parallel  to  fiber 

Many  li<iuids  (hydrocarbons,  etc.) 

Anthracite 

Chalk,  20°-155°,  25.3  per  cent,  solid  matter... 

Very  porous  slag,  22.5  lb.  per  cu.  ft.,  50° 

Zinc  white,  20°-155°,  8.8  per  cent,  solid  matter 

Infusorial  earth,  21°-175* 

Infusorial  earth  20°-155°,  11.2  per  cent,  solids. 
Infusorial  earth,   20°-155°,   6   per   cent,   solid 

matter 

Infusorial,  earth,    burned,  12.5  lb.  per  cu.  ft., 

450° 

Infusorial  earth,  burned,  12.5  lb.  per  cu.  ft.,  50° 
Infusorial  earth,  loose,  21.8  lb.  per  cu.  ft.,  350°. 
Infusorial  earth,  loose,  21.8  lb.  per  cu.  ft.,  50°. 

Infusorial  earth 

Magnesia  carb.,  85  per  cent.,  20°-18S° 

Magnesia,   calcined,   20°-155°,   28.5  per  cent. 

solids 

Magnesia,    calcined,    20''-155°,   4.9   per  cent. 

solids 

Magnesia    calcined,    20°-155°,     2.3    per    cent. 

solids 

Magnesia,  calcined,  21°-175° 

Charcoal,  pine,  20°-155°,  11.9  per  cent,  solid 

matter 

Charcoal,  from  leaves  ,11.9  lb.  per  cu.  ft.,  100° 
Charcoal,  from  leaves,  11.9  lb.  per  cu.  ft.,  50°. 

Charcoal 

Feathers,  20°-155°,  2  per  cent,  solid  matter 

Sawdust,  13.4  lb.  per  cu.  ft.,  50° 

Sawdust 

Sawdust,  13.4  lb.  per  cu.  ft..  50° 

Cork,  granulated  and  compressed,  20°-188°. . . 

Cork,  ground,  10  lb.  per  cu.  ft.,  200° 

Cork,  ground,  10  lb.  per  cu.  ft.,  50° 

."kir,  20°-155° 

.\ir,  0° 

Cotton  wool,  20°-155°,  1  per  cent,  solid  matter. 
Cotton  wool,  20°-155°,  2  per  cent,  solid  matter. 

Cotton  wool,  5.05  lb.  per  cu.  ft.,  100° 

Cotton  wool,  5.05  lb.  per  cu.  ft.,  50° 

Cotton  wool 

Cotton  wool,  loose 

Cotton  wool,  compressed 

Hair  felt,  20°-155°,  9.2  per  cent,  solid  matter. . 

Hair  felt,  21°-175° 

Hair  felt 

Hair  felt,  below  0° 

Lampblack,  20°-155°,  5.6  per  cent,  solid  matter 

Fine  quartz  sand 

Silk,  6.3  lb.  per  cu.  ft.,  100° 

Silk.  6.3  lb.  per  cu.  ft.,  50° 

Wool,   sheep's,  20°-155°,  2.1   per  cent,  solid 

matter 


251 
265 
313 
313 
317 
332 
356 
398 
415 
435 

472 

263 
477 
427 
562 
745 
537 

160 

544 


616 


637 

672 

796 

796 

803 

844 

905 

1010 

1050 

1110 

1200 

1675 
1220 
1090 
1430 
1890 
1370 

470 

1380 


554 

1410 

572 

1450 

494 

1260 

537 

1370 

603 

1530 

723 

1840 

577 

1470 

014 

1560 

620 

1570 

765 

1950 

467 

1190 

614 

1560 

797 

2030 

143 

364 

1700 

4320 

596 

1520 

659 

1570 

572 

1460 

627 

1600 

830 

2110 

2170 

5500 

2810 

7120 

633 

1610 

790 

2010 

865 

2200 

1080 

2740 

697 

1770 

718 

1820 

662 

1690 

752 

1920 

1570 


PHYSICAL  CONSTANTS 


151 


Thermal  ohms' 


Inch 
cube 


Centi- 
meter 
cube 


Refer- 
ence 


Wool,  sheep's,  8.5  lb.  per  cu.  ft.,  50° 
Wool,  sheep's,  8.5  lb.  per  cu.  ft.,  100 

Wool,  sheep's 

Mineral  wool,  21°-175° 

Mineral  wool,  0°-lS° 

Hard  rubber 

Wood,  pine,  radially 

Loose  fibrous  materials,  9° 

Flannel 


676 

745 

803 

737 

1010 

1060 

1070 

1540 

2650 


1720 
1890 
2050 
1870 
2570 
2680 
2720 
3920 
6720 


N 

C 

N 

B 

C 

LB 

LB 

LB 

LB 


B— George  M.  Brill.  Trans.,  Am.  Soc.  Mech.  Eng.,  XVI,  p.  827- 
Coverings  on  8-in.  steam  pipes. 

C — J.  J.  CoLEMA.v.  Engineering,  Sept.  5,  1834,  p.  237.  Ice  melted  in 
cube  surrounded  with  the  materials.  Temperatures  0-18°  and  0-38°  C. 
The  values  were  given  relatively  to  each  other;  to  reduce  them  to  absolute 
measure  it  is  here  assumed  that  the  value  for  sawdust  is  620,  thermal  ohm, 
inch  cube  units. 

CE — Clement  and  Egt. 

CJ — CULVERT  and  Joh.vson.  Relative  values  based  on  silver.  Reduced 
here  on  the  basis  that  the  conductivity  of  silver  is  1.0  in  gram  calories  per 
second,  centigrade,  centimeter  cube  units. 

D — Depretz,  Hood.  "  Warming  and  Ventilating  Buildings,"  p.  249. 
Given  relatively  to  marble,  here  assumed  to  be  10  thermal  ohms,  inch  cube 
units. 

H — Carl  Hering.  "The  Proportions  of  Electrodes  for  Furnaces." 
(Table.)  Paper  read  before  the  Am.  Inst.  Elec.  Eng.,  March  31,  1910. 
Mean  values  when  materials  are  used  as  furnace  electrodes. 

LB — Landolt  and  Boernstein  tables.  The  values  here  chosen  are 
mostly  approximate  means  of  the  generally  numerous  and  sometimes 
greatly  differing  values  given  by  different  observers.  For  the  individual 
values  and  for  the  authorities  see  those  tables.  They  also  include  values  for 
very  many  other  materials. 

N — Wilhelm  NcssEL.  Zeit.  Ver.  Deut.  Eng.,  June,  1908,  p.  906,  table, 
p.  1006.  Materials  were  placed  between  two  concentric  metallic  spheres  or 
cubes.  Heat  generated  electrically  in  interior.  Temperature  measured 
with  thermocouples  at  numerous  depths  in  the  material  after  several  days' 
beating.  As  here  given  they  represent  the  resistivities  at  the  temperatures 
stated,  not  the  means  over  a  range.  Probably  the  best  and  most  reliable 
determinations  published.  His  conductivities  are  here  assumed  to  be  in 
terms  of  kilogram  calories  per  hour,  centigrade,  meter  cube,  units;  although 
not  so  stated  directly  in  the  original,  it  is  undoubtedly  what  is  meant.  An 
abstract  appeared  in  the  Eng.  Digest,  August,  1908,  p.  168,  in  which  the  units 
are  reduced  to  thermal  units,  feet,  inches  and  Fahrenheit  degrees;  the 
formula  there  given  omits  to  say  that  it  is  necessary  to  multiply  by  the 
temperature  also. 

O — Prof.  Ordwat.  Trans.,  Am.  Soc.  Mech.  Eng.,  Vol.  VI,  1884-5,  p. 
168.  Tested  in  plates  1  in.  thick  between  two  flat  iron  surfaces,  one  of  them 
heated  by  steam,  the  heat  emitted  by  the  other  being  measured  calorimetric- 
ally.  Extended,  carefully  made  researches:  presumably  very  good  values. 
There  is  an  error  in  the  heading  in  Table  VII;  square  inch  should  read  square 
meter,  as  in  the  others. 

P — Peclet,  Box.  "Practical  Treatise  on  Heat."  Presumably  ordinary 
weather  temperatures. 

S — -H.  G.  Stott.  Power,  1902.  Pipe  coverings.  200  ft.  of  2-in.  pipe  heated 
electrically  to  constant  temperature.  Coverings  were  somewhat  over  1  in. 
thick;  they  are  here  reduced  to  1  in.  Heat  transmitted  to  air,  hence  these 
resistances  include  that  at  the  surface. 

W — Wolff.  Jour.  Frank.  Inst.,  1893.  The  transmission  of  heat  from 
the  interior  to  the  exterior  of  buildings  through  the  walls;  hence  ordinary 
weather  temperatures.     Prescribed  by  law  by  German  Government  for  heat- 


152     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


ing  plants.  _  Said  to  agree  well  with  good  American  practice.  The  value 
here  given  is  an  average  of  all  the  individual  ones,  omitting  the  first  one, 
which  differed  greatly  from  all  the  others. 

WF — WiEDE.MANN  and  Franz;  relative  values  based  on  silver.  Reduced 
here  on  the  basis  that  the  conductivity  of  silver  is  1.0  in  gram  calories  per 
second,  centigrade,  centimeter  cube,  units. 

WQ — WoLOQDiNE,  QuENEAU.  The  temperatures  were  about  1000°C.; 
the  materials  were  those  of  commerce  and  do  not  refer  to  extra  pure  or  to 
inferior  grades.  The  present  writer  is  of  the  opinion,  based  on  the  method 
used  in  the  tests,  that  these  values  are  probably  too  low. 

Z — Source  lost,  but  probably  fairly  good  values. 

For  further  information  the  reader  is  referred  to  Metallurgical  and  Chemical 
Engineering,  September,  1909,  p.  383;  February,  1909,  p.  72;  December, 
1911,  p.  652. 

According  to  William  Nussel,  thermal  conductivity  increases  by  Ji?.* 
for  each  degree  Centigrade  rise  in  temperature. 

Thermal  Conductivity  of  Refractories' 


Woodland 
firebrick 

Quartzite 

(ganister  and 

clay) 

Star  silica 

(ganister  and 

lime) 

Magnesite 
(dead  burned) 

SiOj 52.93 

AIjO. 42.69 

FejOi 1.98 

73.91 
22.87 
1.48 
0.29 
0.31 
1.20 

95.85 
0.88 
0,79 
1.80 
0.14 
0.39 

2.50 
0.50 
7.00 

CaO 0.33 

MgO 0.38 

2.75 
86.50 

0.10 

Density 1.91 

/Catl00°C 0.0043 

A' at  1000°C.  .  .     0.0086 

1.91 
0.0051 
0 . 0086 

1.56 
0 . 005G 
0.0108 

2.46 
1         0.0343> 

Flow  of  Heat  Inward  from  a  Heated  Plane  Face^ 

Starting  with  the  simple  fundamental  law  for  the  flow  of 
heat  in  the  steady  state — namely,  that  the  amount  of  heat 
conducted  varies  directly  as  the  conductivity,  area,  time  and 
temperature  difference,  and  inversely  as  the  thickness — it  is  not 
particularly  difficult  to  derive  the  .solution  for  this  case  with  the 
aid  of  Fourier's  Series.  For  such  derivation,  however,  the 
reader  is  referred  to  any  treatise  on  heat  conduction  where  he 
will  find  it  given  in  the  form : 

V^J      X 

2hVt 
This  means  that  for  a  body  initially  at  the  zero  of  our  tem- 
perature scale,  whose  plane  surface  is  suddenly  heated  to  and 
maintained  at  To,  the  temperature  7"  at  a  distance  x  from  this 
surface  will  be  given  t  seconds  later  by  this  integral.  As  to  the 
meaning  of  h,  a  little  thought  will  serve  to  show  that  inasmuch  as 
the  temperature  of  the  substance  must  be  raised  by  the  heat 

'  From  a  paper  by  Botd  Dudley,  Jr.,  read  at  the  Atlantic  City  meeting 
of  the  American  Electrochemical  Society,  April,  1915. 

'  From  445°  to  830°C.  K  is  expressed  in  gram  calories  per  second  per 
inch  cube  per  degree  Centigrade,  a  peculiar  unit. 

»  Taken  from  an  article  by  L.  R.  iNQERSOLLin  Eng.  News,  Oct.  30,  19 J  3. 


PHYSICAL  CONSTANTS 


153 


wave  as  it  travels  into  the  body,  the  rate  of  this  penetration  will 
depend  not  onlj'  on  the  conductivity,  but  on  the  specific  heat 
and 'density  of  the  material  as  well.  This  is  taken  account  of 
in  the  constant  h  which  is  defined  by  the  relation 

cp 
k,  c  and  p  being  respectively  the  conductivitj',  specific  heat  and 
density  of  the  material.     The  quantities  x,  h  and  t  being  known, 
T  can  be  determined.     Tables  I  and  II  give  the  values  of  this 
integral,  and  of  the  constant  h^,  or  thermal  diffusivity. 

Table  I. — Values  of  Integral  E  =  —p  |  e~ 

V  71 


v_ 


2hVt 


x/2hVt 

E 

x/2hVt 

E 

x/2h\/T 

E 

0.00 

1.000 

0.45 

0.525 

1.40 

0.048 

0.02 

0.987 

0.50 

0.480 

1.50 

0.034 

0.04 

0.955 

0.55 

0.437 

1.60 

0.024 

0.06 

0.932 

0.60 

0.396 

1.70 

0.016 

0.08 

0.910 

0.65 

0.358 

1.80 

0.0109 

0.10 

0.888 

0.70 

0.322 

1.90 

0.0072 

0.12 

0.865 

0.75 

0.288 

2.00 

0.0047 

0.14 

0.843 

0.80 

0.258 

2.10 

0.0030 

0.16 

0.821 

0.85 

0.229 

2.20 

0.0019 

0.18 

0.800 

0.90 

0.203 

2.30 

0.0011 

0.20 

0.777 

0.95 

0.179 

2.40 

0.0007 

0.25 

0.724 

1.00 

0.157 

2.50 

0.0004 

0.30 

0.671 

1.10 

0.120 

2.60 

0.0002 

0.35 

0.621 

1.20 

0.090 

2.70 

0.0001 

0.40 

0.572 

1.30 

0.066 

00 

0 . 0000 

Examples. — The  use  of  these  tables  is  best  shown  by  solving 
some  specific  examples: 

1.  A  massive  granite  block  at  20°C.  (68°F.)  has  one  face 
(rapidly)  heated  to  200°C.  (392°F.).  What  will  be  the  tem- 
perature at  a  depth  of  10  cm.  (4  in.)  after  1  hour? 

Since  the  theory  is  based  on  the  assumption  of  an  initial 
temperature  of  zero  the  temperature  scale  must  be  shifted  in 
this  case  by  subtracting  20°,  which  will  be  added  again  later. 
Taking  h^  from  Table  II  as  0.0155,  t  as  3600  (seconds)  and  x 
as  10  (cm.),  the  quantity  x/2hVt  becomes  0.67.  This  gives, 
from  Table  I,  E  =  O.S-l;  hence  the  rise  in  temperature  would  be 
T  =  180E,  or  61°,  making  a  final  temperature  of  SrC.  (178°F.). 

2.  The  surface  of  a  dry  soil  initially  throughout  at  6°C. 
(43°F.)  is  cooled  to  -20°C.  (-4°F.).  How  long  before  water- 
pipes  at  a  depth  of  152  cm.  (5  ft.)  will  be  in  danger  of  freezing? 

Here  we  have,  after  shifting  the  temperature  scale, 
-6  =  -26E,  or  E  =  0.23 

From  Table  I,  then,  x/2hVT  =  0.85,  which,  with  h^  =  0.0031, 
gives  t  =  2,000,000  seconds  or  30  days. 


154     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Taule  II. — Values  of  Thermal  Conductivity  Constants  in 
C.  G.  S.>  Units' 


Material 


Tempera- 
ture, 
deg.  C. 


Con- 
ductiv- 
ity,   A: 


Dif- 
fusiv- 
ity,   ht 


Air... 

Aluminum 

Brass  (yellow) 

Brick  (firebrick)..  .  . 
Brick  (in  masonry).. 
Concrete  (cinder)..  . 
Concrete  (stone).. . . 

Copper 

Cork  (ground) 

Glass  (ordinary)..  .  . 

Granite 

Ice., 


0 
18 
0 
0-800 


Iron  (wrought  or  mild  steel) 

Iron  (cast,  also  high-carbon  steel) 

Lead 

Limestone 

Magnesium    carbonate    (85   per    cent. 

steam-pipe  covering) 

Marble  (white) 

Nickel 

Rock  material,  average 

Sandstone 

Silver 

Snow  (fresh) 

Soil  (average,  Jamp) 

Soil  (very  dry) 

Water 

Wood  (dry  pine — across  grain^ 

Wood  (dry  pine — with  grain) 


18 


18 

is' 


000055 

480 

204 

0040 

0020 

00081 

0022 

918 

00012 

0024 

0081 

0052 

1436 

108 

0827 

0050 

00017 

0050 

142 

0042 

0050 

006 

0003 

0037 

00088 

00143 

00009 

00030 


0.179 

0.826 

0.339 

0.0074 

0.0050 

0.0031 

0.0058 

1.133 

0.0017 

0 . 0057 

0.0155 

0.0112 

0.173 

0.121 

0.237 

0.0092 


0 . 0090 

0.152 

0.0118 

0.0133 

1.737 

0 . 0033 

0 . 0055 

0.0031 

0.00143 

0 . 00068 

0.0023 


Flow  of  Heat  Inward  from  Two  Heated  Faces 

If  a  plate  or  slab  of  tliickness  I  and  initial  temperature  zero 
have  both  its  faces  suddenly  heated  to  and  kept  at  To,  the  tem- 
perature T  in  the  middle  plane,  which  will  obviously  be  the  last 
part  of  the  body  to  heat  up,  mav  be  obtained  from  the  equation 

\  IT  l^  6w  I'  I 

I  being  the  time  in  seconds  and  h?-  the  thermal  difTusivity.     To 

'  The  use  of  this  system  is  almost  compulsory  in  cases  where  thermal 
diffusivity  is  involved,  since  it  is  the  only  one  in  common  use  which  is  consist- 
ent in  its  choice  of  fundamental  units.  Thus  the  steam  engineer's  con- 
ductivity unit  of  the  B.t.u.  per  hour,  per  square  foot,  per  degree  F.,  per  inch 
in  thickness,  is  not  available  in  this  case  since  it  involves  two  different 
units  of  length,  i.e.,  the  inch  and  foot.  Similar  objections  may  be  raised 
against  most  of  the  other  units  in  common  use  with  the  exception  of  the 
C.  G.  S. 

Most  of  the  values  for  metals  are  those  of  Jaqer  and  Diesselhorst,  Abh. 
d.  phys-tech.  Reichsanstalt,  Vol.  3,  p.  269  (1900).  The  others  have  been 
compiled  from  various  sources.  When  not  otherwise  specified,  ordinary 
temperatures  are  assumed. 

'  This  table  is  also  taken  from  IhfOERSOLL'a  article.  Some  of  these  con- 
stants differ  from  those  given  in  the  table  on  p.  146,  but  the  differences  are  not 
serious,  and  since  his  diffusivity  constants  have  been  computed  on  this  basin, 
it  seems  better  to  let  the  table  stand  as  originally  printed. 


PHYSICAL  CONSTANTS 


155 


simplify  computation,  the  values  of  this  series  have  been  tabu- 
lated as  in  Table  III. 


Table  III. — Values  of  the  Function 


y  =  1  -  —  flO-x  -  4-10-'^  +  4-10-"x_ 
X   \  6  O 


>' 


here  1  =  0.434 


hhrU 


I 

y 

X 

V 

X 

V 

0.01 
0.02 
0  03 

0.0000 
0.0000 
0 . 0000 
0.0001 
0 . 0005 
0.0010 

0.0021 
0.0037 
0.0055 
0.0081 
0.0113 
0.0150 

0.0194 
0.0241 
9.0294 
0.0351 

0.0412 

0.11 
0.12 
0  13 

0.0546 
0.0692 
0  0848 

0.36 
0.38 
0.40 
0.45 
0.50 
0.60 

0.70 
0.80 
0.90 
1.00 
1.25 
1.50 

1.75 
2.00 
2.50 
3.00 
3.50 
4.00 

0.4444 
0.4693 
0.4931 
0 . 5482 
0 . 5974 
0.6802 

0 . 7460 
0.7982 
0.8397 
0.8727 
0.9284 
0.9597 

0.9774 
0.9873 
0.9960 
0.9987 
0.9996 
0.9999 

0.035 

0.04 

0.045 

0.05 

0.055 

0.06 

0.065 

0.07 

0.075 

0.08 
0.085 
0.09 
0.095 

0.10 

0.14 
0.15 
0.16 

0.17 
0.18 
0.19 
0.20 
0.22 
0.24 

0.26 
1.28 
0.30 
0.32 

0.34 

0.1009 
0.1176 
0.1345 

0.1517 
0.1690 
0.1862 
0.2033 
0.2372 
0.2702 

0.3022 
0.3331 
0.3727 
0.3912 
0.4184 

Examples. — A  dry  spruce  cross-tie  11.4  X  17.8  cm.  (43^^  X  7 
in.)  in  section  and  71  cm.  (28  in.)  long,  and  at  an  initial  tem- 
perature of  15°C.  (59°F.),  is  placed  in  an  oven  which  heats  its 
surface  to  137°C.  (278°F.)  for  \Q]4  hours.  What  should  be 
the  temperature  at  the  end  of  this  period  for  a  point  near  the 
center  of  the  tie? 

As  the  heat  penetration  will  be  largely  due  to  conduction 
across  the  smallest  dimension  of  the  tie  we  shall  neglect  the  other 
faces  altogether.  We  have  then,  effectively,  a  plate  of  thickness 
11.4  cm.  and  diffusivity  0.0068  (pine  wood  in  Table  II),  which 
gives  X  =  0.85.  Then  from  Table  III,  y  =  0.82,  making  a  rise 
in  temperature  of  0.82  (137°  -  15°),  or  100°.  This  gives  a 
final  temperature  of  115°C.  (239°F.).  In  an  actual  experiment 
this  was  found  to  be  113°C.,  checking  our  theory  much  more 
closely  than  could  be  expected,  considering  the  approximations 
we  have  made  in  neglecting  the  other  faces. 

In  the  same  way  we  can  readily  show  b}^  a  few  minutes'  work 
with  a  slide-rule  that  thecenter  of  aplateof  steel  2.54  cm.  (1  in.) 
thick,  which  is  plunged  into  molten  lead,  should  rise  to  within 
2  per  cent,  of  the  temperature  of  its  faces  in  less  than  half  a 
minute;  the  center  of  a  firebrick  6.3  cm.  (23^  in.)  thick,  heated 
by  flue  gases  in  a  regenerator,  should  show  more  than  half  its 
surface  change  in  temperature  in  10  minutes,  and  more  than 
three-quarters  in  20  minutes;  a  disk  of  glass  20.3  cm.  (8  in.) 
thick,  which  has  been  subjected  to  a  recent  heating  or  cooling 
of  a  dozen  degrees  should  be  kept  with  faces  at  constant  tem- 


loG     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


peraturc  for  upwards  of  10  hours  to  insure  that  the  interior 
temperature  is  uniform  to  a  small  fraction  of  a  degree. 

Relative  Conductivities  of  Metals  for  Heat  and  Electricity 

The  following  table,  compiled  from  various  sources,  is 
intended  to  show  merely  the  general  correspondence  between 
conductivity  for  heat  and  for  electricity.  For  ordinary  work, 
the  table  of  heat  conductivities  just  preceding,  and  of  electric 
resistivity  just  following,  should  be  used.  The  electric  conduc- 
tivities are  the  reciprocals  of  the  resistivities  given  in  the  later 
tables. 


Metal   (in  vacuo) 


Heat 


Elec- 
tricity 


Metal    (in   vacuo) 


Heat 


Elec- 
tricity 


Silver 100 

Copper I  74 

Gold. 54.8 

Aluminum !  31.33 

Zinc I  28.1 

Brass 24 

Cadmium 20.06 

Tin '    1.3.4 


100 
77.43 
55.19 


27.39 
22.0 


Iron 

Steel 

Platinum 

Lead 

German  silver 
.Antimony. . .  . 

Bismuth 

Mercury 


11.9 
10.3 
9.4 
7.9 
6.3 
4.03 
1.8 
1.3 


14.44 


10.53 
7.77 
6.0 


Rkl.\tiox  of  He.^t  asu  Electric  Cont)Uctivity» 


Material 

Thermal     conductivity 

Electrical  conductivity 

at  IS^C. 

Temperature 

coefficient  of 

this  ratio, 

per  cent. 

Copper,  commercial 

6.76   X    1010 
6.65   X    1010 

6.71  X    1010 
6.86    X    1010 
7.27    X    10-10 
7.09    X    1010 
6.99    X    1010 

7.05  X    lO'O 

6.72  X    1010 

7.06  X    1010 
7.15   X    1010 

7.35  X    1010 

6.36  X    1010 
7,76   X    1010 
7.. 53   X    1010 
7.54   X    1010 

8.02  X    1010 

8.03  X    1010 
9.03   X    1010 
9.64   X    1010 

11.06   X   1010 

9.14    X    1010 

Copper  (1),  pure 

Copper  (2),  pure 

0.39 
0.39 

0.37 

Gold  (1),  pure 

Gold  (2),  pure 

0.36 
0.37 

Nickel 

0.39 

Zinc  (1) 

0.38 

0.38 

0.37 

0.40 

0.34 

0.43 

Platinum  (1) 

0.46 

0.46 

Iron  (1) 

0.43 

Iron  (2) 

0.44 

Steel 

0.35 

Bismuth 

0.15 

Constantan  (60  Cu,  40  Ni) .  . 

Manganin     (84     Cu,    4    Ni, 

12  .Mn) 

0.23 

0.27 

1  Table  used  by  Sir  J.  J.  Thomso.v  at  a  lecture  before  the  Institute  of 
Metals,  May,  1915.     Attributed  by  him  to  Jaoer  and  DiEsaELBORST. 


PHYSICAL  CONSTANTS 


Resistivity  of  Metals 

(Microhms  per  cm.') 


157 


-160° 

0° 

18° 

100° 

Temp, 
coeff.  at  0° 

0.81 

2.8 
36.0 
55.55 
7.0 
1.58 
7.5 

2.94 
40.5 
119.0 
7.54 
1.78 
10.5 
9.71 
2.42 

4.13 

im'.s" 

9.82 
2.36 

0 . 0040 

0.0041 

Bismuth 

0 . 0035 

Cadmium  (drawn) 

Copper  (drawn) 

2.72 
0.49 

0 . 00428 
0.0039 

Cobalt 

■■'slii' 

0 . 00336 

Gold 

0.68 

"ssls" 

0 . 0037 

Iridium 

9-15 
13.9 
20.8 

16.8 
18.8 
27.7 

0 . 0062 

Iron  (wrought) 

5.4 
7.43 

"i9!6" 

8.4 

4.35 

94.07 

0.0058 

0.0039 

0.0038 

95.57 

4.12 

19.9 
11.8 
9.53 
10.7 
11.0 

"25!6" 
15.7 

0.00072 

Molybdenum 

0 . 0050« 

Steel 

Nickel 

5.9 

0.00625 

Osmium 

13.8 
14.0 

0.0035' 

Platinum 

2.4* 

9.0 
6.64 

0.0037« 

6.0 
1.65 

Silver 

0.56 

1.50 
4.74 

2.13 

0 . 00377 

Sodium! 

25.03 
14.6 
21.0' 

0.00336 

Tellurium 

0 . 0040 

Thallium 

17.6  • 

40.1 
11.3 

4.81 
6.1 

Tin  (drawn) 

Tungsten  (annealed)  .  .  . 

3.5 
""2!2'" 

10.0 
4.42 
5.6 

15.3 
6.65 
7.9 

0.0043 
0.00516 
0.00365 

'  At  -  183°.        2  At  25°.       '  At  20°.       *  At  -204°.       6  From  18°  to   100°. 

The  values  at  low  temperatures  are  mostly  Lee's;  those  at  18°,  Jaeger  and 
Diesselhorst's;  those  at  0°  from  a  table  compiled  by  Watt's,  "Laboratory 
Course  in  Electrochemistry,"  while  those  at  100°  are  from  various  sources. 

Alloys^ 


-160° 

0° 

18° 

100° 

Temp,  coeff.  at  0° 

German  silver* 

26.6 
95.5 

27.6 

0 . 0003 

0.00044 

4.1 

6.6 
49.0 

43.50 

5-10 
31.25 

49.1 
42.1 

0.0010 

f  -0.000050  to 

Manganin'. 

43.13 

+0.000050 
/•    0.000002  to 

'  Temperature  coefficients  from  "  Standard  Handbook." 

•  62  per  cent.  Cu,  15  Ni,  22  Zn. 
'  84  per  cent.  Cu,  4  Ni,  12  Mn. 

♦  Most  samples  of  mangatiin  have  a  zero  temperature  coefficient  from  30* 
to  40°C. 


158     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Resistivities  at  High  Temperatures' 

I  Values  in  italics  are  merely  exterpolated) 


rti)(>'(\ 

.Microhms, 

(J<i2'-t'. 

cm.  cb. 

5.0 

5.1 

Gold,  solid 

6.62 

10.0 

Brass,  2-1,  solid 

12.5 

Molybdenum,  solid 

16.5 

Tungsten  (a.  b\  solid 

18.0 

Platinum  (b>,  solid 

25.3 

Cadmium,  fused 

34.12 

Platinum  (al,  solid 

34.4 

Tantalum,  solid 

36.0 

36.60 

Iron  (a),  solid,  about 

52.0 

Tin,  fused 

54.62 

Lead-tin  alloy,  fused 

81.0 

Ferronickel,  solid    

94.0 

Lead,  fused 

102.85 

109.0 

Krupp  metal,  solid 

115.0 

Nichrome  11,  solid 

119.0 

Bismuth,  fused 

139.9 

Antimony,  solid 

152.0 

Ohms 

Graphite  (b) 

0.00080 

0.00084 

0.0027 

Carbon  (d) 

0.0028 

0.0033 

Carbon  (b) 

0.0037 

0.22 

0.094  to 

0.23 

Lead  chloride,  fused,  520°. . 

0.418 

Silver  chloride,  fused 

0.547 

Lead  chloride,  solid 

0.824 

Silfrax  B 

0.92 

Copper  chloride,  fused 

2.50 

2.70 

Carbon  grains  (b),  about. . . 

4.8 

Carbon  grains  (a),  about. . . 

8.5 

10.0 

19.7 

60.0 

Silicon  powder 

Glass,  about 

120.0 

330.0 

Iron  oxide,  FeiOa,  powder. 

1200.0 

Copper  oxide,  CuiO,  powder 

1570.0 

Manganese    oxide,     MnOi, 

powder 

2200.0 

Copper  oxide,  CuO 

.5640.0 

1000°C. 

Microhms, 

1832°F. 

cm.  cb. 

Copper,  solid 

9.42 
12.54 
17.01 

Gold,  solid 

Silver,  fused 

.■*.luminum,  fused 

24.0                   1 

Molybdenum,  solid. . . . 

28.5 

Tungsten  (a),  solid 

30.5 

Tungsten  (b),  solid. . . . 

33.4 

Platinum  (b1,  solid. . .  . 

40.8 

Brass,  2-1,  fused 

41.0 

Tantalum,  solid 

57.0 

Platinum  (a),  solid. . .  . 

66.0 

Tin,  fused 

68.0 

Lead-tin  alloy,  fused... 

98.0 

Ferronickel,  solid    .... 

105.0 

Iron  (a),  solid,  about.  . 

111.0 

Calido,  solid 

122.0                   1 

Lead,  fused 

125.0 

Nichrome  II 

128.0 

Antimony  (b),  fused... 

136.0 

Bismuth,  fused 

1C7.5 

Ohms 

Graphite  (b^ 

0  00065 

Graphite  (a) 

0.00086 
0.0021 
0.0024 
0.0030 

Carbon  (a) 

Carbon  (b) 

0.0034 
0.12 

Carbon  powder 

Silfrax  B 

0.84 

Sodium  chloride,  fused . 

0.90 

Glass,  roughly  about.. 

1.0 

Graphite  grains 

1.7 

Carbon  grains  (b) 

1.9 

Carbon  grains  (a) 

2.8 

Silicon  powder 

3.5 

3.7 
4.8 

Kryptol 

Porcelain,  about 

15.0 

Manganese  oxide  pow- 

der  

15.7 

Copper      oxide,     CuO, 

18.0 
26.7 

Zinc  oxide  powder 

Iron       oxide,        FeiOj, 

powder 

31.4 

110.0 

Magnesium  oxide  pow- 

der  

1400.0 
8000.0 

Alundun) 

•  A  table  compiled  by  C.\nL  Hering,  "Metallurgical  and  Chemical  Engi- 
neering," January,  1915. 


PHYSICAL  CONSTANTS 


159 


1500°C. 
2732°F. 


Microhms, 
cm.  cb. 


loOO°C. 
2732°F. 


Microhms, 
cm.  cb. 


Silver,  fused 

Copper,  fused 

Aluminum,  fused. .  . . 

Gold,  fused 

Molybdenum,  solid.  . 

Tungsten,  solid 

Tungsten  (b),  solid. . 
Platinum  (bl,  solid. . 
Tantalum,  solid  (bt.. 
Tantalum,  solid  (a).. 

Tin,  fused 

Platinum  (a),  solid. . 
Iron  (a),  solid,  about 

Calido,  solid 

Lead,  fused 


23.0 
24.8 
29.0 
37.0 
40.5 
43.0 
50.0 
52.6 
74.4 
78.0 
80.5 
98.0 
131.0 
136.0 
148.0 


Iron  (b),  fused 

Graphite  (b) 

Graphite  (a) 

Carbon  (d) 

Carbon  (a) 

Carbon  (b) 

Xernst  filament,  about, 

Refrax 

Silfrax  B 

Carbon  grains  (b) 

Graphite  grains 

Kryptol 

.\lundum,  about 


166.0 
Ohms 
0 . 00058 
0 . 00089 
0.0016 
0.0022 
0 . 0029 
0.5 
0.5 
0.7 
0.85 
1.2 
3.4 

750.0 


Notes. — The  resistivity  depends  to  some  extent  on  the  state 
of  the  metal.  In  general,  cold  drawing  increases  while  anneal- 
ing diminishes  the  resistance.  Winding  a  wire  into  a  coil  appar- 
ently increases  its  resistance.  For  pure  metals  the  resistance 
is  roughly  proportional  to  the  absolute  temperature  and  would 
apparently  vanish  at  absolute  0°.  For  alloys  the  rule  does  not 
hold  even  approximately.  For  pure  metals  the  Brinxell 
hardness  number  is  indirectly  proportional  to  the  electric 
conductivity. 

In  "Engineering,"  Apr.  3,  1914,  appeared  a  table  of  the 
relative  resistances  of  metals  in  the  liquid  and  solid  states  at 
the  melting  point. 


Metal 


resistance  of    liquid 
resistance  of  solid 


at  melting  point. 


Sodium 

Potassium 

Tin... 

Cadmium 

1.35(a) 
1.36(a) 
2.2  (6) 

1.8  (6) 

1.9  (6) 

1.47(d)     

1.54(d)     2.1(c) 

2.21(e)     

1.96(e)     

'2'.12{g)' 
l-97(ff) 

Lead 

1.95(e)    i 

Thallium 

2.00(e)    ! 

Zinc 

2.0  (6) 
4.0  (a) 
0.7  (&) 
0.46(6) 

! 

4.08(/)    1 

Mercury 

Antimony 

1.5  (h) 

Bismuth 

0.45(e)     

0.46(g) 

(a)  A.  Matthiessen. 
(6)  L.  DE  LA  Rive. 

(c)  W.  Siemens. 

(d)  E.   F.    NORTHRUP. 

(e)  G.  ViNCENTiM  and  D.  Omodei. 
(/)  P.  Cailletet  and  E.  Boutt. 
(g)  G.  Vassura. 

(A)  L.  Grcnmacb. 


1()0    MET.\LLrROISTS  AND  CHEMISTS'  HANDBOOK 


VoLTTME  Resistivity  of  Solid  Dielectrics^ 

(Materials  arranged  in  order   of   decreasinj?  resistivity) 


Resistivity 
ohms-cm. 

ooobxib^' 

5000X10" 
.5000X10" 
1000X10" 
i  200X10" 
100X10" 
50X10" 
I     50X10" 

50X10" 

40X10" 

20X10" 

20X10" 

20X10" 

20X10" 

20X10" 

10X10" 

10X10" 

10X10" 

8X10" 

8X10" 

8X10" 

5X10" 

3X10" 

3X10" 

2X10" 

2X10" 

2X10" 

2X10" 

1X10" 

1X10" 


Material 


Special  paraflSn over 

Ccreain over 

Fused  quartz over 

Hard  rubber 

Clear  mica 

'  Sulphur 

'  Amoerite 

'  Rosin 

'  Mica  (India  ruby  slightly 

Btained) 

G.  E.  No.  55  R 

Hallowax  No.  505.5  B. . . . 
Micafbrown  African  clear) 

Bakelite  L558 

'  Electrose  No.  8 

Selenium  (in  dark) 

»  Parowax  (paraflBn') 

Glyptol 

JShellac 

Kavalier  glass 

"Insulate  No.  2 

'  Sealing  wax 

'  Yellow  electrose 

*  Duranoid 

sMurdock  No.  100 

'  Yellow  beeswax 

Khotinsky  cement 

Ebonite 

Porcelain 

»G.  E.  No.  5.5A 

'  Sloulded  mica 


Unglazed  porcelain 300X101= 

Redmonite  (157.4) 200X10'- 


Material 


Black  electrose 

Tetrachlornaphthalene.. 
Mica(India  ruby  stained) 

German  glass 

Paraffined  mahogany. . . 

Stabalite 

Plate  glass 

Hallowax  No.  1001 

Dielectrite 

Gummon 

Tegit 

Opal  glass 

Paraffined  poplar 
Paraffined  maple 
Italian  marble. .  . 
Bakelite  micarta 
Black  condensite 
Yellow  condensite 

Vulcabeston 

White  celluloid 

Hard  fiber 

Black   galalith 

Lavite 

White  galalith 

Hermit 

Red  fiber 

Marble,  pink  Tennessee. 

Gutta  percha. . .  .'. 

Marble,  blue  Vermont. . 

Ivory 200X10' 

.Slate 100X10« 

Bakelite  No.  140 20X10» 


'  From  publications  of  U.  S.  Bureau  of  Standards. 

'  .\pparent  resisti\'ity  taken  after  the  voltage  had  been  applied  for  15 
minutes. 

It  should  be  noted  that  the  superficial  resistivity  in  moist  air 
may  be  10  to  100,000  times  less  than  the  internal  resistivity, 
and  that  to  a  large  extent  it  is  the  skin  resistance  that  determines 
the  usefulness  of  a  conductor. 

The  following  table  of  superficial  and  volume  resistivities  is 
taken  from  La  Genie  Civil,  June  30,  1917,  and  is  for  a  satura- 
tion of  90  per  cent,  moisture  in  the  air  surrounding  the  dielectric. 


PHYSICAL  CONSTANTS 


161 


Bakelite  No.  1 

Bakelite  No.  558 

Celluloid 

Ebonite  (new) 

Fiber  (red) 

Ivory 

Marble — Italian 

Tennessee 

Vermont  (blue) 

Mica  (clear) 

Micanite 

ParafiBn 

Porcelain  (enameled) .... 
Porcelain  (not  enameled) . 

Quartz  (fused) 

Shellac 

Slate 

Sulphur 

Wood — acacia  paraffined. 

• — maple  paraffined. 

— poplar  paraffined. 


Internal 

Superficial  resis- 

resistivity, 

tivity, 

air  at 

ohms  cm. 

90  per  cent,  hum 

2  X 

10" 

2  X 

108 

2  X 

10" 

9  X 

ion 

2  X 

1010 

1  X 

10» 

1  X 

10"5 

1  X 

10» 

5  X 

109 

2  X 

108 

2  X 

108 

4  X 

107 

1  X 

lO'O 

2  X 

10' 

5  X 

109 

3  X 

10' 

1  X 

10» 

1  X 

10' 

2  X 

10" 

5  X 

10» 

1  X 

lO's 

3  X 

10» 

>5  X 

lO's 

1  X 

10" 

2  X 

1015 

6  X 

108 

3  X 

10" 

6  X 

10' 

>5  X 

1018 

2  X 

108 

1  X 

101' 

1  X 

1010 

1  X 

108 

1  X 

10' 

1  X 

10" 

1  X 

lOK 

4  X 

1012 

7  X 

10» 

3  X 

1010 

2  X 

10» 

5  X  lO'O 

2  X 

10« 

Dielectric  Constants  Compared  with  Air^ 

The  inductivity,  dielectric  constant,  or  specific  inductive  ca- 
pacity X  of  a  material  may  be  defined  as  the  ratio  of  the  ca- 
pacity of  a  condenser  with  the  material  as  dielectric  to  its  capacity 
when  the  dielectric  is  dry  air.  That  is,  if  two  exactly  similar 
condensers,  except  for  the  dielectrics,  have  one  plate  of  each 
connected,  the  other  plate  earthed,  then  the  distribution  of 
charge  on  the  two  will  be  proportional  to  K. 


Solids 

K 

Solids 

K 

3.0 

1.86 
7.5-7.7 
2.05-3.15 

3  5-3  6 

2   2 

Calcite 

2.2-3.9 

2.17 

6.8 

5-7 

7-9 
6.8-10 

3.6 

6.3 

93.9 

2.1-2.3 

8.3 

4-8 

2-2.5 
2.8-3.8 
1.7-2.3 

1.8 
4.4-6.8 

4.5 
1.77-2.6 

5.6 

4-8 

6.1 
2.7-3.7 

(;iass,  crown 

Glass,  heavy  crown.. 
Glass,  flint 

Liquids 

K 

Gutta  percha 

Alcohol,  methyl 

Alcohol,  ethyl 

35.4  at  13.4°C. 

loe  (■       2°t 

26.8  at  14.7°C. 

India  rubber 

Marble 

16.0  at  20°C. 

Bromine 

3.1 

Mica 

Paper,  dry 

Paper,  impregnated. . 

Paraffin  wax 

Pitch 

I'urcelain 

(Juartz 

Carbon  disulphide 

Carbon  tetrachloride.. .  . 
Olive  oil 

2.62 
2.25  at  18°C. 
3.1-3.2 

Kerosene 

Petroleum  crude 

Water 

4.6-4.8 

2.0-2.2 

26 

Rt'sin 

Korksalt 

Gases    vary   from    0.9995    for    helium 
to    1 .  0023    for    carbon  disulphide  vapor. 

Pubber,  vulcanized  .  . 

Shellac 

at  15°C.  and  760  mm.  p 

ressure. 

'  Compiled  from  various  authorities. 
11 


102     ME'IWLLURGISTS  AND  CHEMISTS' HANDBOOK 


Resistivity  of  Electrolytes 

(KoHLn.^uscii  and  IIolborn) 


Grains  sub- 

Resistivity, 
ohms  per  cc. 

Temperature 

Gram 

stance  in  100  g. 
of  solution 

Sp.  gr. 

coefficient 
for  1°C. 

equivalents 
per  liter 

H-SO,  at  18°C. 

1.0 

21.93 
9.24 

0.00112 
0.00115 

0.204 

2.5 

'  "iioiei' ' 

0.519 

5.0 

1.0.«1 

4.82 

0.00121 

1.065 

10.0 

1 . 0673 

2.57 

0.00128 

2.182 

15.0 

1.1036 

1.85 

0.00136 

3 .  384 

20.0 

1.1414 

1 .  54 

0.00145 

4.067 

30.0 

1.2207 

1.36 

0.00162 

7.487 

40.0 

1 . 3056 

1.48 

0.00178 

10.68 

50.0 

1.3984 

1.86 

0.00193 

14.30 

60.0 

1..5019 

2.70 

0.00213 

18.42 

70.0 

1.6146 

4.67 

0.00250 

23.11 

80.0 

1 . 7320 

9.13 

0.00349 

28.33 

85.0 

1   7827 

10.30 

0.00365 

30.98 

90.0 

1.8167 

9.38 

0.00.320 

33.43 

95.0 

1.836S 

9.84 

0 . 00279 

35.68 

97.0 

1.8390 

12.50 

0.00286 

36.47 

90.4 

1 . 8354 

118.00 

0.00400 

37.22 

HCl  at  10°C. 

5.0 

1.0242 

2.55 

0.00159 

1.408 

10.0 

1.0490 

1.59 

0.00157 

2.884 

15.0 

1.0744 

1.35 

0.00156 

4.431 

20.0 

1.1001 

1.32 

0.00155 

6.050 

25.0 

1.1262 

1.39 

0.00154 

7.741 

30.0 

1.1524 

1.52 

0.00153 

9.506 

35.0 

1.1775 

1.70 

0.00152 

11.33 

40.0 

1.2007 

1.95 

13.22 

KOH  at  15°C. 

*  4.2 

1.0.382 

6.85 

0.00188 

0.619 

8.4 

1 . 0777 

3.69 

0.00187 

1.580 

12.6 

1.1177 

2.67 

0.00189 

2.515 

16.8 

1.1588 

2.20 

0.00194 

3.477 

21.0 

1 . 2088 

1.97 

0.00200 

4.534 

25.2 

1.2439 

1.86 

0.00210 

5.599 

29.4 

1 . 2908 

1.85 

0 . 00222 

6.778 

33.6 

1.3.332 

1.92 

0.00237 

8.001 ' 

37.8 

1 . 3803 

2.10 

0 . 00258 

9.319 

42.0 

1.4298 

2.39 

0.00284 

10.730 

KCN  at  15°C. 

3.25 

1.0154 

19.10 

0 . 00208 

0.508 

6.5 

1.0316 

9.80 

0.00194 

1.031 

PHYSICAL  CONSTANTS  163 

Resistu'ity  of  Electrolytes.     Continued 


Grams  sub- 

Resistivity, 
ohms  per  cc. 

Temperature 

Gram 

Bt 

ance  in  100  g. 
of  solution 

Sp.  gr. 

coeflScient 
■  for  1°C. 

equivalents 
per  liter 

5.0 

AgNO 

at  18°C. 

1.0422 

39.47 

0.00219 

0.307 

10.0 

1.0893 

21.20 

0.00218 

0.642 

15.0 

1.1404 

14.78 

0.00216 

1.009 

20.0 

1.1958 

11.57 

0.00213 

1.410 

25.0 

1.2555 

9.53 

0.00211 

1.851 

30.0 

1.3213 

8.14 

0.00210 

2.338 

35.0 

1.3945 

7.17 

0.00208 

2.879 

40.0 

1.4773 

6.45 

0.00206 

3.485 

45.0 

1.5705 

5.88 

0.00205 

4.168 

50.0 

1.6745 

5.44 

0.00206 

4.940 

55.0 

1.7895 

5.09 

0.00207 

5.800 

60.0 
2.5 

1.9158 

4.80 

0.00210 

6.780 

Cu.SO* 

at  1S°C. 

1.0246 

92.4 

0.00214 

0.322 

5.0 

1.0513 

53.2 

0.00217 

0.661 

10.0 

1.1073 

31.4 

0.00219 

1.393 

15.0 

1.1675 

23.8 

0.00232 

2.202 

17.5 

l.?003 

21.9 

0.00237 

2.642 

RESISTrV'ITY    OF    ELECTROLYTES 


Grams  substance 

in  100  g.  of 

solution 


Potassium  chlor- 
ide   resistivity, 
ohms  per  cc. 


Sodium  chloride 
resistivity, 
ohms  per  cc. 


Calcium  chloride 
resistivity, 
ohms  per  cc. 


5 
10 
15 
20 
25 


14.49 
7.429 
'4 .  950 
3 .  735 


14.88 
8.257 
6.090 
5.109 
4.684 


16.48 
8.764 
6.645 
5.903 
5.615 


Grams  substance   |  Cadmium  chloride  Ammon.    sulphate      Cadmium  sul- 
in  100  g.  of         j         resistivity,  resistivity,  phate  resistivity, 

solution  ohms  per  cc.  ohms  per  cc.       i       ohms  per  cc. 


10 
20 
30 


37.59 


18.11 
9.901 
5.677 
4.363 


164     METALLT'RGISTS  AND  CHEMISTS'  HANDBOOK 
Resistivity  of  Electrolytes.     Continued 


Nitric  acid 


Sodium  hydrate 


Grams  HNOj  per 

Resistivity, 

Grams  NaOH 

Resistivity, 

100  cc.  solution 

ohms  per  cc. 

per  100  cc.  sol. 

ohms  per  cc. 

6.2 

3.205 

2.5 

9.266 

12.4 

1.845 

5.0 

5.076 

18.6 

1.449 

10.0 

3.205 

24.8 

1 .  .302 

15.0 

2.890 

31.0 

1.023 

20.0 

3.058 

49.6 

1.577 

30.0 

4 . 9.-)0 

6.2 

2.016 

40.0 

8.621 

Electric  Resistance  of  Some  Metallic  Oxides* 

(Ohms  per  Cubic  Centimeter) 


Tern-    1 
pfrature  CrjOj    Fe»04 
deg.  C.  1 

SnOi 

NiO 

CaO 

AhOi     SiOs 


MgO 


ZrO 


400 
450 
500 
550 
600 

650 
700 
750 
800 
850 

900 
950 
1.000 
1.050 
1,100 
Gas 
blow 
pipe. . 


.\11  of  these  have  a  resistance  of  over  50,000  at  room  temperatures. 


6,000 
2.4.50 
1,250 
1,000 
850 

1,175 

1,010 

950 

690 

668 

520 
395 
345 
335 
330 


11,750  900.0 
4,300  400.0 
2,450  235.0 
1,450  125.0 
1,200    68.0 


845 
710 
510 
3.57 


56.0 
47.0 
42.0 
37.0 


2901  32.0 


210 
162 
127 
117 
105 


28.0 
25.5 
24.0 
23.0 
22.25 


3.000 

1,115 

490 

400 

330 

240 
195 
121 
220 
280 

190 

81 
115 

93 

45   I 


550 


190 


590 


600 


580 


It  is  safe  to  say  that  where  the  temperature  exceeds  1500°C.  it  is  impossibln 
to  obtain  even  approximately  good  electrical  insulation  by  any  means  what- 
ever.      (NORTHBCP.) 

All  metallic  oxides  are  solids  and  have  a  lower  specific  gravity  than  have 
the  metals.     They  melt  at  higher  temperatures  than  do  the  metals. 

1  Zt.  EleclTochem.,  1907,  xiii,  589;  as  given  in  Hofman's  "General  Metal- 
lurgy." 


PHYSICAL  CONSTANTS  165 

Electrostatic  Separation^ 
List  of  Minerals 

Good  conductors  Poor  conductors 

Native  metals  Quartz 

Pyrite  Quartzite 

Pyrrhotite  Calcite 

Chalcopyrite  Limestone 

Galena  Porphyries 

Garnet  Slates 

Molybdenum  Sandstones 

Copper  glance  or  chalcocite  Garnet 

Silver  glance  or  argent ite  Spinel 

Gray  copper  or  tetrahedrite  Blende  or  sphalerite 

Most  sulphides  Smithsonite  (ZnCOs) 

Most  copper  minerals  Barite 

Most  iron  minerals  Gypsum 

Most  silver  minerals  Granite 

Most  manganese  minerals  Fluorspar 

Tellurides  Most  silicates 

Hornblende  Most  gangue  rocks 

Black  sands  Monazite 

THE  ANNEALED  COPPER  STANDARD 

Translation  from  the  French  text  adopted  at  the  Inter- 
national Electrical  Commission,  Berlin. 

Report  of  the   National  Laboratories   Concerning   an 
International  Standard  for  Copper 

/.  Annealed  Copper 
The  following  values  should  be  taken  as  normal  for  annealed 
standard  copper. 

1.  At  20°C.,  the  resistance  of  an  annealed  copper  wire  1  meter 
long  and  having  a  uniform  cross-section  of  1  sq.  mm.  is  \i^ 
ohm  =  0.017241    .    .    .   ohm. 

2.  At  20°C.,  the  density  of  annealed  copper  is  8.89  grams  per 
cubic  centimeter. 

3.  At  20°C.,  the  coefficient  of  variation  of  resistance  with 
temperature  of  annealed  copper,  measured  between  potential 
terminals  rigidly  attached  to  the  wire  (constant  mass),  is 
0.00393=^54-5  per  deg.  C. 

4.  Consequently,  it  follows  from  (1)  and  (2)  that,  at  20°C., 
the  resistance  of  an  annealed  copper  wire  of  uniform  cross-section 
1  meter  long  and  having  a  mass  of  1  gram  is  (J^s)  X  8.89,  or 
0.15328   .    .    .  ohm. 

//.  Industrial  Copper 

1.  The  conductivity  of  annealed  copper  should  be  expressed 
at  the  temperature  of  20°C.  in  percentage  of  that  of  standard 
annealed  copper,  and  ordinarily  to  a  precision  of  0. 1  per  cent. 

1  R.  H.  Richards,  "Ore  Dressing,"  Vol.  III. 


16(5     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

2.  The  percentage  conductivity  of  annealed  industrial  cop- 
per should  be  computed  in  accordance  with  the  following  rules: 

(a)  The  observation  temperature  should  not  differ  from  20°C. 
by  more  than  10°C. 

(b)  The  resistance  of  a  wire  of  industrial  copper  one  meter 
long  and  of  1  sq.  mm.  cross  section,  increases  0.000068  ohm 
per  deg.  C. 

(c)  The  resistance  of  a  wire  of  industrial  copper  1  meter 
long  and  of  1  gram  mass,  increases  O.OOOGO  ohm  per  deg.  C. 

(d)  The  density  of  industrial  annealed  copper  at  20°C.  should 
be  taken  as  8.89  grams  per  cubic  centimeter. 

This  value  of  the  density  should  always  be  employed  in  the 
computation  of  conductivity  in  percentage  of  that  of  the 
annealed  copper  standard. 

It  follows  from  the  above  that  if  R  is  the  resistance  in  ohms, 
at  t  deg.  C.  of  a  wire  having  a  length  of  I  meters  and  a  mass 
of  m  grams,  the  resistance  of  a  wire  of  the  same  copper  1  meter 
long  and  1  sq.  mm.  cross-section  will  be 

Rm/(l^  X  8.89)  ohms  at  t  deg.  C.  and 

ftm/(P  X  8.89)  +  0.000068(20  -  0  ohms  at  20''C. 

The  percentage  conductivity  of  this  copper  is  thus 


100  X 


0.01724 


^-3-^+0.000068(20-0 


Similarly,  the  resistance  of  a  wire  of  the  same  copper  1  meter 
long  and  1  gram  in  weight  is 

Rm,'P  ohms  at  l°C.,  and 

Rm/l^  +  0.00060(20  -  0  ohms  at  20''C. 

The  percentage  conductivity  is  thus 

0.1533 


100  X 


^  +  0.00060(20  -  0 


Note  1.  The  standard  values  given  in  (/)  are  mean  values 
deduced  from  a  large  number  of  tests.  Among  a  number  of 
samples  of  copper  of  normal  conductivity,  the  density  may  differ 
from  normal  density  up  to  0.5  i)er  cent.,  and  the  temperature 
coefficient  of  resistivity  may  differ  from  the  normal  up  to  1  per 
cent.;  but  between  the  limits  indicated  in  (//)  these  deviations 
will  not  affect  the  values  of  the  computed  percentage  conduc- 
tivity, if  the  resulting  values  are  limited  to  four  significant  digits. 

Note  2.  The  values  above  stated  correspond  to  the  follow- 
ing physical  constants  for  standard  annealed  copper,  all  at  the 
temperature  of  0°C. 

Density,  8.90  grams  per  cubic  centimeter. 

Coefficient  of  linear  expansion  0.000017  per  deg.  C. 

Resistivity,  1.5879'  microhm-cm. 


PHYSICAL  CONSTANTS 


167 


Volume  resistivitj'  temperature-coefficient  0.00429'^  per  deg. 
C.  from  and  at  0°C. 

Resistance  temperature  coefficient  at  constant  mass,  0.00427 
=  ^34.5  per  deg.  C.  from  and  at  0°C. 


Kelvin's  Rule  for  Power  Transmission 

The  most  economica/  section  of  conductor  is  that  for  which 
the  annual  interest  on  capital  outlay  is  equal  to  the  annual  cost 
for  energy  wasted. 

Copper  Wire  Table 

Solid  wires  are  not  made  larger  than  No.  0000.  A  solid  wire  larger  than 
a  No.  3  is  infrequently  used,  and  the  constants  for  wires  larger  than  a  No.  3 
are  given  for  stranded  wires.  Although  wires  are  sometimes  used  as  large 
as  2,000,000  circular  mils,  wires  larger  than  1,000,000  circular  mils  are  not 
common,  and  are  omitted  from  the  table.  The  carrjing  capacities  are  those 
prescribed  by  the  National  Electrical  Code. 


Gage 

Area  in 

circular 

mils 

Resistance 

in  ohms  per 

1000    ft. 

at  25°C. 

Carrying 
in  an^ 

capacity 
peres 

Weight 
in  pounds 

number 

Rubber 

Other 

per 
1000   ft. 

insulation 

insulation 

18 

1,620 

6.51 

3 

5 

4.92 

16 

2,580 

4.09 

6 

10 

7.82 

14 

4,110 

2.58 

15 

20 

12.4 

12 

6,530 

1.62 

20 

25 

19.8 

10 

10,400 

1.02 

25 

30 

31.4 

8 

16,500 

0.641 

35 

50 

50.0 

6 

26,300 

0.403 

50 

70 

79.5 

5 

33,100 

0.320 

55 

80 

100.0 

4 

41,700 

0 .  253 

70 

90 

126.0 

3 

52,600 

0.201 

80 

100 

159.0 

2 

66,400 

0.163 

90 

125 

205.0 

1 

83,700 

0.129 

100 

150 

258.0 

0 

106,000 

0.102 

125 

200 

326.0 

00 

133,000 

0.0811 

150 

225 

411.0 

000 

168,000 

0.0643 

175 

275 

518.0 

0000 

212,000 

.  0.0510 

225 

325 

653.0 

250,000 

0.0432 

240 

350 

772.0 

300,000 

0.0360 

275 

400 

926.0 

400.000 

0.0270 

325 

500 

1,240.0 

500,000 

0.0216 

400 

600 

1,540.0 

600,000 

0.0180 

450 

680 

1,850.0 

700,000 

0.0154 

500 

760 

2,160.0 

800,000 

0.0135 

550 

840 

2,470.0 

900,000 

0.0120 

600 

920 

2,780.0 

1,000,000 

0.0108 

•    650 

1,000 

3,090.0 

'  These  two  numerical  values  will  probably  be  changed  to  1.5880  and 
0.00428  by  the  National  Physical  Laboratories.  Since  reference  is  made 
exclusively  to  the  values  at  20°C.  when  measuring  and  stating  percentage 
conductivity,  these  physical  constants  for  0°C.  are  of  secondary  importance 
in  engineering. 


168     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Properties  of  Re.sistor  Wires' 


Compoeition 

Resistivity,  20''C. 

Maximum 

WorkioL' 

t't..p  , 

Material 

Microhm- 
cm. 

Dill.  ft. 

Copper 

German  silver 

Manganin 

Annealed 
Cu  58.  Ni  18,  Zn  24 
Cu84,  Ni4,  Mn  12 

Cu.  Ni 

Cu.  Mn.  Al 

Cu  50,  Ni  30,  Zn  20 

Cu,  Ni 

Cu.  Ni 

Cu,  Ni 

Cu  60.  Ni  40 

Nickel  steel 

Nickel  steel 

Nickel  steel 

Ni    -  Cr 

Ni    -  Cr 

Ni   -  Cr 

Ni   -  Cr 

Ni    -  Cr 

1.724 
33.3 
41.4  - 
73.8 
42.6 
46.7 
48.2 
48.8 
49.0 
49.0 
50.0 
85.9 
87.0 
87.2 
95.5 
96.0 
99.6 
109.5 

119..T 

10.37 
200.0 
249.0- 
443.0 
256.0 
280.0 
290.0 
294.0 
295.0 
295.0 
300.0 
517.0 
524.0 
525.0 
575.0 
580.0 
600.0 
660.0 
720.0 

260 
260 
100 

Monel  metal 

Therlo.... 

480 
200 

370 

la  la 

Raymur. 

Tico 

Phenix 

540 

540 

Calido 

1090 

Tophet 

900 

Nichrome  II 

Calorite 

1100 

870 

Fusing  Currents  for  Copper  Wire 

The  following  table  has  been  tested  for  copper-wire  fusing  currents  and 
was  found  to  be  closely  correct  for  average  conditions,  according  to  the 
Electrical  Review. 


Size  wire. 

Fusing  current, 

Size  wire, 

Fusing  current. 

B.  &S. 

ampere 

B.  &S. 

ampere 

30 

10 

18 

80 

28 

15 

17 

100 

26 

20 

16 

120 

25 

25 

15 

140 

24 

30 

14 

160 

22 

40 

13 

200 

21 

50 

12 

240 

20 

60 

11 

280 

19 

70 

10 

330 

If  heat  be  developed  in  an  electrical  conductor  faster  than  it 
can  be  dissipated  from  its  surface  by  radiation  and  convection, 
the  temperature  will  rise.  The  allowable  rise  in  tempera- 
ture is  one  of  the  limiting  features  of  the  current-carrying 
capacity  of  any  conductor,  since  the  rate  at  which  heat  will  be 
di.ssipated  will  depend  upon  many  conditions,  such  as  the  size 
and  structure  of  the  conductor,  the  kind  and  amount  of  insula- 
tion, if  any,  and  the  location  with  respect  to  other  bodies.  It  is 
not  possible  to  give  any  general  definite  rule  for  carrying  ca- 
pacity that  will  be  true  for  all  conditions. 

1  Standard  Electrical  Handbook. 


PHYSICAL  CONSTANTS 


169 


The  general  subject  of  fusing  currents  for  copper  wire  was 
investigated  by  W.  H.  Preece,  who  developed  the  formula: 

/  =  ad^^  where  /  is  the  fusing  current  in  amperes,  d  is  the 
diameter  of  the  wire  in  inches,  and  a  is  a  constant  depending 
on  the  material.     He  found  the  following  values  for  a.^ 


Copper 

Aluminum . . . . 
Platinum. . .  .  . 
German  silver 
Platinoid 


10,244 
7,585 
5,172 
5,230 
4,750 


Iron 

Tin 

Solder  (2  Pb  :  1  Sn).. 
Lead 


3,148 
1,642 
1,318 
1,379 


Wire  Resistance 

Tablei 

Gage  No. 
B.  &S. 

Diam.  in 
mils, 

Cross-section 
at  20°C., 

Copperi2 
ohms  per 

Aluminum, 3 
ohms  per 

20°C. 

sq.  in. 

1000  ft. 

1000  ft. 

0000 

460.0 

0.1662 

0.04901 

0.0804 

00 

364.8 

0.1045 

0.07793 

0.128 

1 

289.3 

0.06573 

0.1239 

0.203 

2 

257.6 

0.05213 

0.1563 

0.256 

4 

204.3 

0.03278 

0.2485 

0.408 

6 

162.0 

0.02062 

0.3951 

0.648 

8 

128.5 

0.01297 

0.6282 

1.03 

10 

101.9 

0.008155 

0.9989 

1.64 

12 

80.81 

0.005129 

1.588 

2.6.1 

14 

64.08 

0.003225 

2.525 

4.14 

16 

50.82 

0.002028 

4.016 

6.59 

18 

40.30 

0.001276 

6.385 

10.5 

20 

31.96 

0 . 0008023 

10.15 

16.7 

22 

25.35 

0.000504G 

16.14 

26.5 

24 

20.10 

0.0003173 

25.67 

42.1 

26 

15.94 

0.0001996 

40.81 

67.0 

28 

12.64 

0.0001255 

64.90 

106.0 

30 

10.03 

0.00007894 

103.2 

169.0 

32 

7.95 

0.00004964 

164.1 

269.0 

34 

6.. 305 

'0.00003122 

260.9 

428.0 

36 

5.000 

0.00001964 

414.8 

689.0 

38 

3.965 

0.00001235 

659.6 

1080.0 

40 

3.145 

0 . 000007766 

1049.0 

1720.0 

Sparking  Distances  in  Electrical  Installations. — A  mass  of 
reliable  data  is  now  available  concerning  sparking  distance 
between  electrodes  of  simple  geometrical  form  (needle  points, 
disks,  spheres,  etc.),  under  various  conditions,  but  little  infor- 


*  "Standard  Electrical  Handbook.' 
2  Standard  annealed,  at  20°C. 
»  Hard  drawn,  at  20°C. 


170     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


mation  has  hitherto  been  a\'ailable  concerning  sparking  dis- 
tances between  metallic  conductors  and  walls  in  workshops  and 
on  switchboards,  etc.  This  problem,  which  is  obviously  of  great 
practical  importance  was  recently  investigated  by  Gino  Rehora 
(see  also  Atti  dell'  Associazione  Elettrot.  Italiana  No.  31,913), 
and  the  first  result  deduced  was  the  fact  that  a  grain  of  dust  or  a 
fine  hair  or  fiber  would  often  suffice  to  start  discharge  from  a 
high-tension  conductor.  A  point  or  anguhirity  in  a  conductor 
may  cause  a  discharge  to  occur  which  would  otherwise  require 
30  per  cent,  higher  pressure  than  that  actually  operative;  it  is 
therefore  ver\'  desirable  that  all  metal  subject  to  high-tension 
current  should  be  as  free  as  possible  from  points  and  angularities 
of  any  kind.  The  black  lines  frequently  seen  on  switchboards 
and  walls  behind  high-tension  conductors  reveal  the  presence 
of  sustained  feeble  discharges  which  bombard  the  surface  near 
the  conductor  with  particles  of  dust. 

From  observ^ations  made  in  30  installations,  working  at  pres- 
sures between  3000  and  110,000  volts,  Rebor.\  derives  a  curve 
showing  the  minimum  safe  distance  between  conductor  and 
earthed  walls  or  metal  covers,  etc.  As  shown  by  the  following 
data,  his  limits  are  rather  less  stringent  than  those  recommended 
(but  not  always  observed)  by  the  G.  E.  C: 


P.  D.              j 

20      40 

60 

80 

100  j       Kilovolte 

Minimum     distan  ce      [  Rebora        100    200 
between    conductor  '  < 
and  earth 1  G    E.  C.      150j  300 

330 
450 

450 
620 

1 
590   Mm. 

1 
770    Mm. 

As  regards  the  effective  height  of  porcelain  insulators  of 
P3'lon  form,  used  as  intermediate  insulators  on  distribution 
boards,  etc.,  this  height  increases  almost  linearly  at  the  rate  of 
5  or  53^  mm.  per  kilovolts  for  pressures  up  to  80  kv.,  and 
then  increases  more  rapidly,  to  a  total  of  580  mm.  for  100  kv. 
and  930  mm.  for  130  kv.  In  deriving  these  data,  Maorim, 
A.  E.  G.,  and  Richard  Ginori  insulators  were  tested. 

In  the  course  of  investigations  conducted  in  the  Ecole  Poly- 
technique  de  Milan  with  a  view  to  determining  the  laws  of  dis- 
charge between  conductor  and  masonry,  etc.,  copper  wires,  2,  4, 
5,  6  and  8  mm.  in  diameter,  a  bar  3  X  10  mm.,  and  a  brass  tube 
2 ^^2  mm.  in  external  and  internal  diameter  were  used.  As 
second  electrodes  were  employed  in  turn  walls  of  cement,  stone, 
hollow  brick,  etemite,  and  metal  frameworks.  The  maximum 
testing  pressure  available  was  100  kv.  at  42  cycles  per  second. 
When  the  conductor  under  test  was  pointed  straight  at  the  wall, 
breakdown  occurred  at  20  per  cent. — 25  per  cent.  lower  P.  D. 
(for  separations  of  100  to  250  mm.)  than  would  be  required 
to  produce  discharge  between  needle  points  the  same  distance 
apart.  This  is  a  result  of  great  practical  importance,  since  live 
metal  parts  are  frequently  so  arranged  in  high  tension  installa- 
tions as  to  produce  reductions  in  the  factor  of  safety. 


PHYSICAL  CONSTANTS 


171 


Thermoelectricityi 
When  two  different  metals  are  brought  into  contact  so  that 
he  two  junctions  are  at  different  temperatures,  there  will  usu- 
lly  be  a  slight  current  of  electricity  produced.     The  effective 
lectromotive  force  is 

{T,  -  T,)[iB'  -  B")  +  (C  -  C")    ^'  +  ^^)  ] 

"^°^*^  ^  100,000,000 

rhere  T2  and  Ti  are  the  temperatures  of  the  junctions,  and 
i  and  C  constants  as  given  in  the  following  table: 


Metal 

B                C 

Metal 

B 

C 

+  1734 
+  1139 
+     61 
+   260 
+   244 
+  1207 
+   234 

-4.87 
-3.28 
-1.10 
-0.75 
-0.95 
-5.12 
+  2.40 

Silver 

Gold 

Copper 

+  214 

+  283 

+  136 

0 

-  43 

-  77 

+  1.50 

teel     

+  1.02 

oft  platinum 

+  0.95 
+0.00 

Tin   

+  0.55 

;vrnian  silver 

Aluminum  .... 

+  0.39 

The  behavior  of  nickel  is  anomalous.  Antimony  and  bis- 
luth.  produce  the  greatest  current  of  any  two  metals,  but  here 
gain,  the  constants  vary  greatly  according  to  the  absolute 
einperatures  of  the  junctions.    See  also  p.  308. 


Penetrating 

POW'ER   OF 

X-rays" 

Substance 

Specific 
gravity 

Trans- 
parency 

Substance 

Specific 
gravity 

Trans- 
parency 

TattT 

.luininum. .  . 
,lass 

1.00 
2.67 
2.70 
7.29 
7.16 
7.78 
8.51 

1.000 
0.380 
0.340 
0.118 
0.116 
0.101 
0.095 

Copper 

Silver 

Lead 

Mercury  . .  . 

Gold 

Platinum..  .  . 

8.92 
10.24 
11.39 
13.59 
19.63 
21.53 

0.084 
0.070 
0.055 
0.044 

0.030 

0.020 

The  folio 
lost  solids 
-lie re  are  sc 
nportant  1 

Comparis 
hree   stanc 
pecific   gra 
ensities  of 

Air  (dry) 
eniperatur 

Water  (n 
t  30°F.,  b£ 
O'F.,  bar. 

'    ■  Encycloi 

=  The  wave 

iblp  i.s  from 

1 

Sp 

wing  tab] 
and  liquid 
parate  tat 
minerals, 
on  of  Star 
ards  com 
Lvity   of   1 
these  star 
is  14.418 
e  and  pres 
lax.  densil 
IT.  29.92  ii 
30  in.,  voh 

jedia  Ameri 
length  of  3s 
the  General 

ecific  Gra 

es  give  tl 
s  of  impor 
)les  for  wa 

idards. — ] 
monly  us 
;ases,    liqi 
idards  are 
times  as 
sure,  volu 
.y,  4°C.)  i 
1.;    and  8 
ime  for  vc 

'ana,"  Vol. 
.-rays  is  api 
Electric  Rei 

vity  Tables 
le  average 
tance  in  mir 
ter,  mercury 

iydrogen,  a 
3d  in  the  d 
lids   and   sc 
as  follows: 
leavy  as  hy 
me  for  volur 
s  773  times 
15  times  as 
)lume. 

XV,  "Thermo 
larently  about 
iew. 

specific  gr 
ling  and  m 
,  gases  anc 

r  and  vvat 
eterminat 
)lids.     Th 

drogen,  at 

ne. 

as  heavy 

heavy  as 

electricity." 
10-»  to  10- 

avities  of 
etallurgy. 
i  the  most 

er  are  the 
on  of  the 
e   relative 

the  same 

as  dry  air 
dry  air  at 

8  cm.     The 

172     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Specific  Gravities  and  LTmt  Weights  of  Solids  and  Liquids 


Substance 


Average 

sp.  gr. 

(water  =  1) 


Average 

weight 

(lb.  per  ou.  ft.'* 


Alcohol,  pure  at  20° 

commercial 

Aluminum  (cast) 

(rolled) 

Antimony 

Argon  (liquid,  —  185°) 

Arsenic  (amorphous) 

(crystallized) 

(molten) 

Asbestos 

Ashes  (packed) 

Asphalt  (1  to  1.8) 

Barium 

Beryllium 

Bismuth  (com'l) 

(distilled) 

(molten) 

Boron 

Brass,  cast  (7.8  to  8.4)  70  Cu.  30  Zn. 

rolled,  70  Cu.  30  Zn 

Brick  (fire) 

(soft) 

Brickwork,  masonry  (1.8  to  2.3) 

Bromine  (at  0°C.) 

Bronze  (8.7  to  8.9) 

Cadmium 

(molten) 

Caesium 

Calcium 

Carbon  disulphide 

Celluloid 

Cement,  loose 

Cerium 

Chalk 

Charcoal 

Chromium •• 

Clay  (1.8  to  2.6) 

Coal,  anthracite  (1.3  to_1.7) 

bituminous  (1 .2  to  1 .5) 

cannel,  gas  coal  (1.18  to  1.28) 

lignite,  brown  coal 

Cobalt 

Coke,  loose  piled 

Concrete 

Copper,  cast  (8.6  to  8.8) 

deposited 

molten 

rolled  (8.8  to  8.95) 

Cork ■. 

Diamond 

Earth,  loose  to  well  rammed 

wet,  flowing  mud 

Emery 

Erbium 

Ethyl  ether 

Gallium 

Germanium 

German  silver 


0.789 
0.834 

2.56-2.71 
2.66 
6.71 
1.4 
6.71 
5.73 
5.71 
3.2 
0.72 
1.4 
3.78 
1.93 

9.74-9.92 
9.78 
10.04 
2.45 
8.1 
8.4 


3.187 
8  8 
8.60^8.70 
7.99 
1.87 
1.85 
1.29 
1.4 
1.3-2.0 
6.68 
2.5 


6.52-6.73 

2.2 

1.5 

1.3 

1.23 

1.1 
8.50-8.80 


2.3 

8.7 

8.92 

8.22 

8.9 

0.24 

3.52 


4.0 

4.97 

0.735 

5.92 

.5.47 

8.45 


I  From    Kaye   and    L.\BY'.-i 
figure  appears  high. 


•Physical   and    Chemical   Constants. 


PHYSICAL  CONSTANTS  173 

Specific  Gravities  and  Unit  Weights  of  Solids  and  Liquids 


Substance 


Average 

sp.  gr. 

(water  =  1) 


Average 

weight 

(lb.  per  cu.  ft.) 


Glass 

( heavy  flint) 

Glycerin 

Gold  (19.25  to  19.37)   (20  Karat  =  16.47) 

(distilled) 

Granite  (2.56  to  2.88) 

Graphite  (average  value) 

Gravel,  loose 

Greenstone  (trap) 

Gypsum,  ground  or  calcined,  loose 

well  shaken 

uncalcined 

Hornblende 

Ic 


Iodine 

Indium 

Iridium 

Iron,  cast  gray,  7.08,  white.. 

(molten) 

rolled .' 

wrought,  sheet  (7.6  to  7.9) . 

Ivory 

Lanthanum .•....■ 

Lead 


2.52 
2.93 
1.26 
19.31 
19.27 
2.72 
2.2 


0.92   ' 

4.95 

7.12 

22.42 

7.6 

6.88 

7.68 

7.8 

1.8.3-1.92 

6.15 

11.34-11.40  1 


Lignite. .;.... 

Lime  (quicklime) 

ground,  loose  (66  lb.  per  bushel) . 

Limestone 

Lithium 

Loam 

Magnesium 

Manganese 

Marble  (2.5  to  2.8) 

Marl . 


Mercuryi  (32°F.) . 

(62°F.) 

solid,  -  40°F. . 
Mica. 


Molybdenum 

Mortar 

Neodymium ._ ._ 

Nickel .'.....'.' ." 

Niobium 

Oils  (0.910  to  0.975),  weight  given  in  pounds 
per  gallon: 

Animal,  lard 

sperm  (pure) 

whale 

Mineral,  petroleum  (crude) 

gasolene 

kerosene  (coal  oil) 

naphtha 

Vegetable,  cottonseed 

linseed  (boiled) 

(raw) 

olive 

rape  (colza) 


1.5 


2.7 
0.59 


1.74 
7.392 
2.65 


13.5955 

13.555 

15.632 

2.8 

8.60 


6.956 
8.86 
12.7 


0.916 
0.880 
0.925 
0.77-1.06 
0.700 
0.8C0 
0.730 
0.923 
0.933 
0.780 
0.917 
0.915 


157.0 
200.0 

88.7 


1203.0 
170.0 
137.0 

95-120 
170-200 

56.0 

64.0 
130-150 
200-220 

57.5 
309.0 
444.0 
1400.0 
450.0 
429.0 
480.0 
485.0 


384.0 
707-711 

75.0 

93.75 

53.0 
168.0 

36.8 

65-100 
109.0 
461.0 
160-180 
100-140 
850.0 
847.0 
976.0 
175.0 
537.0 

90-105 
434 . 0 
553.0 
793.0 


7.64 
7.34 
7.72 


5.84 
6.68 
6.09 
7.70 
7.79 
6.51 
7.65 
7.63 


'  See  also  special  table  on  p.  176. 
•  Given  as  8.30  by  Ntstbom. 


174     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Specific  Gravities  and  Unit  Weights  op  Solids  and  Liquids 

1        Average 


Substance 


sp.  gr. 
(water  — 


Oemium 

PallBdium 

Peat  (dry,  unpressedl 

Phosphorus  (red) 

(whiter 

Pitch 

Platinum  wire 

Potassium .  _. 

PrsBseodymium 

Pumice 

Quartz 

(broken) 

Rhodium 

Rosin 

Rubber,  hard  (purei 

Rubber,  hard  (commercial)  .  . 

Salt *... 

Samarium 

Sand  (dry) 

(wet) 

Sandstone  (2.1  to  2.71 

Selenium  (gray  metal) 

(red) 

Shale  (2.4  to  2.81   

Silicon  (arnorphous) 

(crystallized) 

Silver  (cast) 

(electrolytically  deposited) . 

( molten) 

Slate  (2.7  to  2.9) 

Snow  (fresh,  dry) 

(wet) 

Soapstone 

Soda  ash 

Sodium 

Steel  (7.69  to  7.93)' 

Strontium 

Sugar 

Sulphur 

Tallow 

Tantalum 

Tar 

Tellurium 

Thallium 

Thorium 

Tin  (cast) 

(molten) 

Titanium 

Traprock 

Tungsten 

Uranium 

Vanadium 

Water'  (max.  density  4°C.) . . 

(pure,  62°F.) 

(pure,  212°?.) 

sea,  average 

Wai  (bees) 


22.48 
11.90 


2.34 
1.837 
1.155 
21.5 
0.875 
6.475 


2.65 


12.60 

1.1 

1.12-1.25 

1.25-1.40 


7.75 


2.4 
4.8 
4.47 
2.6 
2.00 
2.195 
10.75 
10.53 
9.51 
2.7 


2 

972 

85 

54 

6 

2.07 

94 

6 

0 

25 

85 

16 

29 

02 

87 » 

0 

3-20. 

69 

50 

0 

999 

958 

028 

97 


I  Average 
1  weight 
l(lb.  per  ou.  ft.) 


'  Pure  and  soft.     The  specific  gravity  decreases  as  the  carbon  increases. 

'  See  special  table  on  p.  175  for  water. 

•  Given  in  Hofman's  "General  Metallurgy"  as  5.30. 

Note. — Most  of  the  constants  for  the  chemical  elements  are  taken  from  the 
"  Annuaire  pour  1915  der  Bureau  des  Longitudes."  omitting  the  last  figure. 

For  the  specific  gravities  of  the  metals,  there  are  usually  two  values  given. 
The  low  figures  are  usually  those  of  oaat  metals,  the  high  ones  of  metal  either 
finely  rolled  or  drawn  into  fine  wire. 


PHYSICAL  CONSTANTS 


175 


Substance 


Average        j       Average 

sp.  gr.  weight 

(water  =  I)     (lb.  per  cu.  ft.) 


Wood,  dry,  seasoned: 

Ash,  white 

Birch 

Cedar,  white . .  -. 

red 

Cherry. 

Chestnut 

Elm 

Ebony 

Fir,  Douglas 

Hemlock 

Hickory 

Mahogany,  Spanish. 

Honduras 

Maple 

Oak,  live 

white 

black,  jack,  etc.  .  . 

Pine,  white 

yellow.  Northern.. 

Southern 

Poplar  (cottonwood) . 

Spruce 

Sycamore 

Walnut 

Yttrium 

Zinc 

_  ( molten) 

Zirconium 


0.6-0.8 


0.8 


0.52 


3.8 
7.15 
6.48 
6.25 


38.0 
41.0 
23.0 
35.0 
42.0 
41.0 
35.0 
76.0 
20.0 
25.0 
53.0 
53.0 
35.0 
49.0 
59.0 
48.0 
35-45 
25.0 
34.0 
45.0 
33.0 
25.0 
37.0 
37.0 
237 . 0 
446.0 
405 . 0 
390.0 


Densities  of  Water  at  Different 

Temperatures^ 

0°C. 

0.999868 

15 

0.999126 

29 

0.995971 

1 

0.999927 

16 

0.998970 

30 

1  0.995673 

2 

0.999968 

17 

0.998801 

31 

0.995367 

3 

0.999992 

18 

0.998622 

40 

0.99224 

4 

1.000000 

19 

0.998432 

50 

0.98807 

5 

0.999992 

-  20 

0.998230 

60 

0.98324 

6 

0.999968 

21 

0.998019 

70 

0.97781 

7 

0.999929 

22 

0.997797 

80 

:  0.97183 

8 

0.999876 

23 

0.997565 

90 

0,96534 

9 

0 . 999808 

24 

0.997323 

100 

0 . 95838 

10 

0.999727 

25 

0.997071 

110 

0.951 

11 

0 . 999632 

26 

0.996810 

150 

0.917 

12 

0.999525 

27 

0.996539 

200 

0.863 

13 

0 . 999404 

28 

0.996259 

250 

0.79 

14 

0.999271 

300 

0.70 

1  The  above  tables  are  founded  on  Thiessen'3  figures  as  given  in  "Annuaire 
pour  1914,  Bureau  des  Longitudes."  Other  authorities  give  values  somewhat 
under  his. 


170     METALLURGISTS  AND  CHEMISTS' HANDBOOK 

Propertie.s  of  W.\teu' 


Tempera- 

Weight in 

Tempera- 

Weight  in 

ture, 
deg.  F. 

pounds  per 
cubic  foot 

volume 

ture, 
deg.  F. 

pounds  per 
cubic  foot 

volume 

32.0 

62.418 

1.00011 

100 

62.02 

1 . 00686 

39.1 

62.425 

1.00000 

120 

61.74 

1.01138 

60.0 

62.41 

1 . 00025 

140 

61.37 

1.01678 

60.0 

62.37 

1.00092 

160 

60.98 

1.02306 

62.0 

62.355 

1.00110 

180 

60.55 

1.03023 

70.0 

62.31 

1.00197 

200 

60.07 

1.03819 

80.0 

62.23 

1.00332 

210 

59.82 

1.04246 

90.0 

62.13 

1.00496 

212 

59.76 

1.04332 

For  .sea  water,  multiply  the  above  by  1.026.  One  U.  S.  gallon  of  water 
at  62°F.  weighs  8.3350  lb.  Water  freezes  at  32°F.;  is  at  its  niaximuni  den- 
sity at  39.1°F.,  British  standard  for  sp.  gr.,62°F.;  boiling  point  at  sea-level, 
212°F. 

'  From  Pierce  and  Carver's  "Formulas  and  Tables  for  Engineers." 

Payne's  Table  for  Water  in  Air' 

The  following  table  will  give  the  amount  of  water  weighed  in  air  with 
brass  weights  necessary  to  fill  a  liter  flask  to  the  1000  cc.  mark  at  20°C. 


Temperature 

Apparent 

Temperature 

Apparent 

of  water 

weight 

of  water 

weight 

15 

998.0 

24 

996.6 

16 

997.9 

25 

996.3 

17 

997.7 

26 

996.1 

18 

997.6 

27 

995.9 

19 

997.5 

28 

995.6 

20  (standard) 

997.3 

29 

995.4 

21 

997.1 

30 

995.1 

22 

996.9 

31 

994.9 

23 

996.8 

32 

994.5 

>  Foulk's  "Manual  of  Qualitative  Analysis." 


Den.sities  op 

Mercury^ 

Tempera- 
ture deg.  F. 

Pounds  per 
cubic  inch 

Tempera- 
ture deg.  F. 

Pounds  per  Tempera- 
cubic  inch  ture  deg.  F. 

Pounds  per 
cubic  inch 

0 
10 
20 
30 
32 

0.4928 
0.4923 
0.4918 
0.4913 
0.4912 

40.0 
50.0 
58.1 
60.0 
70.0 

0.4907 
0.4903 
0.4899 
0.4898 

80 
90 
100 
110 

0.4888 
0.4883 
0.4878 
0.4873 

Tempera- 

Grams per 

Tempera- 

Grams per 

Tempera- 

Grams per 

ture  deg.  C. 

cc. 

ture  deg.  C. 

cc. 

ture  deg.  C. 

cc. 

-20 

13.6450 

40 

13.4973 

100 

13.3518 

-10 

13.6202 

50 

13.4729 

150 

13.233 

0 

13.5955 

60 

13.4486 

200 

13.068 

10 

13.5708 

70 

13.4243 

2.50 

12.998 

20 

13.5462 

80 

13.4001 

300 

12.881 

30 

13.5217 

90 

13.3759 

'Ellenwood's  "Steam  Charts." 


PHYSICAL  CONSTANTS 


177 


Kirby's  Table  of  Weights  op  Ore  in  Place' 


Material 


Weight  per  cubic 
foot 


Cubic  feet  per  ton 


Theoret-  Prac- 
ically,2  tically, 
pounds      pounds 


Theoret- 
ically 


Prac- 
tically 


Galena 

Pyrite 

Blende 

Hematite 

Limonite 

Dolomite 

Limestone,  andesite,  syenite . . 

Vein  quartz,  granite  and  granitic 
rocks 

Clay,  quartz,  porphyry,  trachytes, 
rhy  elites 

Vein  quartz,  with  15  per  cent,  galena. 

Vein  quartz,  with  15  per  cent,  pyrites 

Vein  quartz,  with  10  per  cent,  hema- 
tite  


465 
313 
250 
303 
238 
175 
168 

168 

163 
187 
180 


426 
286 
235 
267 
213 
160 
154 

148 

136 
164 
160 


4.3 
6.4 
8.0 
6.6 
8.4 
11.4 
11.9 

11.9 

12.3 
10.7 
11.1 


4.7 
7.0 
8.5 
7.5 
9.4 
12.5 
13.0 

13.5 

14.5 
12.2 
12.5 

12.9 


'R.  H.  RiCH.\RDS,  "Ore  Dressing,  Vol.  II." 

2  Calculated  from  specific  gravity  of  pure  unaltered  specimens. 

McDonald's  Table  of  Weights  of  Ore^ 


Material 


Weight  per  cubic 
foot 


In  place,  |  Broken, 
pounds      pounds 


Cubic  feet  per  ton 


In  place 


Broken 


Granite  and  porphyry. 

Gneiss 

Greenstone  and  trap . . 

Limestone 

Slate 

Quartz 

Sandstone 

Earth  in  bank 

Earth  dry  and  loose. . . 

Clay 

Sand 


170 
168 
187 
168 
175 
165 
151 
111 


118 
80 


97 
96 
107 
96 
95 
94 


11.8 
11.9 
10.7 
11.9 
11.4 
12.1 
13.2 
18.0 


20.6 
20.8 
18.7 
20.8 
21.1 
21.3 
23.3 


74 


27.0 


17.0 
25.0 


•  Probably  for  ore  as  delivered  to  mill. 


Weight  of  Rock  and  Sand^ 


Cubic  feet 
per  ton 


Weight  in 
pounds  per 
cubic  foot 


Sulphide  ore  in  place 

Sulphide  ore  broken 

Oxidized  ore  in  place 

Oxidized  ore  broken 

Quartz  in  place  (sp.  gr.  =  2.65) . 

Quartz  broken 

Earth  in  bank 

Earth,  dry  and  loose 

Clay. 


Loose  sand 

MiU  taiUng2  (sp.  gr.  2.7) 

Sand  collected  under  water 

Transferred  sand  (before  leaching) . 

Leached  sand  (after  transferring) . . 


11  to  13 

15  to  18 

14  to  18 

22  to  24 

12.0 

21.0 

18.0 

27.0 

17.0 

25.0 

21.5 
26.0 
24.0 


154  to  182 

111  to  133 

111  to  143 

81  to    91 

165.0 

94.0 

111.0 

74.0 

118.0 

80,0 

93.0 
77.0 
83.3 


'  From  MacFarren's  "Cyanide  Practice. 
San  Francisco,  Calif. 

'  W.  A.  Caldecott,    Journ.  Chem.,    Met. 
1910. 

12 


'  "Mining  and  Scientific  Press," 
and  Min.    Soc.    of  S.  A.,  Oct. 


178     METALLURGISTS  AND  CHEMISTS' HANDBOOK 
DENSITY  AND  HARDNESS  OF  MATERIALS' 

Specific  u j„„„ 

gravity  HardnoM 

Acids  and  oxides: 

Arsenious  acid,  AsiOs 3 .  69-3 .70  1.5 

Boric  acid,  BiOH)j 1.48  1.0 

Titanic  acid,  anatase,  TiOj 3.88  5.5-6.0 

brookite,   TiOj 4.14  5.5-6.0 

rutile,  TiOj 4.28  6.0-6.5 

Bauxite,  AljOa  •  2H2O 2.63-2.80  

Corundum,  AlcOa 3.90^.02  9.0 

Cuprite,  CujO 5.99  3.75 

Diaspore,  Al(OH)rAl!0) 3.37  6.5 

Tin  oxide  (cas.oiterite),  SnOj 6.30-7.10  6.5 

Melaconite  (black  copper),  CuO 6.20-6.30  3.0-4.0 

Hematite,  FeiOa 4.54-5.28  6.0 

Magnetite.  FesOi 4.94-5.18  5.5 

Ferric  oxide  (hydratedWimonite 3.60-4.00  5.5 

Ice  at  0°C 0.92  

Magnesia  (periclase) ,  MgO 3 .  67  6.0 

Magnesia  (hydrated,  brucite).  Mg(0H)2 2.35  2.5 

Manganese  oxide,  braunite 4.75  6.0-6.5 

hausmannite,  MnjO* 4.72  5.0-5. 5 

pyrolusite,  MnO: 4.82-4.97  2.0 

Silica,  agate,  Si02 2.58-2.62  6.0 

quartz.  SiOi 2.65  7.0 

Opal  (hydrated  silica) 2.03-2.09  5.5-6.5 

Uranium  oxide  (pitchblende) 6.01-8.07  5.5 

Zincite.  ZnO 5.57  4.0-4.5 

Aluminates: 

Spinel.  MgO- AI2O3 3. .55  8.0 

Anorthite,  CajAhSiiOu 2.7  6.0-7.0 

Antimonides: 

Breithauptite.  NiSb 7 .  54  5.5 

Antinionite,  Sb2S3 4.57  2.5 

Arsenides: 

Cobalt  arsenide,  smaltite.  (Co. Ni)As} 6.41  5.5 

Copper  arsenide,  domeykite,  CujAs 7.75  3.0-3.5 

Nickel  arsenide,  niccolite,  NiAs 7 .  72  5.5 

Borates: 

Boracite.  MgrChBisOjo 2.91-2.97  5.0-7.0 

Borax,  Na2B.O7l0H2O 1.72  2.0 

Bromides: 

Silver  bromide,  AgBr 5.80-6.00  2.0-3.0 

Carbonates: 

Aragonite,  CaCOa 2.93-2.94  3.5-4.0 

Azurite,  3Cu3Cj07-7H20 3 .  70-3 .83  4.0 

Calcite,  CaCOj 2.70-2.73  3.0-3.65 

Cerussite,  PbCOj 6.57  3.25 

Dolomite,  MgCa(C02)2 2.83-2.94  3.75 

Malachite,  Cu2C0«-H20 3.93  3.5 

Magnesite,  MgCOi 3.0  3. ,5-4. 5 

Siderite,  FeCOa 3.83-3.88  3.5-4.0 

Smithsonite,  ZnCOj 4.30-4.45  5.0 

Stronianite,  SrCOa 3.60-3.71  3.5-4.0 

Witherite,  BaCOj 4.28  3.5 

Chlorides: 

Atacamite,  Cu2(0Hj)Cl 3.70  3.0-3.5 

Calomel,  Hg2Cl2 6.48  1.0-2.0 

Carnalhte,  KMgCh-eHiO 1.6  1.0 

Cerargvrite,   AgCl 5.31-5.43  1.5 

Rock  salt,  NaCl 2.26  2.5 

Sylvite,  KCl 1.90-2.00  2.0 

Chromates: 

Lead  chromate.  PbCrO« 5.90-6.10  2.5-3.0 

Chromite,  FeCriO< 4.32-4.50  5.5 

'From  "Annuaire  pour  1914.  par  le  Bureau  des  Longitudes." 


PHYSICAL  CONSTANTS  179 

I^S  Hardness 

Fluondes: 

Cryolite,  NasAlFs 2.96  2.5 

Fluorite,  CaFs 3.14-3.19  4.0 

MolyMates: 

Wulfenite,  PbMoOi 6.95  3.0 

Niobates  and  Tantalales: 

Fergusonite,  Y,  Er,  Ce,  Nb,  Ta,  0 5.84  5.5-6.0 

Niobite,  FeNbiOe 5.60-6.00  6.0 

Samarskite 5. 54  5. 0-6 . 0 

Tantalite,  FeTasOe 7.03  6.0 

Nitrates: 

Saltpeter,  KXO3 1.94  2.0 

Phosphates: 

Apatite 2.90-3.20  5.0 

Autunite 3.57  2.0-2.5 

Monazite  (Ce,  La)P04 5.00-5.09  5.2 

Pyromorphite,  Pb6Cl(P04)3 6.59-7.05  3.5-4.0 

Turquoise 2.52-2.80  6.0 

ChalcoUte 3.40-3.60  2.0-2.5 

Silicates: 

Albite 2.60-2.62  6.0 

Amphibole 2.92-3.59  5.5 

Andalousite,  AljSiOs 3.14-3.16  7.5 

Augite 3.20-3.50  5.0-6.0 

Emerald  (beryl) 2.67-2.75  7.5-8.0 

Epidote 3.46  6.5 

Feldspar  orthoclase 2 .  50-2 .59  6.0 

albite 2.60-2.62  6.0 

oligoclase 2.61-2.64  6.0 

andesite 2.67-2.68  

labradorite 2 .  70-2 .72  6.0 

anorthite 2.75  

Gadolinite,  Ba2FeYjSi20io 4.23-4.33  6.5-7.0 

Granite 3 .  42-4 .20  

Hornblende 2.90-3.40  5.0-6.0 

Hypersthene  (Fe,Mg)Si03 3.36-3.42  5.0-6.0 

Idocrase 3.29-3.43  6.5 

Jadeite,  NaAl(Si03)2 3.28-3.35  6.5-7.0 

Lapis-lazuli 2.50-3.04  5.0-5.5 

Peridote 3.33-3.41  6.5-7.0 

Phenacite,  BeaSiOi 2.96  7.5-8.0 

Olivine  (Mg,Fe)2Si04 3.30-3.50  6.0-7.0 

Mica 2.70-3.10  2.0-2.5 

Pyroxene,  diopside 3.32  4.0-6.0 

augite 3.30  5.5 

hedenbergite 3.50  

Quartz,  SiOa 2.65  7.0 

Rhodonite 3.64  5.5-6.5 

Serpentine 2.6  3.0-4.0 

Sillimanite.  Al20Si04 3.24  7.5 

Thorite,  ThSi04 4.19-5.22  4.5-5.0 

Wiilemite,  Zn2Si04 4.01  5.0 

Wollastonite.  CaSiOs 2.80-2.90  4.5-5.0 

Zircon,  ZrSiOi 4.04-4.67  7.5 

Hydraled  silicates: 

Calamine,  Zn2(OFD2Si03 3.35-3.50  5.0 

ChrysocoUa,  CuSi03-2H20 2.00-2.20  3.5 

Halloysite 1.92-2.12  

Kaolin 2.5  1.0 

Magnesite,  HiMgjSisOio 1.80-2.20  2.0-2.5 

Pyrophyllite,  HAl(Si03)2 2.78  1.5 

Talc 2.71  1.0 

Thomsonite 2.38  5.0-5.5 

Silicohorate: 

Tourmaline 3.04-3.20  7.0-7.5 


180     MET/UJ.URGISTS  AND  CHEMISTS'  HANDBOOK 

Svlf;  Hardness 

Silicochlonde: 

Pyrosmalite 3.08  4.0-4.5 

Sodalite 2.38-2.42  6.5-6.0 

Silico-fluorides: 

Leucophane 2.97  4.0 

Mica 2.71-3.13  2.0-3.0 

Topaz 3.51-3.58  8.0 

Siliconiobate: 

Wohlerite 3.41  5.5-6.0 

Sulphates: 

Anclesite,  PbS04 6.26-6.30  3.0 

Anhydrite.  CaSOi 2.90-2.96  3.0-3.5 

Baritc.  BaS04 4.48-4.72  3.0 

Cclestite,  SrSOi 3.92-3.96  3.0-3.5 

Epsoniite,  MKSO)-7H2t) 1.75  2.0-2.5 

Gl.iuberite,  Na2.S()4 2.64-2.85  

Gypsum.  CaS04-2H20 2.33  2.0 

Kainit,  MgSO«-KCl-3HsO 2.1  2.5 

Sulphides: 

Argentite,  AgiS 7.24  2.5 

Bisinuthinite,  61283 6.40  2.0 

Blende  (sphalerite),  ZnS 4.09  3.5-4.0 

Bornite,  CusFeSa 4.40-5.50  3.0 

Chalcocite.  Cu2S 5.78  2.75 

Chalcopyrite,  CuFeS2 4.17  4.0-4.2 

Cinnabar,  HeS 8.12-8.20  2.5 

Erubescite.  CuaFeSa 5.05  3.0 

Galena,  PbS 7.26-7.60  2.75 

Greenockitc,  CdS 4.99  3.0-3.5 

Marcasite,  FeS2 4.77-4.86  6.0-6.5 

Millerito,  NiS 5.65  3.5 

Molybdenite,  M0S2 4.94  1.5 

Orpiinent.  AS2S3 3.45  1.75 

Pyrite.  FeSi 4.85-5.04  6.0 

Pyrrhotite,  FeS 4 .  62  4.0 

Realgar,  AsS 3.64  2.0 

Stibnite,  Sb2S3 4 .  62  2.0 

Sphalerite,  ZnS 4.09  3.5-4.0 

Sulph-anlimonides: 

Bournonite,  PbCuSbSs 5.75-5.83  2.5-3.0 

Jamcsonite,  PbFeSbsSu 5.61  2.5 

Pyrargyrite,  AgaSbSs 5.86  2.5 

Sulph-arsenides: 

Cobaltite,  CoAsS 6.26-6.37  5.5 

Enargite,  CusAsS* 4 .  36  3.0 

Mispickel,  FeAsS 5.22-6.07  5. .5-6.0 

Proustite,  AgjAsSs 5. 50  2 . 0-2 .  5 

Tellurides: 

Nagyagite,  Au,  Pb,  Sb,  Te,  S 6.68-7.20  1.0-1.5 

Tetradymite,  Bi,  Te,  S 7.41  1.5-2.0 

Petzite  (.\g,Au)2Te 8.83  2.5-3.0 

Sylvanite,  AuAgTei 8.28  2.0 

Tilanatea: 

Ilmenite,  FeTiOs 4.89  5.0-6.0 

Tungstales: 

Scheelite,  CaWO* 6.07  4.5-5.0 

Wolframite  (Fe,Mn)W04 7.14-7.36  5.0-5.5 

Vanadates: 

Descloizite 5.84  3.0-5.0 

Vanadinite,  Pb4Cl(VO<)3 6.66-7.23  3.0 

Combustibles: 

Anthracite 1.34-1.46  

Asphalt 0.83-1.16  

Bituminous 1 .  28-1 .36  

Lignite 1 .  10-1 .35  


PHYSICAL  CONSTANTS 


181 


The  Principal  Concentrating  Ores  and  Gangues^ 

i!^y  Hardness 

Lead: 

Galena 7.26-7.60  2.0-3.0 

Cerussite 6 .  57  3 .  75 

Anglesite 6.26-6.30  3.0 

Copper: 

Melaconite 6.0  3.0-4.0 

Cuprite 3.99-4.02  

Chalcocite 5.78  2.75 

Bornite 4.40-5.50  3.0 

Chalcopyritc 4.17  3.5-4.0 

Malachite 3.93  3.5-4.0 

ChrysocoUa 2.00-2.20  2.0-4.0 

Iron: 

Mispickel 5.22-6.07  5.5-6.0 

Magnetite 4.94-5.18  5.5-6.5 

Pyrite 4.85-5.04  6.0-6.5 

Marcasite 4.77-4.86  6.0-6.5 

Pyrrhotite 4 .  62  4.0 

Zinc: 

Smithsonite 4.30-4.45  5.0 

Sphalerite 4.09  3.5-4.0 

Willemite 4.01  5.0 

Gangues: 

Barite  (heavy  spar) 4.48-4.72  3.0-3.5 

Manganese  garnet 4.10-4.50  7.0 

Iron  garnet 3.90-4.40  7.0 

Lime  garnet 3.40-3.50  7.0 

Fluorite  (fluorspar) 3 .  14-3 .19  4.0 

Anhydrite  (gypsum) 2.90-2.96  1.5-2.0 

Dolomite 2.83-2.94  3.5-4.0 

Quartz 2.50-2.80  7.0 

Calcite 2.70-2.73  3.0 

Kaolimite 2 .  40-2 .60  1.0 

Hematite 4 .  50-5 .30  5.5-6.5 

Serpentine 2.6  3.0-4.0 

Spinel 3.50-3.60  8.0 

Talc 2.50-2.80  1.0 

Miscellaneous: 

Hornblende 2.90-3.50  5.0-6.0 

Monazite ; 5.0  5.2 

Pitchblende 6.4  5.5 

Rutile 4.20-4.30  6.0-6.5 

Thorianite 8 .  00-9 .70  7.0 

Thorite 4.6  

Wolframite 7.10-7.90  5.0-5.5 

Graphite 2.09-2.23  

J  From  Megraw's  "Practical  Data  for  the  Cyanide  Plant."  For  a  longer 
table,  based  on  acid  radicals,  see  p.  178. 


182     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Specific  Gravity  and  Absolute  Weight  of  Gases 


Gas 


Formula 


Molecu- 
lar wt. 
0  =  16 


Weight 
of  1  liter 
in   grams 

at  0°C. 
and     760 

mm. 
pressure 


Sp.  gr. 

AiT=    1 


Wt.  of  1 
cu.  ft.  in 
lb.  at  32° 

F.  and 
29.92  in. 

pressure 


Acetylene 

Air 

Aldehyde 

Ammonia 

Alcohol,  ethyl 

Alcohol,  amyl 

Alcohol,   methyl 

Argon 

Arsine 

Benzetie 

Boron  chloride 

Boron  fluoride 

Bromine 

Butane 

Cyanogen 

Chlorine 

Chlorine  monoxide.. . 
Chlorine  dioxide.  .  .  . 

Carbon  dioxide   

Carbon  monoxide.... 
Carbonyl  chloride.  .  . 
Carbonyl  sulphide. . . 

Ethane 

Ethylene 

Fluorine 

Helium. ............ 

Hydrobromic  acid. .  . 
Hydrochloric  acid.  .  . 
Hydrofluoric  acid. . . . 

Hydriodic  acid 

Hydrogen 

Hydrogen  arsenide... 
Hydrogen  sclenide. . . 
Hydrogen  sulphide.. . 
Hydrogen  phosphide. 
Hydrogen  telluride... 
Hydrocyanic  acid.. . . 

Iodine 

Krypton 

Methane 

Neon 

Methyl  chloride 

Mercury 

Nitrogen 

Nitrous  oxide 

Nitric  oxide 

Nitrogen  tetroxide. . . 
Nitrogen  tetroxide. . . 
Nitrosyl  chloride. . .  . 

Oxygen 

Phosphine 

Phosphorus 

Propane 

Propylene 

Silicon  fluoride 

Sulphur  dioxide 

Xenon 

Radium  emanation.  . 
Water 


CjHi 


26.016 


C3H4O 

NHi 

CiHsOH 

CeHuOH 

CHjOH 

Ar 

AsHs 

C.H6 

BCI3 

BFi 

Brs 

C«H,o 

C:N2 

CI2 

ChO 

ClOs 

COj 

CO 

COC12 

COS 

C21I8 

C.H* 

F2 

He 
HBr 
HCl 

HF 

HI 

H2 
AsH. 
H2Se 
H2S 
PHa 
HjTe 
HCN 

I2 

Kr 
CH4 

Ne 
CH3CI 

Hg 

N2 
N2O 

NO 
NiO* 
N02 
NOCl 

O2 
PH. 

P4 
CjHs 
CjH. 
SiP\ 
SO2 

Xe 

Nt 
HjO 


44.032 
17.034 
46.048 
88.096 
32 . 032 
39.88 
77 . 984 
78.048 

117.38 
68.00 

159.84 
58.08 
52.05 
70.92 
86.92 
67.96 
44.00 
28.00 
98.92 
60.07 
30.048 
28 . 032 
38.00 

4.002 
80.928 
36.468 
20.008 

127.928 
2.016 
77.984 
81.216 
34.086 
34 . 064 

129.516 
27.018 

253.84 
82.92 
16.032 
20.0 
50.484 

200.6 
28.02 
44.02 
30.01 
92.02 
46.01 
65.47 
32.00 
34 . 064 

124.16 
44 . 064 
42.048 

104.3 
64.07 

130.2 

222.4 
18.016 


1.1708 
1.2928 
1.9811 
0 . 7708 
2.0862 
4.0696 
1.4483 
1 . 7809 
3.4589 
3.5821 
5.09 
2.99 
7.1437 
2.65 
2.335 
3.222 
3.8820 
3.0192 
1.9768 
1.2504 
4.47 
2.721 
1.3562 
1 . 2609 
1 .  635 
0.1782 
3.50 
1.6392 
0.9220 
3.057 
0 . 08987 
3.4589 
3.628 
1.539 
1.5293 
5.80 
1.226 
11.271 
3.708 
0.7168 
0.9002 
2.. 304  5 
9.0210 
1 . 2057 
1.9782 
1.3402 
4.1133 
2.0567 
2.92.53 
1.4291 
1.5193 
5.6318 
1.9660 
1.8783 
4.6fe4 
2.9266 
5.851 
9.727 
0 . 8063 


0.90561 

1 . 0000 

1.5324 

0.59623 

1.6137 

3.1479 

1.1203 

1.3776 

2.6755 

2.7708 

3.937 

2.312 

5.5258 

2.050 

1.806 

2.4923 

3 . 0028 

2.3354 

1.5291 

0.96720 

3.457 

2.1047 

1.0496 

0.97532 

1.2647 

0.1378 

2.707 

1.2G794 

0.71318 

2.8287 

0.069516 

2.67755 

2 . 80639 

1.1904 

1.18293 

4.486 

0.9483 

8.7183 

2.8682 

0.55446 

0 . 69634 

1.78261 

6 . 97850 

0.93265 

1.53021 

1.03669 

3.18178 

1 .  59092 

2.26282 

1 . 02803 

1.09788 

4.35639 

1.558 

1.45293 

3 . 60490 

2 . 26390 

3.7524 

7.5241 

0.6237 


0.07309 

0.08071 

0.12368 

0.04812 

0.13024 

0.25406 

0.09042 

0.11118 

0.21593 

0.22362 

0.3177 

0.1867 

0.44597 

0.1654 

0.14577 

0.20114 

0.24235 

0.18843 

0.12341 

0.07806 

0.2791 

0.16987 

0.08467 

0.07872 

0.1021 

0.01112 

0.2185 

0.10233 

0 . 05756 

0.22830 

0.005610 

0.21593 

0.22650 

0.09607 

0.09547 

0.3621 

0.05920 

0 . 70363 

0.23148 

0.04475 

0 . 05620 

0.14387 

0.56317 

0.07527 

0.12350 

0 . 08367 

0.25679 

0.12840 

0.18262 

0.08921 

0.09487 

0.35158 

0.12273 

0.11726 

0.29093 

0.18264 

0.36527 

0.60724 

0 . 050336 


PHYSICAL  CONSTANTS  183 

The  column  headed  Weight  of  1  liter  in  grams,  etc.,  is  mainly- 
based  upon  the  tables  in  "Annuaire  pour  1914,  Bureau  des 
Longitudes"  and  in  the  "Annual  Tables"  published  by  the 
International  Congress  of  Applied  Chemistry.  Other  data 
are  compiled  from  various  sources.  There  is  a  wide  variation 
in  the  results  for  these  constants,  even  between  the  work  of 
two  supposedly  equally  qualified  workers.  For  that  reason 
I  have,  in  several  instances,  cut  out  some  of  the  last  decimal 
places.  In  part  this  variation  is  caused  by  the  effect  of  surface 
condensation  of  gas  films  on  the  apparatus  worked  with  and  in 
part  it  is  probablv  due  to  the  shape  of  the  vessel  itself,  as  set 
forth  by  Morley  in  189/1. 

The  determination  of  these  constants  for  gases  is  by  no 
means  a  simple  problem.  So  far  as  possible,  the  values  are 
those  obtained  experimentally,  and  are  not  simply  calculated 
from  atomic  weights.  In  the  cases  of  such  substances  as 
mercury,  water,  etc.,  the  values  at  0°  and  29.92  in.  of  mercury 
pressure  are  purely  theoretical.  The  experiments  for  the 
determination  of  the  constants  have  been  made  at  higher 
temperatures  and  the  values  in  the  table  calculated  from  the 
equation  pv  =  RmT . 

The  number  of  molecules  per  cubic  centimeter  of  gas  under 
standard  conditions  is  about  27.09  X  10^^. 

Velocity  of  electrons,  2.36  X  10"  to  2.85  X  lO^o  cm.  per 
second. 

The  value  of  the  gas  constant  in  the  formula  for  perfect 
gases  has  been  calculated  by  M.  D.  Berthelot  for  "Annuaire 
pour  1914,  Bureau  des  Longitudes."  He  considers  a  large 
number  of  gases  and  obtains  for  the  mean  value  in 

Tpv  =  RT 

R  =  0.08207 

A  gram  molecule  of  gas  at  0°C.  and  760  mm.  is  22,380  cc. 

If  a  gas  be  expanded  or  compressed  so  quickly  that  no  heat 
is  either  absorbed  or  given  off,  then  pv^-'^"^  =  k. 

Critical  Temperatures  and  Pressures^ 

The  critical  temperature  of  a  gas  is  that  temperature  above 
which  no  pressure  suffices  to  produce  a  liquid.  The  pressure  at 
which  a  gas  at  the  critical  temperature  begins  to  become  a  liquid 
is  known  as  the  critical  pressure: 

'"Annuaire  par  1914,  Bureau  des  Longitudes." 


184     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Substance 


Critical 
tempera- 
ture, 
dcg.  C. 


Critical 
pressure, 
atnios. 


Critical 

density 

calculated 


Elements: 

Argon 

Bromine 

Chlorine 

Helium 

Hydrogen 

loidine 

Krypton 

Mercury 

Neon 

Nitrogen 

Oxygen 

Xenon 

Inorganic  substances: 

Am.monia,  NHi 

Carbon  monoxide,  CO 

Carbon  dioxide,  COi 

Carbon  disulphide 

Carbonyl  sulphide,  COS 

Germanium  tetrachloride,  GeCU 

Hydrochloric  acid,  HCl 

Hydriodic  acid,  HI 

Hydroselenic  acid,  HiSe 

Nitric  oxide,  N2O2 

Nitrogen  monoxide,  N:0 

Nitrosyl  chloride,  NOCl 

Phosphine,  PHj 

Phosphorus  trichloride,  PCh. .  .  . 

Silicon  hydride.  Sill* 

Silicon  tetrachloride,  SiCli 

Sulphur  dioxide,  SO2 

Sulphuretted  hydrogen.  HiS.  .  .  . 

Tin  tetrachloride,  SnCU 

Water,  H2O 

Organic  substances: 

Acetylene,  C2H1 

Alcohol  (ethyl),  CjHsOH 

Benzene,  CeHs 

Carbon  tetrachloride,  CCh 

Ethane,  C2H« 

Ethylene.  C2H« 

Naphthalene,  CioHs 

Methane,  CH« 

Pentane,  C5H12 

Phenol,  CeHiOH 

Toluene,  CtHs 


-122.44 

302.2 

146.0 

-267.84 

-241.1 

512.0 

-   62.5 

1270.0 

< 205.0 

-145.1 

-118.8 

14.7 


131.0 
-139.5 

31.1 
273.05 
105.0 
276.9 

51.8 

150.7 

137.0 

-93.5 

36.5 
167.0 

51.3 
285.5 
-  0.5 
221.0 
157.0 
100.4 
318.7 
364.3 


35.5 
243.1 
288.5 
283.15 

32.1 
9.5 
468.2 
-  81.8 
197.2 
419.2 
320.6 


48.0 


83.9 
2.26 
11.0 


41.24 


29.0 
33.6 
50.8 
43.5 


113.0 
35.5 
73.0 
72.87 


78.0 
89.3 
36.95 
194.6 


61.7 

62.96 

47.89 

44.97 

49.0 

50.8 

39.2 

54.9 

33.0 


41.6 


0.547 
'6!643' 


0.299-0.296 
0.400 


0.326 
0.460 
0.4408 


38.0 

83.6 

0.462 

91.0 

71.2 

71.95 

0.524 

64.5 

'  6!534 

100  0 

0.520 


0.276 
0.305 
0.558 


0.210 


0.145 
0.232 


0.287 


How  to  Generate  the  Various  Gases 
Acetylene. — Best  generated  from  calcium  carbide  and  water 
(CaCo  +  2H2O  =  Ca(0H)2  +  C2H2).  Can  also  be  prepared 
by  the  incomplete  combustion  of  coal  gas,  or  by  the  action  of 
acetylene  bromide  on  alcoholic  potash  (CjH^Brj  +  2K0H  = 
C2H2  4-  2H2O  +  2KBr).  Can  also  be  bought  compressed  in 
cylinders. 

Ammonia. — Best  generated  by  the  action  of  calcium  oxide  on 
ammonium  chloride.     Can  be  bought  compressed  in  cylinders. 


PHYSICAL  CONSTANTS  185 

Argon. — Can  be  obtained  by  depriving  air  of  oxygen  with 

phosphorus,  then  absorbing  the  nitrogen  by  red-hot  magnesium. 

Arsine. — The  gas  may  be  obtained  pure  by  the  following 

Sn3As2  +  6HC1  =  SSnCh  +  2AsH3 

It  is  also  formed  when  any  arsenious  compound  comes  into 
contact  with  nascent  hj'drogen,  which  reaction  forms  the  basis 
for  the  well-known  Marsh  test.  The  other  hydride  of  arsenic, 
AS2H4,  is  a  solid. 

Bromine. — Best  generated  by  heating  the  easily  purchased 
liquid  bromine. 

Carbon  Dioxide. — Best  made  by  the  action  of  hydrochloric 
acid  on  marble  or  sulphuric  acid  on  sodium  carbonate.  Can 
also  be  bought  compressed. 

Carbon  Monoxide. — Best  made  pure  by  heating  oxalic  acid 
with  concentrated  sulphuric  acid  and  absorbing  the  carbon 
dioxide  in  calcium  hydrate  emulsion: 

C2H2O4  +  H2SO4  =  CO2  +  CO  +  H2SO4H2O 

Can  also  be  made  by  passing  CO2  over  red  hot  coke  or  charcoal. 
This  last  reaction  is  not  self-sustaining  but  requires  considerable 
external  heat. 

Chlorine. — Is  readUy  generated  from  a  mixture  of  salt,  man- 
ganese dioxide  and  sulphuric  acid. 

(4NaCl  -f-  Mn02  +  4H2SO4  =  4HXaS04  +  2H2O  +  MnClj  + 

2C1.) 
It  is  also  readily  purchased  compressed  in  cylinders. 

Cyanogen. — This  is  easily  made  by  heating  mercuric  cyanide. 
It  is  extremely  poisonous. 

Ethane. — Must  be  made  from  a  methyl  halide,  as : 

2CH3CI  -I-  2Na  =  2NaCl  +  CaHe 

Ethylene. — Is  best  formed  bv  treating  an  ethyl  halide  with 
potassium  hydroxide  (CsHsBr  +  KOH  =  C2H4  +  KBr  -|-  H2O) 
or  by  treating  ethyl  alcohol  with  concentrated  sulphuric  acid. 

Hydrogen. — Formed  by  the  action  of  hydrochloric  or  sul- 
phuric acid  on  metallic  zinc,  though  the  gas  prepared  in  this 
way  may  contain  hydrogen  phosphide  and  arsine,  so  that  it 
cannot  be  used  for  certain  purposes.  The  Lane  process  pro- 
duces hydrogen  by  passing  steam  over  red-hot  iron,  and  reduc- 
ing the  Fe304  formed  with  water  gas,  the  iron  being  again  used 
to  produce  further  quantities  of  hydrogen.  It  can  also  be  pro- 
duced by  electrolytic  methods  (methods  of  Messerschmidt  and 
of  Bergius),  and  by  the  reactions  Ca(0H)2  -f  CO  =  CaCO.,  -f- 
H2  and  CO  +  HoO^  =  CO2  +  H,.  It  is  said  the  hydrogen  for 
Zeppelin  inflation  is  made  by  starting  the  decomposition  of 
acetylene  electrically,  CoH.  =  2C  +  H:  +  47,800  cal.  Jau- 
bert's  method  consists  in  preparing  calcium  hydride  by  pa.ssing 
hydrogen  over  calcium  in  an  electric  furnace,  Ca  -|-  Ho  =  Call.., 
then  later  generating  the  hvdrogen  where  needed:  CaH2  -t- 
2H2O  =  Ca(0H)2  -I-  2H2.  Strictly  speaking,  this  is  a  method 
of  transporting  hydrogen  rather  than  of  generating  it.     Jaubert 


186     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

also  has  patented  a  hydrogenite  mixture,  5  parts  feriosilicon, 
12  parts  caustic  soda  and  4  parts  slacked  lime.  Si  +  2NaOH  + 
Ca(OHU  =  Na.SiOj  +  CaO  +  2H2O.  Hydrogen  may  also  be 
generated  by  the  action  of  potassium  or  sodiimi  on  water. 

Hydrochloric  Acid  Gas. — Given  off  by  the  action  of  concen- 
trated sulphuric  acid  on  aqueous  hydrochloric  acid. 

Hydrocyanic  Acid  Gas. — This  is  formed  by  heating  sulphuric 
acid  and  sodium  cj'anide.      It  is  fearfully  poisonous. 

Hydrogen  Phosphide  (Phosphine). — This  is  formed  when 
phosphorus  is  boiled  with  strong  potash  or  caustic  soda,  or 
caustic  lime  (4P  +  3NaOH  +  3H2O  =  SH-jNarOj  +  IHa). 
The  gas  as  thus  formed  takes  fire  in  contact  with  air,  due  to 
traces  of  P2H4.  This  compound  can  be  removed  by  refrigerat- 
ing mixtures  and  the  resulting  gas  will  not  take  (ire  sponta- 
neously.    These  phosphorous  compounds  are  very  poisonous. 

Hydrogen  Selenide. — Formed  by  the  action  of  dilute  acids 
or  aluminum  selenide.  This  can  be  made  by  putting  lump 
selenium  in  molten  aluminum.  A  mask  and  gloves  should  be 
worn  when  making  the  selenide,  as  the  mixture  occasionally 
spatters  badly.  IVie  utmod  precaulion  should  he  observed 
not  to  breathe  the  seleniurelted  hydrogen. 

Hydrogen  Sulphide. — Readily  made  by  treating  ferroua 
sulphide  with  hydrochloric  acid,  by  the  action  of  .sulphuric 
acid  on  low-grade  mattes,  or  by  melting  paraffin  and  sulphur 
together. 

Hydrogen  Telluride. — Formed  bj'  the  action  of  water  on 
aluminum  telluride.  This  is  made  by  putting  lumps  of 
tellurium  in  molten  aluminum.  The  slag  which  forms  on  the 
surface  is  aluminum  telluride.  Goggles  should  be  worn  when 
making  this  compound. 

Kakodyl. — [(CH3)2As]2.  This  is  formed  by  heating  arsenious 
anhydride  and  potassium  acetate  in  a  closed  retort.  This  is 
ordinarily  a  fetid,  fuming  liquid,  violent,  poisonous,  and  when 
pure,  spontaneou.sly  inflammable. 

Methane. — This  is  most  easily  prepared  by  heating  a  mixture 
of  2  parts  sodium  acetate,  2  parts  potassium  hydroxide  and  3 
parts  quicklime  (NaCoHjO..  +  ROII  =  0114  +  RNaCO,).  It 
can  also  be  made  by  passing  carbon  disulphide  and  water  vapor 
over  red  hot  copper  (CS2  +  211.0  +  6Cu  =  CII4  +  2Cu  ,S  + 
2CuO). 

Nitric  Anhydride. — Prepared  by  passing  dry  chlorine  over  dry 
silver  nitrate  at  9o°C. 

Nitrous  Oxide. — Obtained  by  heating  ammonium  nitrate 
crystals  (NH4NO3  =  N2O  +  2H2O).  The  reaction  takes  place 
at  comparatively  low  temperatures. 

Nitrogen. — Can  be  readilj'  obtained  by  absorbing  the  oxygen 
from  the  air  with  phosphorus.  In  this  case  it  contains  about 
one-eightieth  of  its  mass  in  argon  and  traces  of  helium,  xenon, 
etc. 

Nitrogen  Peroxide. — Obtained  by  mixing  two  volumes  of  dry 
nitric  oxide  and  one  of  oxygen  together. 


PHYSICAL  CONSTANTS 


187 


Nitric  Oxide. — Obtained  by  the  action  of  nitric  acid  on 
copper  (3Cu  +  8HNO3  =  3Cu(N03)2  +  H2O  +  N2O.)..  The 
gas  is  colorless,  but  oxidizes  with  air  to  nitrogen  peroxide,  a 
reddish-brown  gas. 

(4AgN03  +  CI2  =  4AgCl  +  2N2O5  +  Oo) 

Oxygen. — Is  given  off  when  manganese  dioxide  or  potassium 
chlorate  is  heated,  or,  more  safely,  on  ignition  of  a  mixture  of 
the  two.  Can  also  be  made  cheaply  by  electrolyzing  dihite 
sulphuric-acid  solution.  Can  be  introduced  into  solution  by 
hydrogen  peroxide,  sodium  peroxide,  fuming  nitric  acid,  nitric 
acid,  chloric  acid,  etc.  The  compressed  gas  is  a  common  article 
of  commerce. 

Phosphine. — See  hydrogen  phosphide. 

Sulphur  Dioxide. — Formed  by  burning  sulphur  in  air,  or  if 
wanted  chemically  pure,  by  the  action  of  concentrated  boiling 
sulphuric  acid  on  copper  (Cu  +  2H2SO4  =  CuSO*  +  2H2O  + 
SO2). 

Sulphur  Trioxide. — This  is  most  easily  formed  by  roasting 
ferric  sulphate. 

Principal  Toxic  Gases 

The  following  list,  from  an  address  of  Prof.  1.  Guareschi, 
before  the  Associazone  Chim.  Industr.  on  June  14,  1915,  at 
Turin,  is  given  because  of  the  growing  popularity  of  these 
compounds  in  warfare. 


Name 

Formula 

Sp.  gr. 

Color 

Discovered 

Chlorine 

Hydrochloric  acid 

Chlorine  dioxide 

Bromine 

CI2   ' 

HCl  1 

CIO2  2 

Br2  1 

HBr 

N2O2 

N2O4  > 

NOCl  2 

COCb  2 

CO 

CO2 

HNC  2 
(CN^2 
CNCl    2 
CNBr  2 

NH3 

H2S 
SO2  2 

SO3  ' 

PH3  ' 
AsH3  ' 

2.45 

1.26 
1.28 

5.6 

Greenish 

yellow- 
Colorless 
Reddish 
yellow 
Red 

Seheele    1774. 

Priestley,  1772. 
H.  Davy,  1815. 

Balard,  1823. 

Nitrogen  dioxide 

Nitrogen  peroxide 

Nitrosyl  chloride 

Carbonyl  chloride 

Carbon  monoxide 

Carbon  dioxide 

Hydrocyanic  acid 

Cyanogen 

Cyanogen  chloride.  .  .  . 
Cyanogen  bromide. .  .  . 
Ammonia 

1.039 

2.5 

2.33 

3.5 

0.9674 

1.524 

0.94 

1.808 

2.12 

3.60 

0.59 

1.18 

2.247 

2.74 

1.178 

2.69 

Colorless 

Red 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 
Colorless 
Colorless 

Priestley,  1772. 
Dulong,  Gav-Lussac. 
Gay-Lussac,  1848. 
J.  Davy,  1812. 
Lasonne,  Priestley. 
V.  Helmont 
(XVIIthV 
Seheele,  1782. 
Gav-Lussac,  1815. 
Berthollet,  1789. 
Serullas,  1827. 
Pripstlpv.  1775. 

Sulphureted  hydrogen. 

Colorless    iScheele,"  i777. 

Sulphur  trioxide 

Phosphine 

Colorless     XVth  century. 
Colorless    IGengembre,  1785. 
Colorless     Seheele.  1775. 

'  Positively  stated  to  be  used  in  warfare. 
'  Probably  being  used. 
'  Possibly  being  used. 


188     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Fluorixe  Gas  and  Gaseous  Fluorine  Compounds 

(.\I1  toxic) 


Name 


Formula     Sp.  gr. 


Color 


Discoverer 


F, 
HjF, 
BF, 

SiF, 

CF« 
CHF, 
CHzFs 
CHsF 

PF, 

PF, 

POF, 

PCUF, 

SF, 
ScF, 
NOP 
NOjF 

SOFj 

SOjFi 

CjHjF 

C.H^Fj 

CHtF 

CHrF 

C«H«F 

CHjF 

CH.COF 

CrOiFj 

WF, 

BrF, 

IF, 

1.264 

1.7 

2.312 

4.684 

3.09 

3.06 

i!22" 

3.05 

4.5 

3.63 

5.41 
5.03 

iies"' 

2.24 

3.0 

3.55 
1.70 

2!i6' ' 
2.6 
2.. 58 
2.07 
2.16 

Yellow 

Colorless 

Colorless 

Colorless 
Colorless 
Colorless 
Colorless 
Colorless 
Colorkss 
Colorless 

Colorless 

Colorless 
Colorless 
Colorless 
Colorless 
Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Colorless 

Red 

Colorless 

Colorless 

Colorless 

Moissan,  1886. 

Hydrofluoric  acid 

Boron  fluoride 

Silicon  fluoride 

Carbon  fluoride 

Schcele,  1782 
Gay-Lussac           and 

Thenard.  1809. 
Scheele,  1782. 
Moissan. 

Methyl  difluoride 

Methyl  fluoride 

Phosphorus  trifluoride. 
Phosphorus  pentafluor- 

Dumas  and  Peligot. 
H.  Davy. 
Thorpe. 

Phosphoric  oxyfluoride 
Phosphorus        dichlor- 

Moissan. 

Sulphur  fluoride 

Selenium  fluoride 

Nitrosyl  fluoride 

Nitrile  fluoride 

Thionyl  fluoride 

Sulphur  dioxydifluoride 
Ethyl  fluoride 

Moissan  and  Lebeau. 
Pridcaux,  1906. 
Gore.  1869. 
Moissan  and  Lebeau, 

1905. 
Moissan  and  Lebeau, 

1905. 
Moissan  and  Lebeau. 

Ethylene  fluoride 

Propyl  fluoride 

Isopropyl  fluoride 

Isobutyl  fluoride 

Allvl  fluoride 

Chabri6. 
Meslans,  1894 
Mcslans,  1894. 
Moissan. 

Acetyl  fluoride 

Chromyl  fluoride 

Tungsten  fluoride 

Bromine  pentafluoride 
Iodine  pentafluoride..  . 

Meslans. 
Olivieri,  1880. 
Roscoe. 
Lebeau,  1905. 
Moissan,  1902. 

On  the  subject  of  toxic  gases,  the  following  abstract  of  a  lec- 
ture for  Prof.  Guareschi  l)efore  the  Turin  Academy  of  Science 
on  the  properties  of  soda-lime,  will  also  be  of  interest.  (The 
abstract  is  from  Chemical  Abstracts.) 

Man.v  reactions  which  take  place  with  NaOH  or  KOH  or 
lime  either  not  at  all  or  only  at  high  temperatures  occur  at 

Sliohtlt  Toxic  and  the  Rare  Toxic  Gases 


1 

Ozone 

0, 

C>)CtOi 

Chlorine  suboxide 

ChO 

Nickel  carbonyl    .  .  . 

Ni(C0)4 

Nitrous  oxide 

N2O 

Diazomethane 

CHjNj 

Nitrosyl  dichloride 

NOCls 
HI 

NH, 

Hydriodic  acid 

Boron  chloride 

BCl, 

Stibine 

SbH, 

Boron  hydride 

.'Vcetylene 

BiHio 

Hydrogen  silicide 

SiH« 

CiHj 

Formaldelivde 

CH2O 

Methyl  chloride.  .  .  . 

CH.Cl 

Methyl  oarbaniine 

C  S  NCH3 

Methyl  ether 

(CH,)20 

Chromyl  chloride 

CrOjCli 

Ethvl  chloride 

CjH,C1 

Hydrous  pho.sphide.  .  .  . 

P2H4 

.Methyl  pliospliide.. . 

CH3PH2 

Carbon  oxj'sulphide.. .  . 

COS 

Methyl  arsenide. .  .  . 

A8H2CH, 

Thionyl  chloride 

SOCI2 

Dimethyl  arsine.  .  .  . 

A8H(CH,)2 

i 


PHYSICAL  CONSTANTS  189 

the  ordinary  temperature,  and  sometimes  violently  when  soda- 
lime  is  employed.  Further,  soda-Ume  constitutes  the  most 
efficient  agent  to  combat  poisonous,  irritating,  or  tear-produc- 
ing gases,  since  it  readily  absorbs  CI,  Br,  halogen  hydrides,  COo, 
SO2,  COCI2,  (CN)2,  HCX,  cvanogen  chloride,  bromide  and 
iodide,  S  chloride,  SOCl.,  XOCi;  XO.,  AsHj,  SbHs,  HoSand  HoSe, 
mercaptans,  thiocyanic  acid,  indole,  scatole,  aldehydes,  chloro- 
carbonic  esters,  aromatic  chloro  and  bromo  derivatives  with 
the  halogen  in  the  side-chain,  ethyl  bromoacetate  and  chloro- 
acetoacetate,  chloroacetone,  bromoacetophenone,  acetic  anhy- 
dride, etc.  The  soda-lime  acts  far  more  energeticalh^  when 
recently  prepared  and  stored  in  a  hermetically  sealed  vessel. 
In  view  of  its  distinctive  behavior  it  is  probable  that  it  contains 
a  compound  such  as  CaCOXa).,  OH.Ca.OXa,  or  OH.Ca.O.Ca.- 
OXa.  One  hundred  grams  of  soda-lime  in  fine  granules  will 
absorb  1,500-2,250  cc.  of  COClo  if  the  latter  is  passed  slowly 
through  it,  but  samples  prepared  from  marble  exhibit  a  con- 
siderably lower  absorptive  capacity;  when  saturated  with  CO2, 
soda-lime,  even  when  dry,  is  incapable  of  arresting  COCI2. 
The  latter  is  absorbed  well  by  aniline  and  other  compounds, 
but  soda-lime  appears  to  be  the  only  absorbent  of  practical 
value.  H2S  is  readily  absorbed  by  soda-lime,  which  becomes 
black  possibly  owing  to  the  formation  of  Fe  sulfide.  This  reac- 
tion is  attended  with  the  development  of  a  very  considerable 
amount  of  heat,  and  when  the  current  of  gas  is  mixed  with  air 
the  soda-lime  becomes  incandescent,  while  replacement  of  the 
air  by  O  results  in  a  violent  explosion.  This  incandescence  is 
observed  only  with  freshly  prepared  soda-lime,  which  should 
consist  of  granules  1-3  mm.  in  diameter.  One  hundred  grams 
of  soda-lime  absorb  as  much  as  35  1.  of  HoS.  Soda-lime  also 
absorbs  H2Se  which  produces  rapid  and  intense  irritation  of 
the  mucous  membrane  of  the  nose  and  is  capable  of  paralyzing 
thp  sense  of  smell  for  some  hours  or  even  days.  No  investiga- 
tion has  been  made  on  the  action  of  soda-lime  on  H2Te,  which 
is,  however  only  slightly  poisonous.  SO2  is  absorbed  by  soda- 
lime,  rapidly  at  first  and  subsequently  more  slowly,  26  1.  being 
taken  up  by  100  g.  NO2  is  absorbed  readilj',  but  XO  only 
slowly  and  to  a  limited  extent.  The  mixture  of  HCl,  XOCI, 
XOoCl  and  CI  obtained  from  aqua  regia  is  also  rapidly  absorbed, 
and  the  same  is  the  case  at  first  with  (CX)2,  of  which  more  than 
6  1.  are  absorbed  per  100  g. ;  the  employment  of  soda-lime  to 
retain  the  (CX)2  emitted  from  blast  furnaces  is  suggested. 
Cyanogen  chloride,  bromide,  and  iodide  are  likewise  absorbed. 
Soda-lime  rapidly  absorbs  CO2  and  serves  for  the  removal  of 
the  latter  from  CO,  which  at  the  ordinary  temperature  is  ab- 
sorbed but  slightly  or  not  at  all.  Like  all  porous  substances, 
soda-lime  absorbs  a  httle  XH3,  but  forms  no  compound  and 
allows  it  to  escape;  in  presence  of  soda-lime,  however,  NH3 
eauses  at  the  ordinary  temperature  reactions  which  otherwise 
occur  only  at  high  temperatures.  PH3  prepared  by  passing  H 
into  a  flask  containing  45-50  per  cent.  KOH  solution  and  a  few 
pif^ces  of  P,  is  spontaneously  inflammable,  but  loses  this  prop- 


1!)()      MET.AXLURGISTS  AND  CHEMISTS'  HANDBOOK 

erty  when  passed  through  soda-lime;  the  latter  also  absorbs  P 
vapor.  AsHj  and  SbHs  are  absorbed  by  soda-lime.  The  latter 
may,  therefore,  be  used  to  purify  the  H  obtained  by  the  action 
of  acid  on  Fe  or  Zn,  but  it  will  not  remove  PH3,  which  is  de- 
tected by  the  green  color  of  the  flame.  Soda-lime  absorbs 
many  of  the  impurities  of  coal-gas  and  takes  away  its  fetid 
odor;  similar  purification  and  deodorization  occur  with  CoHj, 
which  is  not  absorbed  by  soda-lime.  Cr02Cl2  is  rapidly  ab- 
sorbed, no  acid  vapor  passing.  SOCI2  is  immediately  decom- 
posed with  development  of  much  heat  but  no  incandescence, 
no  trace  being  allowed  to  pass.  Ethyl  chloroformate  is  ab- 
sorbed with  aviditv,  heat  being  developed;  only  faint  alcoholic- 

/9 

ethereal  odor  passes:  ClCOjEt  -1-  Ca<    |  -v  XaCl  -|-  EtOH 

\NaOH 
+  CaCOi.     Chloroacetone  is  absorbed  with  generation  of  heat 
and  replacement  of  the  irritant  vapor  bv  one  with  a  pleasant 

/^ 
odor:  CHzClCOMc  +  Ca<    |  ->  OHCHjCOMe  +  NaCl  + 

\\aOH 
CaO.  w-Bromoacetophenone  is  absorbed.  Ethyl  bromoace- 
tate  is  not  fixed.  Ethyl  a-chloroacetoacetate  is  readily  ab- 
sorbed. Bromoacetyl  bromide  is  immediately  absorbed  with 
liberation  of  heat.  Benzyl  l)romide  and  chloride  are  absorbed. 
Chlorobenzene  is  not  readily  absorbed.  Crude  xylyl  or  xylylene 
bromide,  probably  a  mixture  of  co-bromoxylenes  and  w,  w'-di- 
bromoxylenes  are  readily  absorbed.  Acraldehyde  is  readily 
absorbed.  Furfuraldehyde  is  rapidly  absorbed  vvith  develop- 
ment of  heat.  CH2O  is  absorbed.  Thioformaldehyde  is  com- 
pletely and  rapidly  fixed.  AcH  is  absorbed  with  development 
of  heat.  Pyrrole  is  absorbed  but  slightly  or  not  at  all.  Indole 
and  skatole  are  absorbed.  S2CI2  is  immediately  absorbed  with 
heating.  Ethyl  mercaptan  is  rapidly  absorbed  with  marked 
development  of  heat.  Thiophene  is  fixed  either  not  at  all  or 
only  in  traces.  HNC  is  rapidly  absorbed  with  moderate  heat- 
ing. SO3  is  inefficiently  fixed.  Acetic  anhydride  is  rapidly 
absorbed.  Various  esters  imdergo  hydrolj'sis.  Gases  and 
vapors  of  putrefaction  are  absorbed.  Products  of  incomplete 
combustion  of  paper,  wood,  etc.,  are  rendered  quite  odorless. 
In  presence  of  soda-lime  various  synthetic  reactions  take  place 
at  the  ordinary  temperature;  the  results  obtained  in  this  direc- 
tion are  to  be  published  later. 


PHYSICAL  CONSTANTS  191 

Minimum  Lethal  Amounts  and  Tolerances   (Per  Cent.) 


Gas 

Rapidly 
fatal 

Usually  fatal 
ill  J-i  to  1  Lour 

Usually  endur- 
able }4  to  1  hour 

Prolonged  ex- 
posure     usually 
not  harmful 

HCl 

1.5  -2.0 
0.01-0.06 
0.4  -0.5 
0.12-0.15 
0.5  -1.0 
0.4  -0.6 
0.5  -0.7 
2.0  -3.0 

0.05-1.0 

0.004 
0.05-0.2 
0 . 05-0 . 06 
0.3  -0.4 
0.1  -0.2 
0.2  -0.3 
0.5  -1.0 

0.01 

Br  or  CI 

so»     

about  1 

0.0001 
0.02-0.03 

HCN 

NHj  

about  0.3 
4-5 

0.02-0.04 
0.1 

PHj         

H2S     

1-2 

0.1  -0.15 

CO 

0.22 

For  use  in  warfare,  according  to  Prof.  Vivian  B.  Lewes  ^  a  gas 
should  have  at  least  twice  the  specific  gravity  of  air,  and  should, 
for  ease  of  transportation,  be  easily  liquefiable.  The  principal 
substances  which  can  be  used  in  respirators  to  absorb  the  gases 
more  commonly  used  in  warfare  are:  Carbonate  or  bicarbonate 
of  soda;  sodium  hyposulphite;  potassium  iodide;  an  alkaline 
iodide  used  with  an  alkaline  carbonate;  a  mixture  of  alka- 
line carbonates  and  thiosulphite;  hyposulphite,  carbonate  and 
glycerin.  2 

Analyses  of  German  Poison  Gases^ 

1.  AUyl-iso-thiocyanate  (allyl  mustard  oil)  CaHsNCS  (shell). 

2.  Benzyl  bromide,  CeHsCHsBr  (shell). 

3.  Bromo-acetone,  CH2Br.CC).CH3  (hand  grenades). 

4.  Bromated  methjd-ethyl-ketone  (bromo-ketone),  CHoBr.- 
CO.C2H5  or  CH3.CO.CHBr.CH3  (shell).  Dibrome-ketone, 
CHs.CO.CHBr.CH.Br  (shell). 

5.  Bromine,  Br2  (hand  grenades). 

6.  Chloro-acetone,  CH2CI.CO.CH3  (hand  grenades). 

7.  Chlorine,  CI2  (cloud). 

8.  Chloromethyl-chloroformate  (palite),ClC00CH2Cl  (shell). 

9.  Nitro-trichloro-methane  (chloropicrin  or  nitrochloro- 
form),  CCI3NO2  (shell). 

10.  ChlorosuLfonic  acid,  SO3H.CI  hand  grenades  and 
"smoke  pots  "). 

11.  Dichloro-diethylsulfide  (mustard  gas),  (CH2ClCn2)2S 
(shell). 

12.  Dimethyl  sulfate,  (CH3)2S04  (hand  grenades). 

13.  Diphenyl-chloro-arsine,  (C6H6)2  AsCl  (shell). 

14.  Dichloromethyl  ether,  (CH2C1)20  (shell). 

15.  Methyl-chlorosulfonate,  CH3CISO3  (hand  grenades). 

16.  Phenyl-carbylamine  chloride,  CeHsNCCh  (shell). 

17.  Phosgene   (carbonjd  chloride),  COCI2  (cloud  and  shell). 

18.  Sulfur  trioxide,  SO3  (hand  grenades  and  shell). 

19.  Trichloromethyl-chloroformate  (diphosgene,  super- 
pahte),  CICOOCCI3  (shell). 

20.  Xylyl  bromide  (tolyl  bromide),  CH3C6H4CH2Br  (shell). 

'"Engineering,"  July  23,  1915,  p.  89. 

'"he  Genie  Civil,"  Sept.  25,  1915,  p.  205. 

»  Courtesy  McKesson  &  Robins,  New  York  City. 


192     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Incendiary  Bombs. — According  to  Professor  Vivian  B.  Lewes 
the  principal  ingredient  of  incendiary  bombs  is  thermit,  ignited 
by  means  of  amorphous  phosphorus.  The  latter  substance  is 
also  used  by  the  Germans  in  a  type  of  shrapnel  used  for  marking 
the  range  of  artillery.  The  heat  of  the  explosion  converts  the 
amorphous  phosphorus  into  white  phosphorus,  the  combustion 
of  which  produces  fumes  of  phosphorus  pentoxide,  which  are 
visible  night  and  day.  Wounds  produced  bj^  fragments  of 
the.se  shells  are  poisoned. 

Failure  of  Metals  Under  Repeated  Stresses 

Materials  subjected  to  repeated  stresses  fail  eventually,  even 
though  the  stresses  are  each  less  than  their  elastic  limit.  The 
smaller  the  stress,  the  greater  the  number  of  stresses  required 


Torsion  fatigue 

Bending 
fatigue 

Materiab 

Fl       1       C 

Fl      1     C 

Tons  per  sq.  in. 

Tons  per  sq.  in. 

Chrome  nickel  steel,  F5117 

12.601 

11.371 

11.101 

10.701 

7.031 

9.69 

9.71 

11.04 

8.16 

0.50 
0.70 
2.42 
0.68 
1.91 
1.26 
1.55 
1.11 
1.55 

Nineteen  samples  of  chrome  nickel  steel.  . 

Manganese  steel,  F5109 

14.08 
13.86 
13.82 
14.39 

4.70 

5.46 

Mild  steel  plates,  high  rcsult.s,  R 

5.71 

4.36 

Mean  for  above  mild  steels 

9.65 

1.37 

14.04 

5.06 

Mild  steels,  exceptional  qualities,  Y 

Mild  steels,  exceptional  qualities,  F 

7.56 
8.64 

2.40 
1.26 

13.. 30 
doubt 

5.40 
ful 

Mild  steel  plates,  low  results,  J 

Mild  steel  plates,  low  results,  A 

7.01 
7.09 
6.33 
6.94 
5.64 
5.90 

1.36 
1.26 
2.03 
1.69 
1.43 
1.58 

9.36 
8.94 
8.95 
8.15 
9.69 
7.42 

5.31 
4.76 
5.13 

Mild  steel  plates,  low  results,  U 

Mild  steel  plates,  low  results,  Z 

Mild  steel  plates,  low  results,  N 

5.61 
4.53 
5.17 

Mean 

6.47 

1.56 

8.75 

5.09 

6  831       1    f!l  ' 

5.971 
6.221 
6.001 
5.501 
2.691 
2.161 
3.981 

0.97 
1.83 
0.61 
0.41 
0.97 
0.13 
1.61 

Copper  rods  annealed,  CU 

Cast   iron    (one  sample),  CI 

Phosphor  bronze  rods,  as  rolled,  PB 

Magmalium  rods,  as  rolled,  MA 

7.821 
4.211 
5.801 

0.77 
0.78 
nega- 
tive 

1  These  fatigue  limits  were  determined  calorimetrically. 


PHYSICAL  CONSTANTS  193 

to  produce  rupture.  C.  E.  SxROMEYERof  Manchester,  England, 
gives  the  following  mathematical  expression  of  these  facts. 
There  is  some  limiting  value  of  stress  which  would  just  cause  a 
piece  of  metal  to  break  in  an  infinite  mmiber  of  applications. 
Any  stress  less  than  this  amount  could  be  repeated  forever 
without  breaking  the  specimen.  Any  stress  greater  than  this 
amount  would  certainly  rupture  the  specimen  in  a  finite  number 
of  applications.  This  stress  may  be  termed  the  fatigue  limit 
(Fl).  If  the  number  of  repetitions  of  stress  required  to  break 
the  specimen  be  A'^;+  iS„  =  the  stress  applied  (the  +  sign  indi- 
cates that  the  stress  of  Sn  in  tons  per  square  inch  may  be  applied 
alternately  as  a  tension  or  compression,  or  an  alternate  twisting 
and  bending);  C  a  constant  for  the  material  under  discussion; 
then  

The  constants  for  various  metals  are  given  above. 


Some  Properties  of  the  Metals i 

Brittleness  or  Toughness  (Marten's  Formulae). — Toughness 
of  test  length  = 

ultimate  strength       per  cent,  elongation  in  test  length, 
yield  point         ^  ~  100 

The  metals  then  range  in  this  order : 

Pb,  Pt,  Fe,  Al,  Ni,  Zn,  Sn,  Cu,  Au,  Ag. 

DuctiUty.— W,  Au,  Ag,  Pt,  Fe,  Ni,  Cu,  Al,  Zn,  Sn,  Sb. 

By  some  authorities  aluminum  is  placed  fourth ;  it  has  been 
drawn  so  fine  that  11,400  yd.  weigh  only  1  oz.  One  ounce  of 
tungsten  at  0.0005  inch  diam.  equals  12,490  yd.     (Fink). 

Tenacity.— Steel,  Ni,  Fe,  Cu,  Al,  Au,  Zn,  Sn,  Pb. 

MaUeabiUty.— Au,  Ag,  Al,  Cu,  Sn,  Pt,  Pb,  Zn,  Fe,  Ni. 

The  thinest  metal  leaf  commercially  attainable  in  1914  was: 

Au,  0.000008  cm.;  Al,  0.000020;  Ag,  0.000021;  Pt,  0.000025; 

Cu,  0.000034;  Dutch  metal,  0.00007  (Kaye  and  Laby). 

_.,     ^.  .^    ,,,             ,    T-i          IN      T^i     i-  -x         toughness 
Plasticity  (Marten  s  Formulae). — Plasticity  =     .     " ^  X 

1000. 

Marten's  Classification. — Fe,  Pt,  Ni,  Al,  Zn,  Cu,  Ag,  Au, 
Pb,  Sn. 

Kurnakofp^Schemtschuschny:  K,  Na,  Pb,  Tl,  Sn,  Bi,  Cd, 
Zn,  Sb. 

'H.  O.  HoFMAN,  "General  Metallurgy." 


13 


19-i    MI:TALLURGIST8  and  (UIEMISTS'  HANDBOOK 


Elastic  Constants  of  Solids 


Hulk 
modulus 


Coctruinit  of 
rigidity 


Young's 
modulus 


Brass 

Glass 

Iron  (wrought). .  . 

Steel 

Aluminum 

Bismuth,  cast. . . . 

Cadmium 

Copper 

Gold 

Lead 

Nickel 

Palladium 

Platinum 

Silver 

Tin 

Bronze 

Const  antan 

Manganin 

Zinc 

Phosphor  bronze. 
German  silver.  .  . . 

Magnesium 

Rhodium 

Tantalum 

Tungsten 


10.0 
4.0 


14.0 
18.4 
7.4(1 
3.14 
4.12 
13.1 
16.6 
5.0 
17.6 
17.6 
24.7 
10.9 
5.29 
9 .  .52 
15.5 
12.1 
9.0 
12.0 


X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10> 
X  10' 
X  10' 
X  10' 


4.2  X  10' 
28.0  X  10' 
18.6     X  10' 


3.7 

2.4 

7.7 

8.2 

2.63 

1.20 

1.92 

4 .  55 

2.80 

0.562  X 

7.7       X 

4.04 

6.04 


10" 
10" 

10" 
10" 
10" 
10" 
10" 
10" 
10" 
10" 
10" 
10" 
lO'i 
lO'i 
10" 
10" 
10" 
10" 
10" 
10" 
10" 
10" 


10.4 
6.0 
19.6 
22  0 
7.05 
3.19 
4.99 
12.3 
8.0 
1.62 
20.2 
11.3 
16.8 


.90 
5.43 
8.08 
16.3 
12.4 
8.7 
12.0 
11.6 


X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  101 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  10' 
X  101 
X  10' 
X  10' 
X  10' 


42.2     X  10" 


The  above   vahies    are  mainly  from    K.^ye  and   Labv's,   "  Physical   and 
Chemical  Constants." 

If  the  volume  of  a  body  be  altered  without  changing  its 
shape,  the  stress  divided  by  the  strain  is  known  as  the  bulk 


modulus:  k  = 


Av 


If  a  body  be  changed  in  sha^.e  without  changing  its  volume 
the  modulus  of  elasticity  is  tlie  ratio  of  the  stress  to  the  strain 
which  produces  it. 

Young's  Modulus. — The  number  representing  the  pressure 
or  tension  on  a  bar  in  dynes  per  square  centimeter  divided  by  the 
compression  or  elongation  so  produced  per  centimeter  of  length. 

Tensile  Strength  of  Some  Metals  at  Ordinary 
Temperatures 

fPounds  per  scjuaro  inch) 


Cobalt 

Nickel  (hard  drawn) 

Iron,  rolled 

Iron,  cast 

Steel  (high  tensile) 

Tungsten  (hard) 

Platinum,  wire,  annealed. 

Platinum,  cast 

SUver,  cast 

Copper,  cast 

Copper,  sheet 

Copper, bolts 

Copper  wire,  hard  drawn. 
Copper  wire,  soft  drawn.  . 

Gold,  cast 

Gold  wire,  hard  drawn.  .  . 
Gold  wire,  annealed 


75,000 
96,000 
55,000 
48,000 
450,000 
010,000 
32.000 
45,000 
41,000 
24,000 
30,000 
34,000 
60,000 
35,.500 
20,000 
37,000 
24,000 


Aluminum,  cast 12,500 

Aluminum,  rolled 19,290 

Aluminum,  hammered.  .  .      22,575 

Aluminum,  drawn I     17,007 

8,500 
5,000 
4,600 
5,800 
3,000 
2,050 
1.650 
1,720 
1,000 
60,000 


Tellurium,  cast. 

Zinc 

Tin,  cast 

Tin,  drawn 

Bismuth,  cast.  . 

Lead,  cast 

Lead,  pipe 

Lead,  sheet 

Antimony,  cast. 

Tantalum 

Brass 50,000 

German  silver 66,000 

Hard  rubber 7,000 


PHYSICAL  CONSTANTS 


195 


Tensile 

Strengths  at 

Low  Temper.\tdres1 

In  kg.  per  sq.  cm. 

At  -  252. 6°C. 

-  192°C. 

+  17°C. 

Aluminum 

4,790 
6,510 

5,370 

4  880 

13,400 

19,700 

581 

16,100 

7,250 

5,390 

2,900 
3  580 

Gofd  ..v.;;::::;: 

9,860 

21,700 
813 

10,500 
8,600 
6,400 

14  700 

Lead 

251 

11,100 

5,080 

Silver 

2,780 

H.  O.  HoF.M.'^.v,  "General  Metallurgy." 

'  F.  A.  and  C.  L.  Lindemann,  Nernst's  Festschrift,  1912,  p.  264. 

Tensile  Strength  of  Metals,  Showing  Effect  of  Drawing 
AND  Rolling^ 


Lb.  per  stj.  in. 


Cast 


Thin  sheet 
metal 


Wire 


German  silver  . . . . 

Bronze 

Brass 

Copper 

Iron  (length wisel.. 
Iron  (crosswise) .  . 
Steel  (lengthwise). 
Tungsten 


23,714-40,450 
35,960 


24,781 


75,816-87,129 
73,380-92,086 
44,398-58,188 
30,470-48,450 
44,331-59,484 
39,838-57,350 
49,253-78,251 
400,000-610,000 


81,735-92,224 

78,049- 

81,114-98,578 

37,607-62,190 

59,246-97,908 


103,272-318,823 


'Rearranged    from    tests    quoted    in    Kent's    "Mechanical    Engineers' 
Pocket  Book." 

Coefficients  of  Linear  Expansion  per  Degree  Centigrade^ 


0°-100° 

-  190°-0° 

Aluininuni 

0.0000233 

0.0000168 

0.0000089 

0.000017 

0.0000157 

0.000019 

0.0000055 

0.0000185 

0.000031 

0.0000143 

0.0000123 

0.0000179 

0 . 0000054 

0.0000085 

0.0000145 

0.000183 

Antimony 

Antimony  (normal  to  axis) 

Arsenic 

Bismuth 

0.000013 

Brass ■ 

Brick 

Bronze 

Cadmium 

0.0000446 

Cement 

Cobalt 

Copper 

Gas-carbon 

0.0000141 

Glass 

Gold 

0.0000132 

1  The  coefficient  of  cubic  expansion  is  3  times  the  coefficient  of  linear 
expansion. 

'  Hofman'8  "General  Metallurgy,"  and"  "Annuaire  pour  1914,  Bureau 
des  Longitudes." 


190     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Coefficient  of  Linear  Expansion  per  Degree  Centigrade 


0°-100° 


- 190°-0'' 


(Iraphite.i^artificial) 

Indium 

Invar    (68.8  per  cent.    Fe,  3G.2   per 

cent.   Ni) 

Iridium 

Iron  (cast) 

Iron  (wrought) 

I^ead 

Magnesium 

Marble 

Mercury  (solid) 

Nickel 

Osmium 

Palladium *. 

Platinum 

Potassium 

Rhodium 

Ruthenium 

Selenium  (40°) 

Silver 

Sodium 

Steel 

Steel  (hardened) 

Tellurium 

Thallium 

Tin 

Zinc 

Aluminum  bronze 

Brass  (Cu  66,  Zn  34) 

Bronze  (Cu  32,  Zn  2,  Sn  5) 

Constantan  (Cu  60,  Ni  40) 

German  silver  (Cu  60,  Ni  15,  Zn  25) . 

Magnalium  (Al  86,  Mg  13) 

Phosphor  bronze  (Cu  97.6,  2Sn,  P  0.2) 
Platinum-iridium  (Ir  10  per  cent.)  .  . 

Solder  (Pb  2  :  Sn  1) 

Speculum  metal  (Cu  68,  Sn'32). . . . 

Cement  and  concrete 

Glass,  soft  68Si02,  14Na20,  7CaO. .  . 
Glass,  flint  45Si02,  8K2O,  46PbO  .  .  . 

Granite 

Ice  (-10°toO°) 

Masonry 

Rubber,  hard 

Silica,  fused  (80°  to  0°) 

(0°  to  30°) 

(0°  to  1000°) 

Sandstone 

Slate 


0 . 0000025 
0 . 0000459 

0.0000004 

0.0000067 

0.0000122 

0.0000119 

0.0000205 

0 . 0000276 

0.000007 

0.000181 

0.0000132 

0 . 0000068 

0.0000119 

0.0000090 

0.000083 

0.0000086 

0.0000099 

0.000037 

0.0000195 

0.000072 

0.000011 

0.0000136 

0.000017 

0.000031 

0.0000227 

0.0000294 

0.000017 

0.0000189 

0.0000177 

0.000017 

0.0000184 

0.000024 

0.0000168 

0.0000087 

0.000025 

0.0000193 

0.000010-14 

0.0000085 

0.0000078 

0.0000083 

0.0000507 

0.000004-7 

0.00004278 

0.00000022 

0 . 00000042 

0.000000.54 

0.000007-12 

0.000006-10 


0 . 0000057 
0.0000091 


0.0000271 
0.0000214 


0.0000101 


0.0000120 
0.0000088 


0.0000226 
0 . 0000264 


PHYSICAL  CONSTANTS  197 

Cubic  Expansion  of  Gases,  per  Degree  Centigrade* 


Constant 
volume 


Constant 
pressure 


Air 

Carbon  monoxide. 
Carbon  dioxide . .  . 

Cyanogen 

Hydrogen 

Nitrogen 

Oxygen 

Nitrous  oxide 

Ammonia 

Sulphur  dioxide . . . 

Argon 

Helium 


0.0036650 

0.0036667 

0.003688 

0.003829 

0.0036678 

0.0036682 

0.0036741 

0.003676 


0.0038453 

0.003668 

0.0036627 


0.003676 

0 . 0036688 

0.00371 

0.003877 

0.0036613 

0.003670 

0.00486 

0.0037195 

0.003854 

0 . 0039028 


Cubic  Expansion  of  Liquids 

Mercury  (0°-100°C.) 0.0001818 

Water see  p.  174 

Burning  oils  of  sp.  gr.  0.795-0.825 r . .  0 .  00072 

Benzine 0.00081 

Light  lubricating  oil 0.00068 

Heavy  lubricating  oil 0.00063 

Sodium  (liquid) 0 .  000226 

Hardness 
"The  customary  hardness  test  at  the  present  time  is  that  of 
Brinnell,  which  consists  in  making  on  a  flat  surface  of  the 
material  an  indentation  by  means  of  a  small  steel  ball  applied 
under  known  pressure.  According  to  Rosenhain  perhaps  the 
best  definition  of  hardness  is  "the  power  of  resisting  local  dis- 
placement of  portions  of  its  surface."  But  it  is  at  once  evident 
that  this  power  is  by  no  means  a  simple  and  definite  property  of 
the  material  which  will  reproduce  itself  in  all  circumstances. 
Thus  the  displacement  of  a  portion  of  the  substance  of  a  material 
may  occur  by  plastic,  flow — the  material  may  be  indented  at 
one  point  while  its  level  is  raised  at  other  points;  in  other  cir- 
cumstances or  in  other  materials  the  displacement  may  occur 
by  direct  fracture,  as  in  the  scratching  of  a  brittle  material. 
Either  of  these  forms  of  local  displacement  maj^  be  brought 
about  by  the  application  of  a  steadily  increasing  force  or  by  a 
rapidly  applied  force,  i.e.,  by  a  shock  or  blow.  It  is  by  no  means 
certain  that  the  power  of  resisting  all  these  various  forms  of 
displacement  will  be  identical  or  even  proportional,  so  that  the 
material  which  displays  the  highest  scratch  hardness  is  not 
necessarily  the  hardest  under  an  indentation  test.  Where  hard- 
ness is  referred  to,  therefore,  the  manner  of  measuring  it  should 
always  be  specified. 

'  From  "Annuaire  pour  1914,  Bureau  des  Longitudes,"  with  a  few  values 
from  other  sources. 


198     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Scale  of  Hardnkss  (Mohs) 


Agate .... 
Alabaster. 


1 


Alum 2.0-2.5 

Amber.. 2.0-2.5 

Andalusite 7.5 

Anthracite 2.2 

Antimony 3.3 

Apatite S.Qi 

Aragonite 3.5 

Arsenic 3.5 

Asphalt 1.0-2.0 

Augite - 6.0 

Bervl 7.8 

Bismuth 2.5 

Calamine 5.0 

Calcite 3.0' 

Copper 2.5-3.0 

Copperas 2.0 

Copper  sulphate 2.5 

Corundum 9.0 

Diamond 10. 0^ 

Dolomite |3 . 5-4 . 0 

Emery 9.0 

Feldspar I     6 .  0^ 

Fluorite 4.0^ 

Gold ;2. 5-3.0 

Granite j     7.0 

Graphite '0.5-1.0 


Gypsum 

Heavy  spar.  .  . 
Hornljlende. . . . 

Iridium 

Jasper 

Kaolin 

Lead 

Meerschaum.. . 

Mica 

Nickel i5 

Onvx I 

Opal.. 

Palladium 

Platinum 

Quartz 

Ruby 

'Saltpeter 

Sapphire 

Serpentine 

Silver 

Spinel 

Stibnite 

Sulphur 

Talc 

Topaz 

Tin 

Zinc 

Zirconium 


2.01 

3.3 

5.5 

6.0 

7.0 

1.0 

1.5 
.0-3.0 
.5-3.0 
.0-5.5 

7.0 
.0-6.0 

4.8 

4.3 

7.01 

9.0 

2.0 

9.0' 
.0-4.0 
.5-3.0 

8.0 

2.0 
.5-2.5 

1.0 

8.0' 
.0-3.0 

4.0 

7.8 


"Among  the  various  methods  which  have  been  proposed 
for  the  measurement  of  hardness,  it  seems  probable  that  the 
Brinnell  ball-test,  measuring  indentation  hardness,  is  probably 
that  one  which  most  nearly  approaches  our  fundamental  ideal 
of  constituting  a  measure  of  a  single  definite  property.  In 
this  case  the  test  probably  measures  a  group  of  properties  of  a 
fairly  simple  type.  That  this  is  the  case  may  be  inferred  from 
the  fact  that  tests  with  balls  of  different  diameter  can  be  ren- 
dered fairly  comparable." 

TT     J  load  in  kg.  ^,  . , 

Hardness  =  ? r- r-v— ^ — ——. —  Xv  radius  of  ball. 

area  of  concavity  of  mdentation      v  x<iuiuouiuttii. 

The  Brixnell  hardness  number  is  nearh'  proportional  to  the 
ultimate  stress  determined  by  tensile  tests.  On  the  other 
hand,  ball-hardness  number  is  not  a  safe  guide  as  to  the  power 
to  resist  abrasion.*     A  better  test  for  resistance  to  wear  is 

'The  materials  marked  thus  (•)  are  the  standards  on  this  scale.  The  hard- 
ness is  determined  by  scratching  an  unknown  with  these  standards.  One 
can  scarcely  determine  within  half  a  point  what  the  hardness  is.  The  finger 
nail  may  be  assumed  at  about  2.5,  and  a  knife  blade  at  6.5. 

'  Rosenhain's  "Introduction  to  Physical  Metallurgy." 


PHYSICAL  CONSTANTS 


199 


probably  that  of  the  Derihox  machine,  in  which  the  edge  of  a 
hard  steel  disc  revolving  in  oil  is  pressed  against  the  test  speci- 
men.^  Some  comparative  Brin'xell  numbers  and  resistances 
to  wear  are  given  below. 

Botton'e's  Sc.\le  of  H.^rdxess^ 


3010 
1456 
1450 
1410 
1375 

Copper 

Palladium. .  . 
Platinum.. .  . 

Zinc 

Silver 

1360   Iridium 

1200   Gold. 

1107    Aluminum... 
1077   Cadmium.  .  . 
990    Magnesium  . 

984 
'■  979 
821 
760 
726 

Tin 

651 

Manganese. 

Cobalt 

Nickel 

Iron 

Lead 

Thallium..  .  . 

Calcium 

Sodium 

Potassium..  . 

570 
565 
405 
400 
230 

■■■■| r" 

Bhixxell  Hardxess  Nu>rBER.s^ 


Cooled 


500  kg.     3000  kg.    Resistance 
(a)  (6)        I     to  wear 


Phosphor  bronze: 

10  per  cent.  Sn Lime 

20  per  cent.  Sn Sand 

10  per  cent.  Sn,  10  per  cent.  Pb.  Lime 

10  per  cent.  Sn,  10  per  cent.  Pb.  Sand 

Gun  metal: 

10  per  cent.  Sn,  2  per  cent.  Zn.  .  Sand 

10  per  cent.  Sn,  2  per  cent.  Zn.  .  Lime 

Manganese  bronze {  |=*^^^^g 


107 

196 

103 

69 

82 
107 
137 
143 


93-100 

143-158 

80-89 

65-70 

6.5-74 

86-93 

109-119 

124-130 


{a)    10  mm.  ball,  applied  under  500  kg.  pressure  15  seconds. 
(6)  10  mm.  ball,  applied  under  3000  kg.  pressure  30  seconds. 

L.\TEXT  He.\t  of  Evaporatiox^ 


Air 

Aluminum 

Arsenic  (sublimation) .  . 
Antimony  (calculated) . 
Acid,  acetic 

formic 

Alcohol,  ethyl 

methyl 

Ammonia  (liquid  NHi). 

Arsenic  chloride 

Bromine 

Cadmium 

Carbon  dioxide 

Carbon  disulphide 

Carbon  (calculated).... 

Chlorine 

Hydrogen 

Iodine 

Lithium  (calculated) . . . 
Mercury 


51.0 
2227.0 
60.0 
359.0 
121.0 
120.7 
208.92 
263 . 86 
341.0 
53.0 
•    45.6 
398.0 
49.32 
86.67 
38.37 
61.9 
123.0 
24.0 

2.54 
68.0 


Magnesium 

Nitric  anhydride  (NjOi). 

Nitrous  oxide  (N2O) 

Nitric  acid 

Oxygen 

Phosphorus 

Potassium 

Selenium 

Silicon  (calculated) 

Silver 

Sodium 

Sulphur 

Sulphur  dioxide 

Sulphuric  acid 

Sulphuric  anhydride 

Stannic  chloride 

Tin 

Water 

Zinc 


1315.0 
44.81 
100.6 
115.08 

50.9 

287.0 

592.0 

140.0 

1262.0 

715.0 

1015.0 

72.0 

94.56 

122.1 

147.5 

30  .-53 
271.0 
5.38.0 
425.0 


'  Proc.  Int.  Assoc,  fur  Testing  Materials,  June  1,  1912,  p.  3. 

*  Am.  Jour.  Sci.,  1874,  Vol.  150,  p.  644. 
»  Mftaux  ft  Alliayes,  p.  8,  1915. 

♦  Most  of  these  values  are  from  J.  W.  Richards,  "Metallurgical  Calcula- 
tions," a  few  from  Cremer  and  Bicknell's  "Chemical  and  Metallurgical 
Handbook." 


200     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Latknt  Heats  of  Fusion^ 


Aluminum 

Antimony* 

Bismuth 

Bromine 

Cadmium 

Calcium 

Copper 

Cobalt 

Gallium 

Gold 

Ice 

Iodine 

Iridium 

Iron — cast-white 
Iron — cast-gray. . 

Iron — pure 

Lead 

Magnesium 


100.0 
40.2  2 
12.64 
16.18 
13.02 
52.6 
43.3 
68.0 
19.11 
16.3 
79.77 
11.7 
26.1 
23.0 
33.0 
69.0 
5.37 
58.0 


Mercury 

Nickel 

Palladium 

Platinum 

Phosphorus 

Potassium 

Potassium  nitrate .  . 

Selenium 

Silicon 

Silver 

Steel 

Sodium 

Sulphur 

Thallium 

Tellurium 

Tin 

Water 

Zinc 


Latent  Heats  of  Fusion — Compounds* 


Alumina 
Silica 
Titanium  oxide 


Oxides 

AI0O3 
SiOj 
TiOj 
Haiides 

AsCl, 


Arsenic  chloride 

Lead  bromide  PbBrj 

Lead  chloride  PbCU 

Manganese  chloride  MnCU 

Stannic  chloride  SnCU 

Nitrates 

Potassium  nitrate  KNOi 

Sodium  nitrate  NaNOa 


50.9 
76.1 
35.8 

69.74 
12.34 
20.90 
49.37 
46.84 

48.90 
64.87 


Silicates 
Al-calcium  silicate  (anorthite) 
Al-potassium  silicate  (orthoclase) 
Al-potassium  silicate  (microcline) 
Calcium  silicate  (wollastonite) 
Ca-magnesium  silicate  (malacolite')  Ca3MgSi40i2 
Ca-magnesium  silicate  (diopside)      CaMgSi206 
Magnesium  silicate  (enstatite) 
Magnesium  silicate  (olivine) 
Iron  silicate  (fayalite) 


CaAhSijOg 
KAlSisOj 
KAlSijOg 
CaSiOj 


MgSiO, 

Mg2Si04 

FejSiOi 


100 
100 

83 
100 

94 
100 
125 
1.30 


•  Most  of  these  values  are  from  J.  W.  Richard's  "Metallurgical  Calcula- 
tions." a  few  from  Ckemer  and  Bicknell's  "Chemical  and  Metallurgical 
Handbook." 

»  This  is  an  experimental  value.    .Theory  points  to  a  value  of  about  16. 

»  J.  W.  Richards,  "Metallurgical  Calculationa." 


PHYSICAL  CONSTANTS 


201 


Sulphides 
Lead  sulphide  PbS  104 

Specific  Heats  of  Non-metals  and  Alloys ^ 


Material 


Specific 
heat 


Material 


Specific 
heat 


Solids: 

Asbestoa  (20°-100°) 

Brass  (red) 

Bras3  (yellow) 

Brickwork 

Carbon,  graphite 

Clay 

Coal 

Fluorspar  (30°) 

German  silver  (0°-100°) . 
Glass,  crown  (10°-50°) . . 
Glass,  flint  (10°-50°). . . . 

Granite  (20°-100°) 

Ice 

Iron,  pure 

Iron,  cast 

Iron,  wrought 

Marble  (18°) 

Quartz  (0°) 

Quartz  (350°) 

Sand  (20°-100°) 

Steel 

Stone 

Wood 


0.20 

0.09 

0.088 
About  0.2 

0.16 

0.19 

0.24 

0.21 

0.095 
0.16-0.20 

0.12 
0.19-0.20 

0.502 

0.116 

0.13 

0.11 

0.21 

0.174 

0.279 

0.19 

0.12 
About  0.2 
0.45-0.65 


Liquids: 

Alcohol,  ethyl  (40°) 

Alcohol  methyl  (12°) 

Benzene,  CeHe  (10°) 

Benzine 

Benzol,  (19°-30°) 

Gasoline 

[Glycerine  (18°-50°) 

Hydrochloric  (HCl  +  lOHsO) 

(18°) 

Hydrogen  (253°) 

Kerosene 

Load  (molten) 

Mercury  (5°-3G°) 

Nitric  (HNOa  +  IOH2O)   (18°) 
Nitrogen  (-208°  to  -196°).. 

Oil,  olive  (7°) 

Oxygen  (-200°  to   -183°).  .  . 

Sea  water  (17°) 

Sulphur  (119°-147°) 

Sulphuric  (H2SO4)  (16°-20°) .  . 
Sulphuric    (H2SO4     +    5H2O) 

(lG°-20°) 

Turpentine  (18°) 


0.65 

0.60 

0.340 

0.45 

0.4158 

0.53 

0.58 

0.749 

6.00 

0.47 

0.03 

0 . 0333 

0.768 

0.43 

0.47 

0.35 

0.94 

0.2346 

0.3315 

0.5764 
0.42 


The  specific  heat  of  a  substance  is  the  number  of  B.t.u.'s  required  to  raise 
the  temperature  of  a  pound  of  the  substance  1°F.  or  of  1  kg.  of  water  1°C. 
There  is  much  discordant  data  on  the  subject  and  several  tables  are  given. 
The  user  is  advised  to  look  over  all  of  the  tables,  as  the  data  is  given  in  several 
forms. 


Specific  Heats  of  Some  Metals 

2 

Specifi 

c  heat 

As  a 
gas 

Metal 

Specifi 

c  heat 

Metal 

At    about 
15°C. 

At  about 

melting 

point 

At  about 
15°C. 

At  about 
melting 
point 

As  a 
gas 

Ag 

0.055 
0.107 
0.0.30 
0.068 
0.054 
0.106 
0.091 
0.116 
0.033 
0.030 
0.166 
0.941 
0.246 
0.035 

0.076 
0.308 
0.030 

0.046 

0.1852 

Mn... 
Mo... 
Na.... 
Ni.... 
Os.... 
P 

0.122 
0.066 
0.293 
0.109 
0.031 

Al 

Bi 

0.2174 

Cb 

0.161 

Cd 

0.062 

0.204 

0.118 

0.102 

0.032 

0.040 

0.23 

0.975 

0.0446 

6!625" 

6!i28" 

0.714 

0.2084 

Co 

0.064 

Cu.... 
Fe 

K   .      . 

Pb.... 
Pt.... 

Sr 

Sb.... 
Si 

0.030 
0.032 
0.0735 
0.048 

0.034 
0.046 

0.054 

0.416 
0.107 

Li 

Mg   .. 

Sn.... 
Tl.... 
Zn.... 

0.055 

0.03355 

0.093 

0.059 

0.424 
0.024 

W 

0.122 

0.076 

'From   Pierce   and    C.^hver's,     "Formulas   and    Tables   for  Engineers," 
with  some  additions  from  other  authorities.     For  the  elements,  see  the  table 
uii  page  202. 

-The  first  two  columns  are  from  Hofman's  "General  Metallurgy,"  the 
values  for  the  gaseous  state  are  from  J.  W.  Richards  "Metallurgical  Cal- 
culations." 


202     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Specific  Heats  of  the  Elements' 

A  table  compilpd  from  various  sourci's. 


Substance' 

Tempera- 

.^P , 

Substance' 

Tempera- 

>•, 

ture' 

heat' 

ture' 

heat' 

Aluminum  .... 

-182°- 15° 

0.168 

Lead 

300° 

0.0338 

17°- 100° 

0.217 

Molten 

0.0402 

600° 

0.282 

Lithium 

0°-19° 

0.837 

Antimony 

-186°- -79° 

0.0462 

0°-100° 

1.093 

l°-20° 

0.0503 

Magnesium.  . 

-186°- -79° 

0.189 

Molten 

17°-100° 

0.248 

632°-830° 

0.0603 

225° 

0.281 

Arsenic:  Cryst 

0°-100° 

0 . 0822 

Manganese.  . 

-188°-20° 

0.093 

Amorph 

21°-65° 

0.076 

14°-97° 

0.189 

Barium 

-185°-20° 

0.068 

Mercury 

-213° 

0.0266 

0°-100° 

0.05 

0°-80° 

0.0331 

Beryllium 

0°-100° 

0.425 

Molybdenum 

-185°-20° 

0.063 

Bismuth 

-186° 

0 . 0284 

15°-91° 

0.072 

22°-100° 

0 . 0304 

Nickel 

-    186°- 18° 

0.086 

Molten 

0.0363 

18°- 100° 

0.109 

Bromine:  Solid 

-    78°- -20° 

0.084 

XitroRpn,  liq. 

-208° — 196° 

0.43 

Liquid 

13°-45° 

0.107 

Osmium 

19°-98° 

0.031 

Gas 

loO°-230° 

0.0570 

Palladium  . .  . 

18°- 100° 

0.059 

Boron,  amorph. 

0°-100° 

0.307 

Phosphorus: 

Cadmium 

-186° 79° 

0.050 

Yellow 

-    78°-10° 

0.17 

Pure  18°-99° 

0.055 

Yellow 

13°-36° 

0.202 

Caesium 

0°-26° 

0.048 

Liquid 

49°-98° 

0.205 

Calcium 

0°-100° 

0.1704 

Red    

15°-98° 

0.17 

Carbon 

0°-20° 

0.145 

Platinum  .... 

-186°- 18° 

0.0293 

Gas  carbon..  . 

24°-68° 

0.204 

18°- 100° 

0.0324 

Charcoal 

0°-24° 

0.165 

1230° 

0.0461 

Charcoal 

0°-224° 

0.238 

Potassium  . . . 

-    78°-23° 

0.166 

Graphite 

-    50° 

0.114 

Rhodium  .... 

10°-97° 

0.058 

Graphite 

11° 

0.160 

Rutheniium  . 

0°-100° 

0.061 

Graphite 

202° 

0.297 

Selenium: 

Graphite 

977° 

0.467 

Cryst 

22°-62° 

0.084 

Diamond 

11° 

0.113 

Amorph.  . . . 

18°-38° 

0.095 

Cerium . 

0°-100» 

0.045 

Silicon,  cryst. 

- 185°-20° 

0.123 

Chlorine,  liquid 

0°-24° 

0.226 

57° 

0.183 

Chromium 

-200° 

0.067 

232° 

0 .  203 

0° 

0.104 

Silver 

-186°- -79° 

0.496 

17°-100° 

0.110 

15°-100° 

0.056 

400° 

0.133 

427° 

0.059 

Cobalt 

-182°-15° 

0.082 

Sodium:  Solid 

-185°-20° 

0.234 

15°- 100° 

0.103 

Solid 

10° 

0.297 

15°-630° 

0.123 

Liquid 

128° 

0.333 

Copper  

-192°-20° 

0.079S 

Sulphur: 

20°- 100° 

0 . 0930 

Rhombic  .  .  . 

17°-45° 

0.163 

900° 

0.118 

Liquid 

119°-147° 

0.235 

Molten 

0.1318 

Tantalum..  .  . 

-185°-20° 

0.033 

Didymium   .... 

0°-100° 

0.046 

58° 

0.036 

Gallium,  solid  . 

12°-23° 

0.079 

Tellurium.. .  . 

15°- 100° 

0.0483 

Liquid   

12°-119° 

0.080 

Thallium.  .  .  . 

-  192°-20° 

0.0300 

Germanium  .  .  . 

0°-100° 

0.074 

17°-100° 

0.0335 

Gold 

-185°-20° 

0.035 

Thorium  .... 

0°-100° 

0.028 

18°-990° 
Molten 

0.0303 
0 . 0358 

Tin 

-186- -79° 
19°-99° 

0 . 0486 

0.0552 

Indium 

0°-100° 

0.057 

Molten 

Iodine 

9°-98° 

0.054 

240° 

0.064 

Vapor 

0.03489 

Titanium.  .  .  . 

- 185°-20° 

0.082 

Iridium   

-186°- 18° 

0.0282 

0°-100° 

0.113 

18°- 100° 

0.0323 

0°-440° 

0.162 

Iron 

- 192°-20° 

0.089 

Tungsten .... 

-185°-20° 

0.036 

20°- 100° 

0.119 

20°- 100° 

0.034 

225° 

0.137 

Uranium 

0°-98° 

0.028 

0°-1100° 

0.153 

Vanadium.  .  . 

0°-100° 

0.115 

Molten 

0.25 

Zinc 

-233° 

0.0268 

Lanthanum   .  .  . 

0°-100° 

0.045 

- 192°- 20° 

0.084 

Lead 

-253° 

- 192°-20° 

0.120 
0.0293 

20°- 100° 
300° 

0.093 

0.104 

1.5°-100° 

0 . 0.300 

Zirconium.. .  . 

0°-100° 

0.068 

'  See  also  the  table  on  p.  201 . 


PHYSICAL  CONSTANTS 


203 


Specific  Heats  of  Metals  for  t°  Centigrade^ 

Aluminum 0 .  2220    +  0 .  00005< 

Antimony 0.04864  +  0.0000084i 

Beryllium 0 .  3756     +  0 .  00106< 

Boron 0.22         +  0.00035« 

Carbon  (under  250°) 0.1567    +0.00036/ 

Carbon  (250°-1000°) 0 .  2142     +  0 .  000166/ 

Carbon  (above  1,000°) 0.5  -  (120  -^  0 

Nickel  (up  to  230°) 0 .  10836  +  0 .  00002233< 

Potassium 0 .  1858     +  0 .  OOOOSi 

Silicon 0.17        +  0 .  00009« 

Sodium 0.2932     +0.00019/ 

Titanium 0.978      +0.000147/ 

Zinc 0.0906    +0.000044/ 

Bismuth 0.0285    +0.00002/ 

Bromine 0.105       +0.0011/ 

Copper 0.0917     +0.000048/ 

Cadmium 0.0546     +0.000012/ 

Iridium 0.0317    +0.000006/ 

Lead 0.02925  +0.000019/ 

Palladium 0.0582     +0.00001/ 

Platinum 0 .  0317     +  0 .  000006/ 

Silver  (to  400°) 0.555       +0.00000943/ 

Silver  (over  400°) 0.5758    +  0.0000044/ 

+  0.000000006/2 

Tin 0.0560    +0.000044/ 

Specific  Heats  of  Chlorides 


Chlorides 


Formula 


Range 


Specific    heat 


Ammonium  chloride 
Arsenious  chloride. . 

Barium  chloride. . .  . 
Calcium  chloride.  .  . 
Chromium  chloride. 
Cuprous  chloride.  .  . 
Lead  chloride 

Lithium  chloride..  .  . 
Magnesium  chloride 
Manganese  chloride. 
Mercurous  chloride. 
Mercuric  chloride... 
Potassium  chloride.. 

Silver  chloride 

Sodium  chloride. . . . 
Strontium  chloride.. 
Titanium  chloride.  . 

Tin  (ous) 

(ic) 

Zinc  chloride 


NHiCl 

AsCh  (solids 

AsClaCgas) 

BaCh 

CaCh 

CrCh 

CusCh 

PbCh 

LiCl 

MgCh 

MnCh 

HgCl 

HgCU 

KCl 


23°-100'=' 
14°-98.3° 
159°-268° 
14°-98° 
23°-99° 


17°-98°  . 
20°- 100° 
160°-380° 
13°-97° 
24°-100° 


AgCl 
NaCl 


SrCh 
TiCU  (solid) 
TiCl4  (gas) 
SnCh 

SnCh  (solid) 
SnCU  (gas) 
ZnCh. 


7°-99° 
13°-98° 
14°-99° 

160°- 380° 
15°- 9  8° 
13°-98° 
13°-99° 

163°-271° 
20°-99° 
14°-98° 

149°-273° 
21°-99° 


0.3908 

0 . 0896 

0.1122 

0.0896 

0.1730 

0.1430 

0.1383 

0.06511 

0.707  / 

0.2821 

0.1946 

0.1425 

0.0521 

0.0689 

0.1730 

0.0978 

0.2140 

0.1199 

0.1881 

0.1290 

0.1016 

0.1476 

0.0939 

0.1362 


'J.  W.  Richards,  "Metallurgical  Calculations." 
'  From  Hofman's,  "General  Metallurgy." 


204     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Specific  Heats  of  the  Oxides' 


Oxide 


Beryllium  oxide.  . 

Boron  oxide 

Antiiiionious  oxide 
Alumina 


Alumina 

Arsenious  oxide. 
Calcium  oxide..  . 


Chromium  oxide. 
Ferric  oxide 


Ferroso-ferric  oxide. 


Magnesium  oxide 

Magnesium  hydrate 

Manganese  oxide 

Manganese  sesquioxide.. 
Manganese     sesquioxide, 

hydrated 

Manganese  peroxide.  .  .  . 

Nickel  oxide 

Silica 


Mercuric  oxide. . 
Molybdic  oxide.. 

Lead  oxide 

Bismuth  oxide... 
Thoric  oxide. .  .  . 

Tin  oxide 

Titanic  oxide.. . . 
Tungstic  oxide.  . 
Zirconium  oxide. 
Zinc  oxide 


Formula 


Cuprous  oxide CujO 

Cupric  oxide CuO 

Columbic  oxide CbsOt 


BejOi 
BjO. 
SbjOj 
AUOs 

Al.Oi 
AssO. 
CaO 

CnO. 
FeiOi 

Fei04 

MgO 
MgCOmi 
MnO 
MnaO' 

MnjO'.HjO 
MnOi 
NiO 
SiOj 

HgO 

MoOi 

PbO 

Bi20i 

ThjOi 

SnOj 

TiOi 

WOi 

ZrOi 

ZnO 


Ferrous  oxide. . . 
Potassium  oxide. 
Sodium  oxide.  .  . 
Lithium  oxide..  . 


FeO 
KjO 
XasO 
LijO 


Range 

Specific    heat 

0°-100° 

0.2471 

IG^-aS" 

0 . 2374 

18°- 100° 

0.0927 

0°-1200o 

0.2081  + 

0.0000876t 

above  2200° 

0.5935 

13°-97° 

0.1276 

0°-t° 

0.1715  + 

0.00007t 

lO'-OO" 

0.1796 

0°-t° 

0.1456  + 

0.000188* 

0°-t° 

0.1447  + 

0. 0001884 

24°-100<' 

0.2440 

19°- 50° 

0.312 

13°-98° 

0.157 

15°-99° 

0.162 

21°-52° 

0.1760 

17°-48° 

0.1590 

13°- 98° 

0.1588 

0°-1200° 

0.1833  + 

0. 000077* 

5°-98° 

0.0518 

21°-o2° 

0.1540 

22°-98° 

0.0512 

20°-98° 

0.0605 

0°-100 

0.0548 

16°-98° 

0.0936 

0°-200° 

0.1790 

8°-98° 

0.0798 

0°-100'' 

0.1076 

0°-1000° 

0.1212  + 

0. 00003 15« 

19°-51° 

0.1110 

12°-98° 

0.1420 

0°-l° 

0.1037  + 

0 .  00007( 

0   1460(a) 

0.1390(a) 

0.2250(n1 

0.4430(a) 

('j)  Theoretical  results,  according  to  V'ogt. 

Specific  Heats  of  Sulphates 


Sulphates 


Formula 


Range 


Specific 
heat 


Barium  sulphate 

Calcium  sulphate 

Copper  sulphate 

Lead  sulphate 

Magnesium  sulphate. .  .  . 
Manganese  sulphate.  .  .  . 

Nickel  sulphate 

Potassium  acid  sulphate. 

Potassium  sulphate 

Sodium  sulphate 

Strontium  sulphate 

Zinc  sulphate 


BaSOi 

CaSOi 

CuS04 

PbS04 

MgSOi 

MnS04 

NiS04 

HKSO4 


10°-98° 
13°-98° 
23°- 100° 
20°-99° 
25°- 100° 
21°-100° 
15°- 100° 
19°-51° 
15°-98° 
17°-98° 
22°-99° 
22°- 100° 


0.1128 
0.1965 
0.1840 
0.0827 
0.2250 
0.1820 
0.2160 
0.2440 
0.1901 
0.2312 
0.1428 
0.1740 


'  J.  W.  Richards,  "Metallurgical  Calculations,"  Vol.  II. 


PHYSICAL  CONSTANTS 
Specific  Heats  of  Nitrates 


205 


Nitrates 


Formula 


Range 


Specific 
heat 


Ammonium  nitrate XHiNOa 

Barium  nitrate BafNOjIz 

Lead  nitrate Pb(X03)2 

Potassium  nitrate KN'Oj 

Silver  nitrate !  AgNOs 

Sodium  nitrate j  XaNOj 

Strontium  nitrate Sr(NOi)i 

Sodium-potassium  nitrate |  KNa(N03)j 

Sodium  nitrate  (fused) 1  N'aNOj (liquid) 

Potassium  nitrate  (fused) [  KXOj  (liquid)- 


14°-31° 
13°-98° 
•ly-lOO" 
13°-98° 
16°-99° 
14°-98° 
17°-47° 
15°- 100° 
320°-430° 
350°-435° 


0.4550 
0.1523 
0.1173 
0 . 2387 
0.1435 
0.2782 
0.1810 
0.2350 
0.4130 
0.3319 


Specific  Heats  of  Carbonates 


Carbonates 


Formula 


Range 


Specific 
beat 


Barium  carbonate ;  BaCOi 

Calcium  carb.  (calcite) ^  CaCO» 

Calcium  carb.  (aragonite) ;  CaCOi 

Calcium  carb.  (marble) CaCOi 

Calcium-magnesium  (dolomite). .  I 

Iron  (siderite) !  FeCOj 

Iron-magnesium 1  Mg7Fe2(COj)» 

Lead  (cerussite) '  PbCOi 

Potassium  carbonate I  KjCOj 

Sodium  carbonate '  XasCOj 

Strontium  carbonate SrCOa 


11° 
20° 
18° 
23° 
20° 
.  9° 
20° 
16° 
23° 
16° 


'-99° 

0.1104 

-100° 

0.2086 

'-99° 

0.2085 

>-98° 

0.2099 

'-100° 

0.2179 

'-98°  ■ 

0.1935 

'-100° 

0.2270 

'-47° 

0.0791 

'-99° 

0.2162 

'-98° 

0.2728 

'-98° 

0.1475 

Specific  Heats  of  Chromates 


Chromates 


Formula 


Range 


Specific 
heat 


Lead  chromate PbCrOi 

Iron  chromate FeCrOi 

Potassium  bichromate K2Cr!07 

Potassium  chromate KjCrOi 


19°-50° 
19°-50° 
16°-98° 
19°-98° 


0 . 0900 
0.1590 
0.1894 
0.1851 


Specific  Heats  of  Borates 


Borates 


Formula 


Range 


Specific 
heat 


Lead  biborate 

PbBjOi 

15°-98° 
18°-99° 
16°-98° 
18°-99° 

0.905 

Lead  tetraborate 

Potassium  biborate 

Potassium  tetraborate 

....    PbB.O: 

K5B2O4 

....    EjBjOt 

0.2198 
0.2048 
0.2198 

206     ME  TALLURGISTS  AND  CHEMLSTS'  HANDBOOK 
Specific  Heats  of  Bromidf.s,  Iodides  and  Fluoridks 


Bromides 


Lead  bromide. 


Potassium  bromide KBr 

Silver  bromide AgBr 

Sodium  bromide NaBr 

Cuprous  iodide Cul 

Lead  iodide. Pbli 

Mercurous  iodide Hgl 

Mercuric  iodide Hgli 

Potassium  iodide KI 

Silver  iodide Agl 

Sodium  iodide Nal 

Clarium  fluoride CaFj 

Sodiurii-aluniinum  fluoride Naj.^lFj 


Formula  Uange  ^?,eat^'' 


PbBri 


16°-98'> 

0.0532 

190°-430'' 

0.0532 

16° -98° 

0.1132 

15°-98° 

0.0739 

0.1384 

20°- 99° 

0.0819 

14°-98° 

0.0427 

17°-99° 

0.0,395 

18°-99° 

0.0420 

20°-99° 

0.0819 

15°-264° 

0 .  577 

16°-99° 

0.0868 

1.5°- 99° 

0.2154 

16°-99° 

0.2522 

Specific  Heats  of  Phosph.^tes 


Phosphates 


Formula 


Range 


Specific 
heat 


Calcium  acid  phosphate CaPiOe 

Calcium  phospo-fluoride  (apatite)  SCasPiOsCaFi 

Lead,  tribasic  diphosphate PbjPiOs 

Lead  pyrophosphate PbiPjO? 

Potassium  pyrophosphate KiPjO? 

Silver  phosphate AgaPOi 

Sodium  pyrophosphate I  NaiPiO? 


IS'-QS" 
1 5°-99» 
ll°-98° 
ll°-98° 
17°-98° 
19°-50° 
17°-98° 


0.1992 

0.1903 

0.0798 

0.821 

0.1901 

0.0898 

0.2283 


Specific  He.vfs  of  Aluminates,  Titanates,  Etc. 


.•Muminates 


I'cirttiula 


Spinel 

ChrysoberyJ 

Ilmenite 

Wulfenite 

Scheelite 

Wolframite 

Potassium  permanganate. 

Potassiun  chlorate 

Glass 

Glass,  flint 

Glass,  crown 


MgAhOi 

BeAUOi 

FeTiOj 

PbMoOi 

CaWO« 

Fe(Mn)WO« 

KMn04 

KCiOs 

Ca.K.SiOj 


15°-47° 
0°-100° 
15°-50° 
15°-50° 
15°-50° 
15°-50° 
15°- 15° 
10°-100° 
14°-99° 
10°-50° 
10°-50° 


0 . 1940 

0 . 2004 

0.177 

0.083 

0.097 

0.098 

0.179 

0.210 

0.1977 

0.177 

O.lGl 


Compound  Sulphides 


Sulpliidc- 


CuaFeSj 
PbCuSbSj 
CoAsS 
CuFeSi 
FeAsS.... 
AgsAsSi 
AgsSbSi 
Tetrahedrite CuiSbjS; 


Bornite 

Bournonite.  . 
Cobaltite.  . .  . 
Chalcopyrite. 
.Mispickel.  .  .  . 
Proustite,  .  .  . 
Pyrargyrite. 


Formula 


10°- 100° 
10°- 100° 
15°-99° 
14°-98° 
10»-100» 
100-100° 
lOO-lOO" 
10°- 100° 


0.1177 
0.0730 
0.0991 
0.1310 
0.1030 
0.0807 
0.0757 
0 . 0987 


PHYSICAL  CONSTANTS 

Specific  Heats  of  Sulphides 


207 


Sulphides 


Formula 


I      Range 


Specific 
heat 


Antimony  sulphide. 
Arsenic  sulphide. . . . 
Arsenic  sulphide. . . . 
Bismuth  sulphide. . 
Cobalt  sulphide.  .  .  . 
Copper  sulphide. . . . 


Ferrous  sulphide 

Iron  sulphide 

Iron  pyrites 

Lead  sulphide 

Manganese  sulphide. .  . 

Mercury  sulphide 

Molybdenum  sulphide. 

Nickel  sulphide 

Silver  sulphide 


Zinc  suluhide ZnS 

Stannous  sulphide SnS 

Stannic  sulphide j   SnSj 


15°-98° 
13°-98° 
12°-95° 


0 . 0840 

0.1111 

0.1132 

0 . 0600 

0.1251 

0.1212 

0.1126  + 

0.000094 

0.1357 

0.1602 

0.1301 

0.0509 

0.1392 

0.0512 

0.1233 

0.1 2S1 

0.0746 

0.0685  + 

0 .  00005« 

0.1230 

0.0837 

0.1193 


Specific  He.\ts  of  Arsenides  and  Antimonides 


Antimonides 


Formula 


Range 


Specific 
heat 


Domeykite CusAs 

Dyscrasite AgaSb 

Lollingite FeAsj 

Smaltite ;  CoAss 


100-100° 
10°- 100° 

10°-100° 
10^-100= 


0 . 0949 
0.0558 
0.0864 
0 .  08.30 


Specific  Heats  of  Silicates 


Silicates 


Formula 


Range 


Specific 
heat 


Aluminum  silicate  ftopaz) 

Al-calcium  silicate  (anorthite)..  . 

Al-beryllium  silicate  (beryl) 

Al-potassium  silicate  (microcline) 
Al-potassium  silicate  (orthoclase) 
Calcium  silicate  (wollastonite).... 

Ca-magnesium  silicate  (diopside) 

Ca-magnesium    silicate     (mala- 
colite) 

Iron  silicate  (fayalite) 

Iron-aluminum  (garnet) 

Magnesium  silicate  (enstatite).. 


Magnesium  silicate  (olivine) . 
Zirconium  silicate  (zircon) . . . 

Basalt 

Bessemer  slag 

Granite 


AhSKFIOs 

CaAhSiaOa 

CaAl!Si208 

BeAhSi208 

KAlSisOs 

KAlSisOs 

CaSiOs 

CaSiOs 

CaMgSiiOt 

CaMgSiiOs 

CasMgSiiOij 

Ca3MgSi40i2 

Fe2Si04 

FesAhSisOi; 

MgSiOj 

MgSi03 

Mg2Si04 

ZrSi04 


12° 

0°- 

0° 

j   12°- 

20°- 

20°- 

0°- 

0°- 

I     0°- 

I     0° 

I     0°- 

I     o°- 

!   16°- 

0° 

0°- 

0° 

15° 

20° 

14° 

20° 


-100° 

■100° 

-1200° 

-100° 

-100° 

-100° 

-100° 

-1200° 

-100° 

-1200° 

-100° 

-1200° 

-100° 

-100° 

-100° 

-1200° 

-100° 

-100° 

-470° 

-99° 

-524° 


0.1997 

0.189 

0.294 

0.2066 

0.197 

0.1877 

0.179 

0.288 

0.194 

0.281 

0.186 

0.264 

0.170 

0.1758 

0.206 

0.301 

0.2200 

0.1456 

0.1990 

0.1691 

0.2290 


208     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Specific  Hkat  of  Wateu^ 

(Defining  specific  heat  at  0°  to  1°C.  as  unity) 


TemrKjra- 

ture, 

deg.  F. 

Specific 
neat 

Tempera- 
ture, 
deg.  F. 

Specific 
heat 

Tempera- 
ture, 
deg.  F. 

Specific 
heat 

32 

1.0000 

176 

1.0089 

320 

1.0294 

50 

1.0005 

194 

1.0109 

338 

1.0328 

68 

1.0012 

212 

1.0130 

356 

1.0364 

86 

1.0020 

230 

1.0153 

374 

1.0407 

104 

1.0030 

248 

1.0177 

392 

1.0440 

122 

1.0042 

266 

1.0204 

410 

1.0481 

140 

1.0056 

284 

1.0232 

428 

1.0524 

158 

1.0072 

302 

1.0262 

446 

1.0568 

Specific  Heat  of  Water 

(Defining  specific  heat  at  16°  to  17°  as  unity^i 


Tempera- 
ture, 
deg.  C. 

Specific 
heat 

Thermal 
capacity, 
0°  -  t° 

Tem- 
perature, 
deg.  C. 

Specific 
neat 

Tlicrmal 

capacity, 

0°-.° 

0 

1.00940 

0.00000 

25 

0.99806 

25.05131 

1 

1.00855 

1.00898 

26 

0.99795 

26.04932 

2 

1.00770 

2.01710 

27 

0.99784 

27.04720 

3 

1.00690 

3.02440 

28 

0.99774 

28.04499 

4 

1.00610 

4.03090 

29 

0.99766 

29.04269 

5 

1.00530 

5.03660 

30 

0.99759 

30.04031 

6 

1.00450 

6.04150 

31 

0.99752 

31.03786 

7 

1 . 00390 

7.04570 

32 

0.99747 

32.03536 

8 

1.00330 

8.04930 

33 

0.99742 

33.03280 

9 

1.00276 

9.05233 

34 

0.99738 

34.03020 

10 

1.00230 

10.05486 

35 

0.99735 

35.02757 

11 

1.00185 

11.0.5694 

36 

0.99733 

36.02491 

12 

1.00143 

12.05858 

37 

0.99732 

37.02224 

13 

1.00100 

13.05980 

38 

0 . 99732 

38.01956 

14 

1.00064 

14.06062 

39 

0.99733 

39.01689 

15 

1.00030 

15.06109 

40 

0.99735 

40.01422 

16 

1.00000 

16.06124 

41 

0.99738 

41.01159 

17 

0.99970 

17.06109 

42 

0.99743 

42.00899 

18 

0.99941 

18.06064 

43 

0.99748 

43.00644 

19 

0.99918 

19.05994 

44 

0.99753 

44.00395 

20 

0.99895 

20.05900 

45 

0.99760 

45.00152 

21 

0.99872 

21.05783 

46 

0.99767 

45.99916 

22 

0.99853 

22.05645 

47 

0.99774 

46.99686 

23 

0.99836 

23.05490 

48 

0.99781 

47.99464 

24 

0.99820 

24.05318 

49 

0.99790 

48.99250 

25 

0.99806 

25.05131 

50 

0 . 99800 

49.99045 

»  From  "The  Petroleum  Year  Book,  1914. 


PHYSICAL  CONSTANTS 

Mean  Specific  Heats  of  Gases 


209 


Air.  20°C 

Ammonia 

Bromine,  19°-388° 

Carbon  dioxide,  0° 

Carbon  disulphide,  86°-190 

Carbon  monoxide,  23°-99° 

Chlorine 

Hydrogen 

Methane 

Nitrogen,  0°C 

Nitrous  oxide 

Oxygen 

Sulphur  dioxide 

Water 

Hydrochloric  acid 

Acetylene 

Argon,  20°-90°C 
Iodine,  206°-377°C 
Nitric  oxide,  13°-172' 
Nitrogen  peroxide,  27°-6 
Sulphuretted  hydrogen,  20°  -206' 

Ethane 

Ethylene 

Benzene,  34°-115°. .  . 
Turpentine,  179°-249 


MoLECrLAR  Specific  Heats  (Le-n-is  &  Randall) 

These  are  the  ordinary  specific  heats  multiplied  by  the  molecular  weight  of 

the  gas 
N2,   O2,   HCl.  HBr,  HI,  Cp  =  6.5  +  O.OOlOf 
Hj  Cp  =  6.5  +  0.0009(. 

CU.  Brj,  I2,  Cp  =  6.65  +  0.004r 
HjO,  HjS      Cp  =  8.81  +  0.0019/  +  0.0000222^ 
CO2,  SO2       Cp  =  7.0    +  O.OOnt  +  0. 0000018/2 

Specific  Heat  of  Gases^ 

(Calories  per  gram  of  gas  at  /°C.  (absolute  temperature  =  t  +  273)) 


According  to 
Richards 


According  to 
Damour 


Nitrogen  (to  2000X.) 0 . 2-105  +  0 .  0000214* 

Nitrogen  (2000°-4000°C.) ...    0 .  2044  +  0 .  000057/ 

Oxygen  (to  2000°C.) |  0.2104  +  0.0000187/ 

Oxygen  (2000°-4000°C.) j  0 .  1788  +  0 .  00005/ 

Water  vapor I  0.42      +  0.000185/ 

Carbon  dioxide '0.19       +  0.00011/ 

Sulphur  dioxide 0.125    +  0.0001/ 

Carbon  monoxide 0.2405  +  0.0000214/ 

Hydrogen I  3 .  37      +  0 .  0003/ 

Methane i 

Hydrogen  (2000°-4000°C.) .  .    2.75       +0.0008/ 


0.2438  +  0. 00002 14t 


0.2135  +  0.0000187« 


0.447    +0.000162/ 
0.194    +0.000084/ 


0.2438  +  0.0000214/ 
3.412     +0.000300/ 
0.381     +0.0000234/ 


>  Somebm£ier's  "Coal." 
14 


210     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Table  op  Mean  Specific  Heats 

Calories  per  gram  of  gas 


Rid 

ards 

Damour 

Lewis  &  Randell 

©"-SOO" 

0°-1000° 

O'-SOO" 

0°-1000° 

O'-SOO" 

O'-IOOO" 

Nitrogen 

0.247 

0.262 

0.250 

0.265 

0.247 

0  .  259 

Oxygen 

0.216 

0.229 

0.219 

0.232 

0.216 

0.227 

Carbon    di- 

oxide  

0.223 

0.300 

0.219 

0.27S 

0.219 

0.248 

Water  vapor. 

0.476 

0.605 

0.497 

0.610 

0.469 

0.512 

Carbon    mon- 

oxide  

0.247 

0.262 

0.250 

0.265 

0.247 

0.260 

Air 

0.240 

0.257 

0.247 

0.258 

0.240 

0.252 

Sulphur   di- 

0.155 
3.460 

0.225 
3.670 

0.150 
3.41 

0  170 

Hydrogen..  .  . 

3.502 

3.712 

3.57 

0 .  723 

0.986 

1 

Specific  Heat  of  G.^sk.s,  By  Volume* 


Cal.  per  eu.  m.  of 
gas,  per  deg.  C. 


Lb.-cal.  per  cu.  ft. 
of  gas,  per  deg.  C. 


Nitrogen 

Water  vapor 

Carbon  dioxide.  .  . 
Carbon  monoxide. 
Sulphur  dioxide.  . . 

Hydrogen 

Hydrogen  (2000''-4000'') . 


0 .  303     -f  0 .  000027« 
0 .  34       +  0 .  00030/ 
0.37       +  0 . 00044< 
0.2575  +  0.000072/ 
0.444     -1-  0 .  00054/ 
0 .  303     +  0 .  000027/ 
0.2575  +  0.000072/ 


0.0189  -I-  0.0000017/ 


Oxygen '  0.303     +  0.000027/ 


0.0189  +  0.0000017/ 
0.0161  +  0.000004  5/ 
0.0189  +  0.0000017/ 


Total  Heat  Contained  at  Melting  Point  of  Metals' 

The  heat  is  expressed  in  calories  necessary  to  heat  1  gram 
of  the  metal  to  its  melting  point  from  0°C.  The  latent  heat 
of  fusion  is  then  the  difference  between  the  heat  in  the  solid  and 
that  in  the  liquid  phases. 


Flon.onf                 Melting              Heat  in               Heat  in             Latent  heat 
i^iemeni                  ^^.^^^^                   ^^U^                  ,j^^jj                 ^^  ^^^j^^ 

Aluminum 

Alumina 

Antimony 

Bismuth 

Cadmium 

Gofr.: :::::: 

625.0 
2200 . 0 
632.0 
267.0 
321.7 
1085.0 

158.3 

882.0 
34.1 
9.0 
18.81 

117.0 
34 .  03 

.300.0 
11.6 
64.8 
75.2 
14.34 
45.2 

258.3 

933.0 
74.3 
21.0 
31.83 

162.0 
50.93 

369.0 
15.6 
89.15 

102.4 
28.16 
67  8 

100.0 
51.0 
40.2 
12.0 
13.02 
45.0 
16.3 

Iron 

1450.0 
326.0 
962.0 

1775.0° 

69.0 

]>ead 

4.0 

Palladium 

Platinum 

Tin 

24.35 

27.2 

13.82 

Zinc 

420.0 

22.6 

'  J.  \V.  RicH.\RD3,  "  .Metallurgical  Calculations." 


PHYSICAL  CONSTANTS 


211 


Total  Heat  Contained  in  Certain  Silicates  when 
Melted^ 


W.S 


Magnesium  silicate  (olivine) 

Magnesium  silicate  (enstatitel 

Potass. -alum,  silicate  (microcline).. 
Potass. -alum,  silicate  (orthoclase'> . . 
Calc.-alum.  silicate  (anorthite).  .  .  . 
Calcium  silicate  (wollastonitel .  .  .  . 
Calc.-magnes.  silicate  (malacolite) . 
Calc.-magnes.  silicate  (diopside)  . .  . 

Iron  silicate  (fayalite) 

Iron-alum,  silicate  (garnet) 


MgzSiOi 

MgSi03 

KAlSiaOs     • 

KAlSisOe 

CaAl2Si208 

CaSiOs 

Ca3lMgSi40i 

CaMgSi206 

Fe2Si04 

Fe3Al2Si30i2 


1400° 

520 

650 

1300° 

403 

528 

1170° 
1200° 
1220° 

358 

458 

1250° 

360 

460 

1200° 

319 

413 

1225° 

344 

444 

1040° 

310 

395 

1145° 

130 
125 

83 
100 
100 
100 

94 
100 

85 


In  general,  the  specific  heat  of  a  slag  (silicate)  maj'  be  cal- 
culated as  the  mean  of  the  specific  heat  of  the  constituents, 
but  a  quick  approximation  is  to  take  it  at  any  temperature  as 
being 

So(l  +  0.000780 
and  over  any  range  of  temperature  as  being 
Si(l  +  0.00039[/i  -  ti]) 
where  So  is  specific  heat  at  0°  and  Si  is  specific  heat  at  ii. 

Solubility  of  Salts  at  10°C.  and  Boiling^ 


One  part  requires  for  solution 


Cold  water   Hot  water 


Aluminum  sulphate  ( +  I8H2O) . 
Ammonium  alum  (-I-I2H2O) . . . 

Ammonium  carbonate 

Ammonium  chloride 

Ammonium  chlorplatinate 

Ammonium  nitrate 

Ammonium  oxalate 

Ammonium  sulphate 

Barium  chloride  (  +2H2O) 

Barium  hydrate  ( -|-8Aq) 

Barium  nitrate 

Boric  acid 

Bromine 

Cadmium  chloride 

Calcium  carbonate 

Calcium  chloride  (fused) 

Calcium  hydroxide 

Calcium  nitrate 

Calcium  oxide 

Calcium  sulphate  (-I-2H2O) 

Chromic  acid  (CrOa) 

Chromic  sulphate  (  +  I8H2O).  .  . 
Cobaltous  sulphate  (  +  5H20).  . 
Copper  sulphate  (  +  5H2O) 


1.052 
10.92 
4.0 
3.04 
150.0 
0.54 
22.22 
1.358 
3.00 
21.32 
12.50 
51.3(0°) 
30.0 
1.08 
Insoluble 

1.667 
600.0 
1.07(0°) 
750.0 
3.86(18°) 
0.607 
0.833(20°) 
2.9(20°) 
2.7 


0.088 
0.24 
1.5 
1.37 
80.0 
0.19 
2.45 
1.026 
1.66 
0.02 
3.11 
2  94 
31.9(30°) 
0.75 


0.649 


0.28(152°) 
1500.0 
451.0 


0.49 


'  The  table  is  compiled  from  Richard's  "Metallurgical  Calculations." 
2  Cremer    and    Bicknell's    "Chemical   and    Metallurgical    Handbook." 

For  other  tables  of  solubility  see  the  table  of  "Properties  of  Compounds," 

p.  210,  and  "Properties  of  Precipitates,"  p.  344. 


212     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Solubility  of  Salts  at  10°C.  and  Boiling.    Continued 


<  'no  part  requires  for  solution 


Cold  water   Hot  water 


Copper  acetate 

Copper  nitrate 

Ferrous  chloride  (H-4H20) 

Ferric  chloride 

Ferrous  sulphate  (  +  7HiO) 

Lead  acetate  (  +  3HiO).  . .  • 

Lead  chloride 

Lead  nitrate 

Lead  sulphate 

Lithium  chloride 

Magnesium  carbonate  (  +  3HsO) 

Magnesium  chloride  (  +  6H20) 

Magnesium  oxide 

Magnesium  sulphate  crystals 

Manganous  chloride. 

Manganous  sulphate  (-|-4HiO) 

Mercuric  chloride .  . 

Oxalic  acid 

Potassium  bitartrate 

Potassium  alum  ( +  12HiO) 

Potassium  bicarbonate 

Potassium  bichromate 

Potassium  bromide 

Potassium  carbonate 

Potassium  chlorplatinate 

Potassium  chlorate 

Potassium  chloride 

Potassium  chromate 

Potassium  cyanide 

Potassium  ferricyanide 

Potassium  ferrocyanide 

Potassium  hydrate 

Potassium  iodide 

Potassium  nitrate 

Potassium  oxalate  (acid) 

Potassium  permanganate 

Potassium  sulphate 

Potassium  sulphite ; 

Potassium  bitartrate 

Silver  nitrate 

Sodium  acetate  (+3HjO) 

Sodium  bicarbonate 

Sodium  bisulphate 

Sodium  borate 

Sodium  bromide 

Sodium  carbonate  (  +  10HjO) 

Sodium  chlorate 

Sodium  chloride 

Sodium  hydrate 

Sodium  hj'posulphite  (  +  5HiO) 

Sodium  nitrate 

Sodium  acid  phosphate  (N'ajHPOi  12HiO) 

Sodium  sulphate  (  +  IOH2O) 

Sodium  sulphite 

Strontium  chloride 

Strontium  hydrate  (+8H1O) 

Strontium  nitrate 

Stannous  chloride 

Tartaric  acid 

Zinc  chloride  (  +  2HiO) 

Zinc  sulphate  (+7HiO) 


14.28 

5.05 

0.78 

0.68 

0.63 

0.18 

1.64 

0.27 

1.00(40°) 

0.5 

105.0 

20.0 

2.07 

0.72 

12,500 

1.24 

0.7 

552(16°) 

0.6 

0.27 

50,000 

3.17 

1.25 

1.61 

0.81 

0.79 

1.07 

15.22 

1.85 

8.69 

1.00 

244.0 

16.4 

10.50 

0.28 

3.0 

10.0 

1.06 

1.76 

0.98 

0.91 

0.64 

89.3(20°) 

19.3 

16.58 

1.66 

3.13 

1.77 

1.64 

1.22 

0.82 

2.73 

1.29 

3.4(15°) 

1.1 

0.50 

0.7(20°) 

0.5 

4.74 

0.4 

40.0 

10.0 

16.0(16°) 

10.31 

3.82 

1.00 

250.0 

9.52 

0.4(19°) 

0.09 

4.0(6°) 

1.7(48°) 

10.0 

3.5 

21.5 

1.82 

1.13 

0.87 

1.61 

0.4(30°) 

1.0(20°) 

0.49 

2.78 

2.53 

1.64 

0.6 

1 .  14(20°) 

0.56 

6.7(15°) 

0.4 

4.34 

0.32(33)° 

4.00 

1.00 

2.07 

0.98, 

55.5(20°) 

2.1 

1.82 

0.99 

0.37 

1.31 

0.50 

0.25(15°) 
0.72 

0.15 

PHYSICAL  CONSTANTS 


213 


Solubilities  of  Solids  in  Water 

S  =  number  of  grams  of  anhydrous  substance  which  when 
dis.solved  in  100  grams  of  water  make  a  saturated  solu- 
tion at  the  temperature  stated. 

p  =  number  of  grams  of  anhydrous  substance  per  100  gram^ 
of  saturated  solution. 


Substance 


0°C.  i   10 


15 


80 


100 


Am.  chlor.,  NH4CI,  S.. . 
Barium  chlor., 

BaClr2H20,S 

Barium  hydrate, 

Ba(OH)2-SH20.  S.... 
Bromine  (Hquid),'  Br.,  S 
Cadmium  sulphate, 

CdS04-?sH20,  S 

Calcium  hydrate, 

Cai.OH)j,S 

Copper  sulphate, 

CuS04oH:0,S 

Lithium  carbonate, 

Li2COs,  5 

Mercuric  chloride, 

HgCh,  p 

Potass,  chloride,  KCl,  S 
Potass,  bromide,  KBr,  S 
Potass,  iodide,  KI,  S.  .  . 
Potass,  hvdrate, 

KOH-2H20,  S 

Potass,  nitrate,  KNO3.S 
Silver  nitrate,  AgXOa,  S 
Sodium  carbonate, 

NaaCOslOHjO,  S.... 
Sodium  chloride, 

NaCl,  S 

Sodium  sulphate 

KajSOi-lGHiO,  S 

Strontium  chloride, 

SrCl2-6H20,  S 


29.4 

31.6 

1.67 
4.17 

76.5 

0.185 

14.3 

1.54 

! 

3.50   ' 
27.6 
53.5  , 
127.5 


33.3 

33.3 

2.48 
3.74 

76.0 

0.176 

17.4 

1.43  ! 

4.50 
31.0 

59.5  ; 

136.0 


35.2 

34.5 

3.23 
3.65 

76.3 

0.170 

18.8 

1.38 

5.00  ' 

32.4  I 

62.5  ; 
140.0 


37.2 

35.7 

3.89 
3.58 

76.6 

0.165 

20.7 

1.33  ! 

5.40 
34.0  , 
65.2 
144.0 


97.0 
13.3 
122.0 

103.0 

20.9 

170.0 

107.0 

25.8 

196.0 

112.0 

32.0 

222.0 

7.0 

12.5 

16.4 

21.5 

35.7 

35.8 

35.9 

36.0 

5.0 

9.0 

13.4 

19.4 

43.0 

48.0 

50.0 

53.0 

45.8 

40.7 

8.22 
3.45 

78.5 

0.141 

28.5 

1.17 

9.30 
40.0 
75.5 
160.0 
I 
138.0S 
64.0  i 
376.0 


55.2    65.6 


46.4 
20.94 


83.7 


52.4 
101.4 


77.3 
58.8 


70.2J  160.77' 


0.116  0.094  0.077 


40.0 

1.01 

14.0 
45.  5 
85.5 
176.0 


75.0 


0.850  0.720 

23.1    38.0 
51.1     56.7 
95.0    104.0 
192.0  208.0 


...il78.0» 
110.0  169.0  246.0 
525.0  669.0  952.0 

I  I 

46.0<,45.8<  45. 5« 


46.1* 

I 
36.6  I37.O    38.0 

49.0* 

65.0 


45.05 
82.0 


44.05 
91. 0« 


39.0 
42.  OS 
101. 0« 


The  above  formulas  are  those  of  the  solid  phases  that  are  in 
equilibrium  with  the  solution.  The  figures  are  from  Seidell's 
"Solubilities  of  Inorganic  and  Organic  Substances."  D.  Van 
Nostrand  Co.,  New  York. 


•  Very  soluble  in  ammonium-acetate  solution. 

'  SoUd  phase  becomes  CdSOi-HiO  at  74°. 

»  Becomes  KOH-32H20  at  32.5°  and  K0H-H20  at  50^ 

«  Becomes  Xa2C03-H20  at  35°. 

»  Becomes  Xa2S04  at  32.38°. 

«  Becomes  SrClr2H20  at  70°. 


214     METALLURGISTS  AND  ClIEMISTS' HANDBOOK 


Solvents  for  Metals 

Gold  Aqua  regia. 

Platinum  Aqua  regia. 

Silver  HXO3.  boiling  H2SO4. 

Lead  HN'Oa,  boiling  concen.  HjSO*  slightly. 

Mercurv  HNO3,  boiling  H2SO4. 

Bismuth  HXO3. 

Copper  HNO3. 

Cadmium  HXO3. 

Arsenic  Aqua  regia,  HNO3  to  oxide. 

Antimony  Aqua  regia,  HXO3  to  oxide. 

Tin  HCl,  HXO3  to  oxide. 

Iron  HCl,  dilute  H2SO4,  not  bv  cone 

Aluminum  HCl,  HNO3,  HjSO*,  alkalis. 

Nickel  HXO3 

Cobalt  HXO, 

Manganese  HCl. 

Zinc  HCl,  HXO,,  H2SO4,  alkalis. 

Tungsten  HXO,  containing  HF;  fused  KXO2 

In  Dilute  Solution  (Fifth  Normal  or  More  Dilute)' 

1.  Copper  is  acted  upon  by  cold  dilute  hydrochloric  acid  to  a 
much  greater  extent  than  by  sulphuric  or  nitric  acids.  Each  of 
the  last-named  acids  attacks  the  metal  to  about  the  same  extent. 

2.  Aluminium  is  slowly  attacked  by  dilute  nitric  acid  and 
sulphuric  acid. 

3.  Lead  is  more  rapidly  attacked  by  hydrochloric  acid  than 
bj'  sulphuric  acid,  the  action  of  the  latter  acid  being  negligible. 

4.  Tin  is  soluble  in  caustic  soda  and  in  sodium  carbonate 
solution,  but  not  in  ammonia. 

Action  of  Acetylene  upon  Metals  {Chem.  Zeii.,  1915,  89,  42). 
— In  acetylene  installations  explosions  have  sometimes  occurred 
which  have  been  attributed  to  the  formation  of  explosive  com- 
pounds of  acetylene  with  the  metal  of  the  fittings.  In  a  series 
of  experiments  it  was  found  that  pure  dry  acetylene  in  contact 
for  20  months  with  the  following  metals  had  no  action  upon 
them:  zinc,  tin,  lead,  iron,  copper,  nickel,  brass,  German  silver, 
phosphor  bronze,  aluminum  bronze,  tj'pe  metal,  solder.  With 
pure  moist  acetj'lene  nickel  and  copper  were  both  attacked. 
Unpurified  moist  gas,  as  obtained  in  the  ordinary  way  from  com- 
mercial carbide,  had  no  appreciable  action  on  tin,  German  silver, 
aluminum  bronze,  type  metal  or  solder,  but  hadadi-stinctaction 
on  zinc,  lead,  brass,  much  more  on  iron  and  bronze,  and  still 
more  on  phosphor  bronze,  while  the  action  on  copper  was  very 
rapid;  but  it  is  stated  that  in  no  case  were  explosive  substances 
produced.  It  is  recommended  that  metal  fittings  used  in  con- 
nection with  acetylene  should  be  coated  with  nickel  or  tin. 

'  A.  J.  Hale  and  H.  S-  Foster,  Journ.  Soc.  Chem.  Ind.,  May  15,  1915. 


PHYSICAL  CONSTANTS 
Solubility  of  Air  in  Water  • 


215 


1000  cc.  of  water  saturated  with  air  at  760  mm.  pressure 
contain  the  following  volumes  of  dissolved  gas  (calculated  to 
volume  at  0°C.  and  760  mm.). 


Temperature  of  water 


10°     15°  I  20°  j  25°  ,  30° 


Oxygen,  cc 10.19 

Nitrogen,  argon,  etc 19.0 

Sum  of  above,  cc 29 . 2 

Per  cent,  oxygen  in  dissolved  air  (by  ; 
volume) '34 . 9 


8.9|  7.9  7.0  6.4  5.81  5.3 
16.8  15.0  13.5  12.3'll.3ll0.4 
25. 7  22. 8  20. 5' 18. 7  17.1  15. 7 

I  I  I  I 

34.7  34.534.2  34.0  33.8  33.6 


Solubility  of  Sulphur  Dioxide  ix  Water 

(760  mm.  pressure') 


Temperature  of  water,  deg.  C.  ■ 
SO-2,  per  cent,  dissolved 


20   I   30  j   40   I   50   I   60      70  j   80      90     100 
5.6   17.4    6.1    [4.9    3.7  |2.6   jl.7  |o.9     0.0 


Solubility  of  Gases  in  W.\ter 

(760  mm.  pressure') 


Volumes,       Volumes,   ,   Volumes,   ,    Volumes, 
0°C.        :        15°C.       j       30°C.  60°C. 


Oxygen 

Nitrogen 

Carbon  monoxide. 
Carbon  dioxide.  .  . 


0 . 0489 
0.02388 
0.03537 
1.713 


Ammonia 11300.0 


Argon. . . 
Chlorine. 
Helium. . 


0.058 


Hydrogen 

Hydrochloric  acid 

Nitrous  oxide 

Nitric  oxide 

Sulphuretted  hydrogen. 

Sulphur  dioxide 

Acetylene 

Hydrobromic  acid 

Air 

Bromine 


0.0150 
0.0215 
506.0 


0.03415 
0.01686 
I     0.02543 
1.019 

802.0 

0.041 
i      2.63 
j     0.0139 

I     0.0188 

458.0 
0.74 
0.0515 
3.05 

47.3 

1.15 
581.0 
0 . 02045 
28.4 


0.019 
0.0100 
0.015 
0.36 


In  the  majority  of  the  above  cases  the  gases  are  in  equilibrium  with  the 
water  at  760°  mm.  pressure. 

'  K.^YE  and  L.*.by's  "Chemical  and  Physical  Constants." 
-  Hofman's  "General  Metallurgy." 
*  Compiled  from  various  authorities. 


210  METALLURGISTS  AND  CHEMLSTS"  HANDBOOK 


u 

go 

X 

—    . 

a 

*c 

y 

d 

< 

t!0 

CO 

U 

! 

3 

" 

00 

s 

■-« 

•^ 

-    (B 

. 

o     o 

as 

"o 

O 

o     o 

a 

o 

o 

•^     .  •^ 

o 

'o'c 

— 

- 

»    X 

— 

r 

r- 

o~» 

JS-^- 

•2 

< 

w     d 

1 

i. 

c 

X 

o 

o     o 

d 

■"  o 

o 

.o   .o 

o  ^ 

oQi-t  eof-i 

^    O    »    K 

C3 
C. 

•-4  e8 

OD    X  — — <    X    X 

O  ^  •   J^   .••■^ 

T. 

o 
z 

D 

•^  S 

J- 

ci 

>ii>i^ 

aj  "*  **  "* 

>> 

c 

l-*^ 

M       X 

Q 

o 

a 

"5 

2 

3 

11 

g§ 

.SoSSb         § 

o 

o 

■So 

.„ 

X  ^•— -—    X    * 

.« .^  "■ 

T!7!  * 

^  — -"  — — i§aoa!ib« 

o 

w 

6           '" 

ir 

?T 

XO) 

>-;^^t::.^g>>><^ 

^ 

t^ 

X 

OS 

f 

t~  r^  «  -o  Q             o 

o               o 

i; 

■<1"    •    • 

to     ■ 

< 

♦jd 

.-■: 

£ 

c 

2 

a 

c; 

t 

T3 

1 

"^ 

c 

_C 

^ 

» 

o 

< 

a 

■ 

d 

d 

X 

dS  dd 

°£d 

CUi 

•- 

^"O 

o 

r-  M 

o 
«-1 

c 
c 
c 

i> 

d 

B 

o  i£  1  § 

1  Ss 

2 
0. 

"o 

■s  ? 

w 

CSX 

o 

1 

o 

'^  o  '3  w  ;^ 

s 

"^ 

CI 

c 

a 

8/    _    O    O 

QxQQ 

|Iq 

oc 

s 

t 

:^ 

o 

M 

-r 

r 

M 

~)  :cx 

h 

5"  SB 

1 

o 

U5 

"!".r 

o 

~, 

CO 

•."s  ox 

b. 

'J 

w 

M 

?3  WM 

•I- 

— 

CJ 

—  COM 

ri 

■■C  X>       CI  o  c 

■fl.ir 

^C 

t^r». 

X  -i  X  S  O  X  •>!•  ■-•5  tt  CO 

m 

a 

* 

"3- 

.   t-i 

ao  "C  —  «  »  u- 
d  —  -r  *  •--:  - 

MCIT 

OC50-^■OCCC»^3 
c^t^-.orc-*;£Ki.i'*x 

H 

CJ 

C?1C 

t~'.'^  •^ 

*ociCiic*»Tcrcrc-rc: 

<< 

^  ^O 

z-i  ri          i--:  -^ 

-.  — i;; 

^ 

T'^ 

n              ^  -1          —  — 

cl 

c 

C 

C 

s= 

C 

^ 

_2 

r5 

s 

"a 

r- 

B 

o 

=    ^2-2 

c   6   Sx        1 

1^"  w  X 

62:6z66:zzz2: 

5 

--^  C^  ^-^          '-'-  Nf- 

Iz? 

a 

s 

t 

CS 

c 

c 

s 

6 

a 

3  -, 

C3 

s 

B 

S-S 

a 

eS 

o  o  o  o    • 

—.2 

S  c  -  i  ;:  'i 

Cj    cJ 

J^ 

^!s'=  -  -  ^ 

.M      O 

« 

•^  c 

•^   £ 

(S 

=  .■=  =.s  c.S.'Hs  a,'  a 

■f. 

'- 

i'i  §^:c'^ 

'S  _E~ 

■       |I 

ifJI 

IHJJ2£-|:h| 

^ 

^ 

- 

-Z 

" 

- 

■A 

■I. 

< 

<'^ 

< 

c 

ff 

C 

C 

C 

C 

^ 

►^ 

r^ 

PHYSICAL  CONSTANTS 

217 

"        a     03 

« 

d 

o 

KOO^    ^ 

c 

^  Co 

B   00 

> 

5"= 

. ':u 

hM 

c=as>»s 

s 

j< 

Mffi 

1 

"z: 

aj 

oiii-^       ^ 

1 

"c 

1  1 

"" 

J 

•- 

> 

>•      i    i 

» 

;^ 

c 

^ 

o 

.^.^  C^r-t 

.^"^           00 

'" 

"^ 

CQ 

^«j 

O      ~ 

n 

c 

d    o 

o 

dd     dd                     d 

dddd 

o    S,.; 

E£     =S               „      £ 

EEEE 
o  o  o  o 

S  "  "  > 

►1:      > 

t  o  _•  c  t;                                t 

O   C    O   t) 

^  >-l-H 

r* 

o  ai—  o  cj                              c. 

1)  o  0)  m 

Q    S5 

O 

CQOQQ                     C 

QQQQ 

o 

o 

2aoo 

oc 

o     o 

ddS  dd              o     d 

c 

dddd 

..  gOOi-', 

Cir 

o     o 

£  =  ••££              <=     £ 

c 

EEEE 

o  c  o  o 

rH  T- 

i-t         tH 

o  o°  0  0  — —  — .-.'^—  c 

CCiH        lO        N 

LI 

O  w   c  o 

C   C    0/   o 

c 

i>         ZD 

QQ     QQ                SS     Q 

QQQQ 

d 

^ 

M 

o 

C 

Oj 

a 

d 

di 

£ 

^  ■■"  °^    ^  £ 

£ 

^  E 

E  £ 

c; 

a 

o   •r--H?;.i: 

M  o 

ocgro^)! 

3 

!/)  c-i  1  o  (N  -t; 

(NO    1  TfiN-g 

^  § 

lN«-0  0 

■o 

^ 

!N  S 

C^)^        '^ 

o 

CI 

3 
V. 

1 

a 

Q 

Qx 

c 

o 

X 

C^  -tJ 

da     d 

.  C 

=;  =3      c3      a 

11  _ 

^  d 

Decom 
Docom 

152 
Decom 

.  £ 

L^                C,    C          CJM    C 

c 

e 

a) 

Ifl 

o.= 

o 

_£ 

_£ 
2 

A 

irjX    •» 

•  c 

■  s. 

2:s 

1 

3 

1        tf«    «    Q 

1 

1     1  '^ 

X 

X 

■C! 

'■'!•. 

■* 

•M  —1 

•  '-Z 

t^ 

IN 

•o 

lOt^miN 

^ 

IT 

-.=  orco 

.  1  t^t»ioir5 

•  o 

t^ 

h- 

xco  1  o;o 

o 

t- 

1^ 

tr  c^r^co 

■  Tj.      .      .      . 

.    -r^    •    . 

■K 

Tfl 

-*  CM       ■  Tj.  o 

n 

■* 

CCMKl  T* 

■M 

CO 

"5  JJSS     cc 

-.cx 

lO  c^c^ 

cooMO     -^M     mooct- 

tc 

■•£. 

(Nt- 

C<lTf  CDCM 

c^c- 

-H««(N 

O  O  C4  c:  o  o  -o  •*  f~  iC  o  ■<* 

c- 

a- 

C:!N 

t^roc-.i^ 

u-j  a:  o  •*  N  IN 

•^K 

c>)«:do 

oii^rootcxoootC'^x 

■<* 

■* 

dc 

T)lrt  rt  lO 

T)-~3  XOTfM 

•*•* 

«i.';t^(N 

"-TOtNONXC^MOlNI^-^ 

t>. 

t~- 

IN  — 

—  X^JO 

cira         '-I'-i 

to-* 

'"'          '^ 

COMr-nCNClCCCCI'iN— iM 

c<i:<: 

CC-Hrt-^ 

O 

Si      ffi  , 

o 

wO         -,- 

•— '      ^ 

OS     cs: 

^^C 

^   z' 

,  Szz^ 

J 

«1oo03 

2a^ 

o 

§2-^Z32 

£5s^S9^9^d§S 

Ox 

HCf^^ 

zSzzSS 

zdz 

ax 

X  X  X  X  X  X  X 

jAa 

a. 

.     < 

3 

-r 

<-?<-? 

JS 

s> 

a. 

>. 

6 

n 

o 
6^5 

a 

E    ^ 

:  d  1 
:  '5  S 

3  „•  J 

s 

6     ~ 

"—  >.  > 

o  c 

.,• 

o-o  a 

(u-z—  Q 

4. 

OD   O   09  g5 

gil^^l 

•5 

s  >-  5  § 

':ii 

-*j 

« 

;t 

§:52:2^ 

|i 

0 

2 

2 

O 

i^ 

^    S 

tfu'Jl 

X 

< 

e 

O 

s 

O 

3  : 

^ 

> 

c 

> 

X 

=  o 

> 

O 

1 

X 

-is 

^ 

T 

21^  METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


I 

2 

u 
c3 

a 
o 

"3 

B 

2 

u 
eS 

a 

3 
X 

s 
< 

S 

0 
Z 

K 
1 

X 

SB 

1 

2: 

X 

OS 
KZ 

a 

00    X 

a 

a 

0 
X 
1 

X 

« 

§■00 

<  d 

0 
0 

d 

OS   tt 

- 

2         —  -g 

TO                   «... 

0      •        ^ 

0 

- 

d 

= 

c  — 

c 

0 

Q 

dp           -  0     00     d 
go        oo-<     00      = 

• — «::-  *2«7:T:r=^  ?- 

oCJ          0"-r^>.':-r       i 

0  '1'          ■  •  X  0      C-.  a:      -? 

so 

0 

2        .       §  . 

•• —  «     00-  >• 

CO                    a 

d 

E 

0  — 
0 

G 

—              0 

d        S                 _    Sio 

g     0         0—  oo?J 

£^c^     1-1  ..oosro-H 

l-t         .          CO    •    -w 

0             oco 

I'll 

LI 

1 

s 

d2 

Etc 
0  = 

Is" 

3 

3 

CO 

1 

d 

c 
5 

a 

Q 

dddd    Sddgd 
ocSo      so5*iS 
CCQQ    ^CC     - 

IC  —  -0       0-*     .t^-rt-h. 

a    '. 

ft 

'J' 

eo     00  w 

t^      .      .      . 

• 

cc  -^        •  M    •  •*  -I"'  ?;  i~ 

M  C  X  X       •,£ 

0  0  —  C5        C 

t^  •*  C  t^       tt 

or 

xr~c>iO     e^«-»<      Ocot~c<;t»      M •v « 0 r- -•  c«;  c:  c^ 

"a 
o 

Si 

X 

0 

S  3  3 

-2 

OC 

«    Ox 

3        3  3 

5!c55!        cS=!e!c!!ao!e5<ScS 

era    cQafflccccmcaBccQ 

u 

c 
a 

■7. 

t 

CI 

"5 

'x 

•z 
0  r 

_» 

c 

c 

.^ 

^ 

X 

a 

c. 

_c 

"p 

0 

T 
■7. 

■E 

a 

a 

c 

d 

0 

II 

0= 

_c. 

c 

a 

Z 

J; 

c 

c 

■ft 
2 

PHYSICAL  CONSTANTS 


219 


Sk 


1^' 


^  ^  DQ 


Sa 


O  0) 


O   !*  X 

Q     ° 


S     E 

0.«  O". 


Q    P 


ca 
'-'®  H  S 
=-)'«'  o  o 

"  ••  c^  c 

f-lt-c    ^    4) 

QQ-: 


^„„     o 


.D  — 


E  o. 
.n  o 


-hO     g-H      ©US 

oo  ?;t^  oc^ 


A         Q 


lOl^'s   31-010 


o-< 

INI- 

MiO 


£U3 


i-oo  oo 

■-IC5     o'-* 


ooo 
•  I 


05          ■ 

1.43 
1.83 
2.69 
1.35 

00  OS 

(NM 

0S'*05      ■ 

o    1  •*     • 
•  t—     •     • 

00     •■*     • 

Ifllo 

•*o>o 

■<j<!Nco_    OOO   oixD^     — .-H     c^iooooo     c^     01■oOl^^xo^^ 
050(no  t-co   ot— "-lOc^o)     oor-:cooo5     -* c^ ■* ro ^ ^ -t lo 


00  05^5  o>» 

•*t-KOO       _,       _  --- 


rH  C^  ,-1  (N  rH  M  rt  ^J        M 


c9  e€  eg  I 

CQCQCCC 


£C  £~" 


t.-sO 


S  o 

S  a.tr 
5=  ' 


0;   O 
■§3 


'"  =  33  i-Jxr^  3  M   irr^  Zio'CJi  3  3  "r  «i  5  ^r^r-  o  P 


e  0)  e!  o  a; 
5-3  CT)-^  - 
•  =  ■=  S''^  Sd  CJ= 

-C  t.  cij:  >■•-  >;^ 


220     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


& 

a 
o. 
o 

"5 
S 

u 

a 

>. 

♦J 

IS 

"o 

02 

' 

'.  d 
£ 

'  0  a  at       at 

Q 

(S  a 

= 

=  „_«.- 

5J      . 

1 

d 
•E 

0 
•  0 

Q 

;.«       GO 

- 

- 

..,._ 

8  . 

I^'o  8  00 

§ 

0    do                  0 

0  Em—     in  " 

M    c-^             « 

Mq:^ 

22 

xo 

•M 

0 

0       «D 

c 
c 

OO 

0  ■ 
0   . 

M     • 

1^    . 

c  ft    o  ftoo     o     cooocoo               —     07:                0 
>      0  g  '"c^  £o:ci     ^^ '"^tt^'N  00  ^j  TO  ^  ■'■■•"      "J]     -^'o""      """•o  5 

-<Q            Q-'O                     •^-"»'     -O                            «       0  ..                       to 
M            l-l          .                 00       OO-                                            rt                       i-i 

0                                 0 

d 
E 
c 

t 
Q 

0 

0 

00 

■OS 

<0" 

"  1 

c 

Melting 
point, 
deg.  C. 

d        dd            add               d 
§-«  g_  — —  t^  g^JM  .-0  9n-^t~us  g 

X 

M 

1 

0      Or^ 

r^     —0 

1        «M 
'          1     1 

0 
-1< 

=^.        : 

t^       M  S-.  X       M                .  in  X       M       X  — 1 « 00 

C-.  t-  0  -.c  in  M  1      M    •  --  c  c:  X  M  —  M  1  m 
r»       M    • 

CCMfM^TO     ■       M     •WM-^'-<?;rCM     -tH 
M                •                                       M 

M 

■»1<       X       MM 
t^       WOMM 

to     coto  wi-i 

Molo- 

ouliir 

weight 

O  -  16 

N       t^C^C^Mt^— 1^       CSCit^M  —  C.  t^Ot^O-*"       MO       ■^010       MOCCOO 
0       CiXXXSC-.O       0-.  C-.  0CC:M0M  —  CM       OO       «OM       (COt^uj 

in     X  ??  r-.  f  c  c.  0     0  —  v:  t^  ^;  -•  -r  c  ci  c'l  ?c     ?i  -»•     '.com     0  x  -c  0 
M      0  re  -T  C-.  -r  -  0      —  M  t^      C-.  :c  L.-  —  t-  —  1.-      tr  f      1^  M  r^      -r  M  x  -1 

"a 
E 

0 

0                                                 £0 

^-  ^"^S^.'S^  ^?^§*3l?s^  d  ^0  db'o<§  ^Iro 

0    ooooooo     00000000000     Mo    000    OOOM 

c 

X        i 

i 

5 

..  OS 

_  c 

so 
0 

0 

0 

6 

0 

y. 

d 

£ 

a 
a 

c 

0 

0 

0 
£ 

"0 
0 

oi 

; 

0 

4 

0 

6 

0 

el 

E 

? 

(ti 

Q 

0 

6 

."2 

'y.  ■■ 

O-J    . 

l!-§ 

fc  fen 
00^ 

0 

* 

d 
0 

I 


PHYSICAL  CONSTANTS 


oo 


221 


^ 

^ 

o 

c            c 

o 

o      a 

r- 

c 

C 

io.« 

ic.^-'-~c 

00  .„ 

X-- 

IO- 

7 

._  o 

.-'*'.-,'■'' 

N 

CS 

r 

a 

1^ 

-• 

o 

IN 

■dS  d 

d 

OO 

S6  S 

o 

•*o 

o 

m 

1  '^ 

d 

t^ 

Q.mQ 

■* 

*^ 

I-H 

Q 

.^ 

.JJ 

. 

^_ 

.jj 

■oo 

due 

1. 

d' 

00 

* 

d 

ocomp. 
14.5 
rt.    rod 
comp.  a 
d  heat. 

•<N 

o  a)  c 

.c 

(— 

c  c 

c 

c 

-=ix 

Ort 

05 

o 
o 

c 

"t 

0  c 

^ 

•o- 

M-X 
c:  C 

c 

*^ 

•^ 

o-=  a 

1^ 

•*- 

t— 1 

1^ 

T-1  r- 

c^  c-«< 

1 

"g" 

^ 

0^ 

K 

C 

Q 

Q    «^  fc 

X 

o- 

"T 

c\ 

cr 

05-.C 

(M 

X 

—  COIN 

o 

lO 

MC^ 

Or-. 

I.Z 

X 

C^liC 

l-HCC 

iC  — 

■*x 

X 

c^ 

(NO  IN 

CO 

ot=-*oo 

C)  c  c  o  t- 

C  t 

C-.  c- 

r^u- 

t- 

t~lN 

^o 

o  r-  o  o  1.-: 

xo 

CM"C- 

l^  c- 

x:r 

0-. - 

Xu- 

a: 

1.-5  10 

loiomr- 

taot 

C  -C  ^  71  -c 

00  M 

-^cc  X 

c-- 

c-.o^ 

Tft- 

OC 

o- 

TOO 

r~  t^oc! 

COiO 

c  — c:u:- 

C:  u- 

TjiMir: 

MS- 

r^a 

t^c 

c- 

(Mt^ 

oxt^-* 

-^  C-:  M  -  b- 

0-. -> 

t^n 

COr- 

*"• 

M 

C-i 

" 

'"""' 

l-H          C-1 

O 

K 

C 

00 

(N 

6 

c 

tt 

o 

C 

d 

OO 

-2  ^ 

oo 

6 

c 

■    UO 

— <  kl 

JD-Q   C 

c  c 

o  c 

o  a 

J2  : 

3  3 

3  3  3  3 

UU 

uuooo 

tsiOO-CC 

OU 

UU 

UU 

UU 

u 

OO 

OOOO 

.-*-Ol2  as         — 

?^<;owom 


r=<i:;->_:.-wC    -^'^r-v.p  "-c_3-< 


O 


-o   oo 


•£.2 
OO 


t.  s!  «;  — 


222  METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


5 

•a 

•s 

0! 

6 

00  m       01  iD^ 

c         8  , 

aiM  00  09       00      JJ  ""  " 

03 

1 

i> 

1 

09 

00 « 

u  . 

d 

i 

:2i-o 

-H 

£ 

0 

■" 

>'" 

—    M 

a 

00  — 

^ 

^  05 

C 

TJ 

"o 

c 

00 

h 

c.    c 

•5 

t 

?5 

._    X 

M  *.-.«.-  M  cr  — —  C 

._  ".- 

C8 

K| 

> 

c 

'"  >'" 

tn 

_3 

fed 

0 

>    0 

0                         c 

0 

P 

o 

«w  — —  —  »  "0 _ 

"2'" 

^       M 

0                                 ? 

o 

■^   OJ 

O 

^^-cj 

c 

__, 

0]    b 

-C.5 

;3  C 

^^ 

us 

5 

1 

-o3 

0)  a 

M 

<: 

o 

(B 

"3 

0 

O 
l-H 

< 

^  "< 

J? 

d 

0 

dd     d 

d 

C 

c 

t 

it-    1 

0 

£ 

0 

Q 

.6  CO 
a" 

gE^E 
ggt-§ 
QQ     Q 

M 

dS 

11 

Q 

^ 

«  >, 

■-0 

OS 

TO 

z 

«  i" 

00 
•     00 

TO  00 

>o 

-*< 
0    • 

'S'^- 

1^ 

00 

0       —CO 

l~. 

1    0 

1 

c 

oc 

00  0>U5 

£ 

^2 

M 

•0 

d"      MOO 

2 

Tf4        . 

TO 

00 

<N 

TOC^Js 

s 

i-SS 

^ 

5 

■*~<N        •* 

"cs 

OTitootorocoooaxNc 

ir 

■*<N1N 

•M 

«c 

0 

—  (NO       t^-* 

't 

e<i'j<oor^ototoooc 

00000 

f- 

J-3-rll 

IT 

00 

C005N        t^!^ 

-t 

—  fooiMooirJorof 

c- 

>0  X  i-< 

0- 

c 

-(•mio     OM 

0  M  —  ic  — 1  =  t^  >o  r^  tc 

c- 

—  CITO 

j 

'^  "  ^  c 

.-Hrt            l^fO 

cr 

c 

-^r^CJ 

00 

0 

0 

D"  '■' 

3           0 

1 

K 

S 

U 

c8 
■3 

0 
K 

Id 

'5   <»      Wffi 

0 

0 

E 

u 
0 

Cf) 

„   6 

a 

L 

og 

.   mo,;.fe£5Bq%f 

.     g 

.  eco 

X 

: 

OOii    HW 

0  £ 

OOOOJCOOOJO'C 

a 

c)  a;  0 

_c 

U 

fcfc, 

foCL.&H£K4a.tt-fcfcts,tL 

[^ 

fafebn 

c 

a 

3! 

■5 

.£ 

c 

c 

_e 

(U 

a 

_0 

..    0 

c 

c 

5 

a 

c 

'■T3 

11. 

0. 

4 

1       c 
—      c 

a 

'S 

■^-0 

■a  0)  ••  0 

a.   r 

-T3-0—   >>-^   CJ  1< 

^  t 

*J  9        CtJ  " 

'I. 

■ci 

.0 

-§■5  £3  2-c 

USE 

■HSE 

1 

P' 

J^ 

c 

9C 

> 

C 

K^ 

c 

i;-^ 

< 

PC 

c 

c 

p^ 

S: 

2 

p. 

a 

^<     ^ 

c. 

t. 

PHYSICAL  CONSTANTS 


223 


bi) 

Ih 

"0 

1 

«  n  «  n  91  X 

0 

^  ^ 

d 

-? 

K 

1, 

1 

1 

K 

Ji 

> 

"0 

(B 

:•— 

- 

.  .-..j, 

... 

- 

— - 

c 

0 

o 

0 

•  o        o 

o 

•O  aj...--.^ 

j; 

- 

_2.8. 

— 

n 

0 

e><      .  CO 

CO 

•o 

^ 

d 

"o     oo     o 

0 

0 

0 

O 

c 

dc 

C  >       CO       c 

0 

c 

0 

d 

o        o 

c 

E  = 

to  — 

E 

mO  „.„-._ 

0  "" 

•  ^          .^     CO  1-H  ,-1     8     ■•    "     ^     ■ 

■"*  ^^. 

,      • 

0 

c  ' 

>;;o    --o^S 

c  •• 

■^ 

co'^ 

'"  ..             o 

o-t 

>co 

0 

c 

lO            (M 

Qc 

e-l  O         r-H    >         CO 

0 

Q 

•<1< 

Cvl 

INiC 

0 

d 

C-1 

d 

d 

t»          00 

'^ 

£ 
o 
o 

.  LO  C^  LO  uo       MM 

0  — 

o 

0000     ■      -M      -T). 

■^ 

t  0 

00 

CO    1      1    OC-.  i-OO    1 

X 

ox 

a> 

1      1      1   M  rt  M  M    1 

^^ 

T-H 

Q 

'                             1 

^ 

ddd 

t3 

U5  00CO 

'0 

sae 

O  O   0 

coo 

OJrr 

f- 

lOt^       •       ■       -O         Tf 

0 

1< 

ID 

T^—  C- 

>.0  X  M  CO  M  0  M  0 

TjfCO 

■CO 

J3 

0 

<C_? 

c 

1     1   —1  — 1  C!  M    1     1 

rtiO 

t~b- 

a 

X 

O  11   o 

a    i 

»— 

~    1     1     1 

t— I I-H 

M  CO 

»-» 

QQQ 

«' 

1     '     '     ' 

CO 

\n       • 

r^x 

X 

X 

00 

1- 

0-.  o 

1 

lOIN     • 

t^cix 

•o 

0 

t~M 

0 

00 

00  b- 

osc^    ■ 

<N  coo 

■^ 

OI> 

•  1 

CO^-H 

MM 

10 

■^ 

t 

-H-* 

c 

"^ 

-^dd 

'^ 

•*t» 

rt'o 

COO 

d 

'— 

O  -O  Tf  T)<  (M  -^  O 

^ 

0:0  CO 

t^  M  M  0  Ol  M 

MtC 

OtC 

(^0 

00  30  00  W  O  O!  O 

« 

com 

C-5 

oc-.o 

-^00— lOM 
.     .     .0     • 

ox 

T-HO 

O.H 

0 

OOlrC  — iMh-O 

C) 

•*H   T*- 

h- 

C-Jt^O^l^O     -^^ 

dio 

N^O 

0  ^ 

00  r-- 'T  r~  (^  X  "-1 

o 

1— 1  o 

c- 

«  ^^  X  CO  cj  M  M  CO  00 

(MiO 

C'.D 

1.0  M 

tr 

i-l,-(       M 

C-l  rH 

'^ 

■^ 

"^ 

MM 

M 

(^ 

«^       M 

KOO     !^ 

6 

-0 

a>  o  ^  o  &'  o 

o6 

„ 

a 

^3 

[i.^:^Cx.t.bE:H 

^ 

oo 

•«■ 

oMffiasMaaa 

^fc 

PuO, 

Qgn 

'►I; 

_^ 

o 

0 

3 

"a 

■z 

.2   a    c   0 

1 

%- 

■3 

0 

E 

s 

^5-5-=-n 

1 

g  s 

■3^ 

3  t.  d 

<u 

aS  2 

1 

3  ta 

'S3 

c. 

cad  c 

C    S 

5'-  t 

D      £ 

Ferro 
Ilyd 

Nitr 

Oxi.l 

•I. 

X 

fo 

ll 

P 

224  METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


(Q    00    OQ    9}   (S   < 


S'o'o 


252 

o2^ 


-HOO 


.-.'^.-.   "!.-.C!._        '-l'^. 


ceo     Co     gccc-c 

•O     -WCu;       -.0-»"C~: 
X «      C  T-i  s         •  '^ 


^ccc-c     c-^ 


■o     t,     n 

F-4  .-^  fl 


1^^ 

I'll 


•2  s" 

■3'S  M 


CQ     G 


£  5 


•  CO    •    •    • 


•  0"5roTj<  CO 

■CC-lN-HCO 


"3       U5  -H 


X  M  :s  ic  -^  t>.  ?)  c  n  -r  ^  "5"  M  M  O  ^3  CO  co  —i  "5  >o  co 

x-fc;cr.  xc  cci.-xccccTfrct^ico;©  oio".  OiCO 

c<5Oc<300'-':t^'-i--M<ccxooNa;-*®  'J'r^ooh.o 

r»  O  N  ^  —  ri  M  cc  X  C  >--  1.-;  •^<  CI  ■>!•  "5  00  "-I  C.  X  00  !>. 

—  M       -M       M       M       c-1  M  iM  i-i       c^ 


MS  u  uuttuutta  e     aaaccca     ^  m  m  u;  mi 


o    ■ 

•  o 

"  a  oj 

o  o 

i'U    -cja^a^csat) 

.   O   O   „   o   c 

CJ^ 

« 

■? 

osrs 

^i 

r-'i 

s 

^  5 

<- 

d 

Z 

:  s 

:i: 

•  ST 

3 

-■  ' 

PHYSICAL  CONSTANTS 


225 


9oo 


"z-z. 


G:2 


aa 
gp 


o         o  aa 

.2_;    **  a  a 

n  .."o  — -"  o  o  ! 


o      a      I 


X  ~)  s  -^  -r 
xcs      X    • 


o     a  a  a-o 
Lo     P  c  S   -o 


t^        --HO  — 35  M 


'-0 

C*  -^  'T  C  t^ 


o  o  o  c  -^ 


o     «o-^cici^o?:oo     oc-)-^-^t~     ^t^t^cc»   t^ 


t^  C.  —       t^  —  — •  CM 


M     M  ic  x  t^  r^  c  X  : 


'?)oecc5     oorioc   o   00     foco     -^-i-oo 


M  «  c:  C.  X     Ol 


M        lOCMCO        05'*-^t»      -^ 


o 

IN 
S  U  ££  U  tC  U 


C   0    O   O         O   O      .  "^^-^      V,^  ^-^ -_^  ^-^  CC     CO 


OAQ_ 


CO 


.g-B  O-O 

o  a  u^ 
Jo 


•^-.i-5i; 


t:^  =!  ox:  3^  t  oj-^  >.j=_  i--  ij-S  £  c3-    J3    g,      cj-.S      ^OoS_3 


220    MET.\LLrRGISTS  AND  CHEMISTS'  HANDBOOK 


1 
0 
•< 

a 

1 

a 

a 

0 

K 
1 

« 

! 

0 

1 

K 

d 
£ 

n 

1 

"5 

"ci 
1 

0 
1 

'  5- 

d 

0 

.-J 
a 

lis 

s  £  g 

- 

« 

£  . 

0  m 

>' 

- 

2    <=> 

w     ,11 

- 

■;s 

<* 

Q 

TO 

"o 

a 

d           d 

u 

0 

•s  « 

H      _;  ^  £      ^ 

c 

u 

0  ^i 

•^■-4 

8 

0—  "i  '^  0—  ^.-..- 

oi .«.«  .« 

a 

K  S 

0     >  >  0     > 

o. 

S 

0            0 

01      f»J 

>. 

Q           Q 

CO 

00 

lb 

'■'S 

0.6. 

ES 

u  0 

QQ 

m  " 

1  0.               0. 

.S  E       .   •  E 

0      t, 

iM_^2^j;  « 

CD       C 

t*    ...^ 

d 

OD 

a 

c. 

a^O 

S 
9 

i> 

csm 

0 

ox  St^*^ 

0 

:s  c    . 

ok: 

c 

-.« 

0 

I'll 

ca 

•c 

1 

a> 

"7 

Q 

« 

Q 

0; 
Q 

r 

C3 

c     .     . 

^  .,< 

V 

U  CP. 

03  a 

c^-O 

a 

doiOK 

0 

X  •■'5  3  •«  M  C  £  £  ,., 
iN   1    -  t  a--^ 

0 

s. 

S  £ 

5  c    . 

00c 

0 

§217 

0 

•<< 

•^0 

0  0 

lU 

§ 

06 
CO 

IN 

■<n 

1 

0         ' 
Q 

«Q 

£^ 

•  ^ 

<o 

000 

« 

•*-< 

t» 

t» 

11  "O 

irt~ 

MM 

X 

05«:-H 

Xifl 

10 -^XC 

«•*« 

S.  > 

^  <^ 

— '  M 

rtrtM 

10  — 

c^mio  tf 

CScJtN.' 

0.  b 

M 

m  u 

•c 

,  eo 

c 

^^^3  —  wo     t^c 

OCC-*3;CCX0C-*(N<N 

OOMC 

MOOX 

lole- 

eight 
=  1 

oc 

0  t-i  c=  t^  t^  t>. -^  c 

OOrO-^OOMO— i>-iCS 

Cl^O- 

»-i  i-H  1— 1  CO 

•re- 

(^  C  ^'  =  C  ^  0  ;J 

X  C-l  X  M-  M  0  !>•  --  1^  —  >■- 

o:  t^  xc»• 

-H'v-'o3-< 

oc 

0  -r  0  :^i  X  —  r-:  re  -1  ^  c- 

^^  -^  r^  0 

-rViy:  — 

•^  "  isO 

(N 

T-<  -^  rt  i-i  fi  "  ^  ' 

^  M  -H       ^  «       -r  01  r- 

CCIMOIC^ 

O)  IM  O)  X 

0 

a 

<9 

CO 

1 

q 

0 

0 

^ 

0 

sow     -. 

^^    c 

w     9 

JZ 

PC..ZO    0^ 

nO-2  t 

Soo^ 

'x   e 

j;Y.U_^,j;ya^  *:*;*. 

•^;Prf 

x;.cx^ 

c  c 

££££££~2. 

Cl.C-t.pM 

■3 

0^ 

0 

0 

c 

eS 

0 

■f^    ■  a 

0 

^J3 

•  a 

•  a 

n 

■^ 

"422 

c 

S.H  ' 

•n  ::Ho2 

Sc 

■=  1  = 

0 

»   OS 

3 
02 

§  : 

®s  3  t-: 

c    :^;b  0 

-c:2 

■p  0. 
I  9  0 

«  ^ 

.ZZ  -^  ''•"s:  ■  —  "  ~  C.   - 

-T  «_C  Co  ^—  otstiti 

l<^oc 

•        >■>'.   i,JS 

T.    > 

rf^^^^/'l-/    r;  :,— 

— -■^■^0-^*^*sO«~^^ 

)    Koa-eu 

c 

^- 

^ 

- 

- 

— 

p- 

(■ 

.&.C1 

CL< 

PHYSICAL  CONSTANTS 


227 


-aZ  5  a)  B 

'.'.'.  D,          do. 
•  •  •£        ££ 

a 

a 

d 
■     E 

d 

£ 

■      ■   0    05    00   0    0 

m    ■  m  0  to  aj  T 

0 

■     ■  c            0  U 

c 

0 

CJ 

•      ■   0                00 

0 

a 

OJ 

_ 

AQ 

:  :q      QQ 

_j_ 

:   Q 

Q 

do 

■  0 

g 

D. 

Eo 

0    -o     0     0 

0 

.  e 

•    03 

.-.      .«  07;.- 

0    -e^.^o  _c^ 

j^.-H.«^_.    -    -    ID 

0  •.-.-, 

"^  0 

>*> 

oco 

00 

O" 

•^      .  rt        >-c         — 

*"* 

d 

"  : 

Q 

r;     cc 

c 

C 

0     c     oco    ■ 

c     CC 

0 

c     c     c-  c  c  c 

0 

«!         E-'ilT 

.       .l-C^r-       .(N 

fqrtM.-H     .,-iM^~.- 

Prl      .             .-* 

•^   •'"8«o«> 

mm 00  .. 

00 5  ••  CO  „  to  • 

°i  ■■  m  m 

P        ? 

" 

T-i             n     0 

Q 

0       ,^    0^ 

0             o     c  0 

Q 

1       £222 

0       C'* 

000                --ceo                            CO 

0 

•0       .-^.-iMrt,-! 

7"" 

1-1     .      .(NUS—irti-c        C0-<           .-H 

-#—    . 

■^>'^'^'^;:'^ 

■*cop«  2  >^  —  MOOtJ.  ""--<«  '">'-< 
•CO          '^    '^               r-<         r-t                             *^ 

Mrt  "  " 

p-o 

« 

^^ 

dS  :  d 

0 

0 

:  d 

10 1~ 

00  «o 

£_£   ;  E« 
0-Z  :q 

5  C 

.E 

•s 

;  0 
•  0 

:q 

0«5 

3 

3 

3 

-*•>               >J 

^ 

0. 

;  :  d 

c3        dd:3 

',           Cj 

S   0 

.     dd 

N 

ic>oe^  gifl 

oc 

^oj  C  s  s;oc- 

•0  s 

i  " 

2££ 
^00 

0 

c- 

0(N<N  0  t 

C-.-f 

—  sc  ?:  s  —  CC  c 

.^J= 

~  c 

T3   Cj 

Oi 

c 

J-.C- 

•"-0 

X 

—  =      occ 

■     •  0 

0       0  c  0 

•     tt) 

a;  0 

U    CI 

0 

:  :q 

«    DQ« 

:    tf 

tfp 

QQ 

oc 

to 

n 

osoot^M 

N  10  M  M -^  ^~  CC 

•  00 

CO-H 

0 

fC 

>ooo 

h- 

COCOMCO 

ot^ 

>o -I"  00  00  0  02  c 

;0 

Lit, 

<r. 

<c 

t>-d 

MCIMC^ 

iNCS 

r^  e^  —  -h'  cq  CO  c 

•c-i 

<N<N 

CO 

s 

t-oc^-*-* 

CO  t^  —     woo 

COC 

co^^roo»0'-ic^cs 

C0rtr^,-.OC0 

incocq 

l-lrHM«O0 

IM  —  —  M  0  M  lO 

■o  — 

x-H  —  ci?;  — oc 

—  •-H  —  Cl-HO 

C)«CO>0 

ec 

O5  05r»ocx 

CC  ^  0  -t  C.  X  M 

-1"* 

00"5Tf.o:MCOM"CC 

t-  -<  lO  ■*  i-O  00 

■*C0  M-* 

c 

e<5cocooo  t 

•O  OCO  —  CC  M 

t^o- 

CiCOCS'MCl'C-HCC 

c;  0  00  X  c~.  "5 

t^XCOi-O 

n 

N           ^r-C- 

C-)  M  —  CI  -H  —  -< 

0            « ■*       M  -- 

r-l^^i-1 

0 

0 

a 

w      q 

•<* 

^      s 

■cj: 

i                 M 

0 

op.o 

5  c2cO      «  „ 

9   OS'S" 

M 

q 

6 

0^ 

0  —  -°  n 

_£ 

fiwisJEii: 

[^  ^^  ^^  »^  ^^  ^  ^ 

wt^ 

\ii'^\^\:£',^\:i,\ii*ji 

K^^^^^^J^^ 

'^'  ^  ^  ^' 

0)  6 

2-s 

c 

IS 
£ 

5 

0. 

1 

c 
< 

c 
"a 
t. 

< 

< 

c 

c 

c 

0 

E 

= 

0 
E 
c 
u 

u 

'c 
> 

0 

c 
■c 
'£ 

c3 

>> 

'fc. 

0 

0) 

•3 
'c 

c! 
0 

L. 
L. 

Oj 

fc, 

c 
c 

> 

0. 

c: 

1 

4 

■J 

d 

3   t- 

c 

.  c 

•  es 

•  b 

■  c 

-3E 
ol 

c 
c 

.2  c 

3   c3 

•S^ 

Cft, 

c 

-   t;   w  g 


228       METALLIC RGISTS  AND  CHEMISTS'  HANDBOOK 


K 

add 

■3 

T3      -O 

a     B 
OS   .  a   . 
.2     -2 

0. 

0 

1  i.  = 

c 

■< 

r.  K  O  O  C  B 
ecu 

"3 
1 

fc'Sfcrt 

0 

■^   e"^£ 

C   C/   o 

CGQ 

s 

d  1    09 

0 

1 

■    1           1    ■-" 

oi 

a 

«    *i 

_«    _   «           i'- 

g  o  c 

§ 

.     § 

d 

d 
E 

0 

— 

aa  e.-H^ 

•        Tl« 

— 

0 
0 

0 
0 

•" 

^  c  o 

.        t- 

0 

0 

-3 

X 

<'a 

d 

d 

Q 

Q 

c 

00 

d 

'"- 

•*j  ' 

o    . 

00 

c 

0  ••^ 

v-<    3Q    QQ    09    Oj 

a 

--   =5 

«>^          >^> 

<o^ 

■' 

g 

-   .- 

•  M             •>■ 

CO 

"If  00 

0 

2 

0     c 

'^ 

. 

C  3 

CO 

dd     dd           i 

0     c 

J 

CO 

CO        .      o 

00   . 

S  £     E  E           c 

""•fl"^ 

- 

1°° 

'^^  80  "^^^^^  aj.^ 

r-*r^    lit 

.^ 

0  0—  0  0  — —  —  X 

*■<       ,^ 

X 

«i    >;:ji 

> 

z^"' 

otto              g 

0    0          &    D                     0 

i 

iiM                  »-l 

«■* 

QQ   oa 

0 

d 

?io 

0. 

eooit* 

>fl 

=  0 

Q 

0 

iOiOO 

0 

10 

£ 

0 

as    'o 

OJ 

OS 

ot- 

0) 

?3 

1 

M 

u 

Q 

1 

0; 

M    .    . 

d 

c 

, 

•Is 

£ 

0  m 

0 

-nr^ 

00 

00 

COOS'*  So 

C^-i 

t- 

0 

^'2  <* 

OOJ 

c 

•^-H 

U3 

1    1    1      '^ 

-rco 

M 

U3 

^  P-o 

00-^ 

St- 

c 

t>.t^ 

-ics 

■«>< 

•«1< 

i;     TS 

Q 

Q 

1     1     1 

;=i- 

ISO 

—  U5 

M 

OS 

OS 

!0-H 

LI 

MOOS 

t* 

00  «3 

TJ.U5 

CO 

10 

^   5 

NPJ 

cc 

pi  CON 

P 

M-H 

oid 

<o 

10 

X   M 

1    u  ■"■-° 

t-t^t^t^ 

0 

•^t^'^n 

CO -row 

Xl- 

X  0  0 

^       OS 

C^  — —  NC 

(NO 

05 

C  CiMK 

CO 

OS  — con 

OS  •»•  ^;  00  0  » 

CO     CO 

■I-=:I7 

-)"i  M  O  f  ~  O  "J" 

d  -r  ''^  -i 

C 

t>i  d  -r  fi  0  M  oc  h-  -i  r- 

n     n 

s^li 

t^ret^'-ciMa:  — 

C-IM  -?c- 

C 

•*tN.OC0C0CSC^O-*X 

•«<     CO 

^  rt      „  „  M  re  c< 

'•> 

«c^-< 

CO  —  —       1.0            -1  •*  — 

"*     '"' 

^ 

E 

~o 

~ 

J3 

sfi 

-    C 

(OOfaK^Tx     m5»     M     M 

j^ui;^j4:^;^«< 

^ 

tfeJSx 

x 

xxxxxxx<-<-< 

-«:    -< 

c 

c 

T3 

rt 

'i 

3 

O 

..  0 

rH— 

c 

^ 

^ 

=  s 

>>  4i    C,    0-2 

Ea 

0    0/    t.S 

.^ 

ci  C/   C   0 

c 

0  c 

c       c; 

^ 

-f.-2.i;-S  =  u 

.=  0 

•CjO 

p 

:h3:S 

TS 

fSIHIH"  ri-'H 

.-"C 

:h  3 

■f. 

11 

=  03 
Oh 

< 

iZ 

3 
X 

M 

f2 

^ 
C 

a 

o: 

0 

3 
X 

'E 

c 
72 

s 

> 
C 

£ 

C 

« 

0 

•a 

> 

c 

3 

X 

c 
Z 

X 

t 
_> 

X 

c 
c 

E 

0 

pa 

J 

6 

3 
0 

PHYSICAL  CONSTANTS 


229 


a  C.C,-,         o, 

O  O  O  O  «  OQ  O 

o  o  o  c  o 

a  c  u  o  "^ 

PQO  ^        P 


£^ 


e^     rt 


;^  >  > 


=     o     -        •   •  £-    • 

':'. 'o'-:'.^.r.r.  '"■'"■or.'". 

■ -H  T(<  T}<  ■  •;  00  pi 


C~l 


C7,-^0        O   CO 

§§-::   2- 


«       .  S 

."5._  in  o=^ 


N  .-I  -H 


o  S- 

OUJ    .O      -O      OO  CO      -       _    -go    . 

rt  ..  (Ort       Ti.O_00  OO       OOOmgOto 

CO       '*.-<     t^ '^  o  ■• 

M  »*  O      i-i  i-i 


11 

Q  2 


^p 


:Ed. 


O      -"J*  — 


pwSgP 


hO'*<XiNO 


a-Q.  a 


ppp 


CI  "J<  CO  rj-  X 

t^  in  t>i  >~  d 


woo>c 

MO?! 


tcooocorocoot-  loot^-T-H  rocowooooo  —  c^it-h-xootj-o 

t^t^ffiOOXOOOiN  .-i.-io:0  Oi-HO-HOTj'Tt-— oocr.  OOOOCIO 

i-<  t^  00  —  (^  in  ceo  0!>jC!-si  ooM-!»<oooooojooo— iinoNacooe^i 

CC  ^  rt  — . -*  o(N  t^  coooo  ~    '                '      '    '    ''      '    ' 


N       r-i       fCO       C^IN-^CCC^CJ       .-I       (N'J'i-l 


IS 


OOfi;aicc72     u 


C3  ^  d  c3 


o^   o 
?2^o 


2    W 
•      90 


«i    <    <<    <<;<<<<zz    :z2ZZ    Z2Z2:2Z2J2Z>:Z2^zz;?:g:?c 


a*  (S  sj  i>  a, 


o  53  d  o  o  3  o":: 


a^-f. 


\2,   z   zo 


•■5-2  o!.:s.~  ^-^  b  o  c;.^  s 
0^  ><  a  jr  —  _ccc3'--*^ccu      — -  —  —      -^— t  ^  ^  


230    METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


O 


a     -:^S 


a 

dd 

6.  z. 

■: 

I 

r 

•^ 

c. 

6 

B  c: 

c  = 

^     T 

2  ^ 

ac 

c 

to  — 

«• 

< 

C    V 

1  -r 

ir 

f? 

't 

a 

OQ 

CO 

.2 

'"     1 

-5        t 

^ 

X 

a; 

a 

i, 

=  2t: 

^ 

J  o" 

— ■— 

— .- 

m  — 

— < 

«!:  - 

c 

s 

do 

- 

P 

ta 

oiO            -  C 

£  = 

Of 

- 

_  •-• 

.-^ 

?f ,« 

-<MIN 

•^  * 

>C5               — O 

„ 

- 

iM 

ro«  — 

o 

►H    ^ 

•' 

. 

oo        o 

d 

d 

doo 

"d 

aOO      -  c 

_ 

go- 

-   M 

^~-««- 

m  *'' 

c  — 

M.^ 

o"*  J- 

^§ 

to         — 

- 

c. 

/-N  o  o 

--.C-1 

X 

o 

O 

I 


'=  2  If 


©'o  ac 


O   3 
KM 


,    .    -WO 

■0-I--I 


Q 


Q 


— •  C3  i.-;  M  ;0       05 
;0  ■*  CI  "J"  W      —1 


I-';  re      oo  —  t^^i^t^      cc  —  -" 


S  5 


-     S"?  - 


zz 


o   o 
s  s  s 

2ZZ 


e       "  c.     r=  = 


Cx 

c  a 

XX 


=  u -  s  "  *  "SrS.-ti  •,•'2  ti 


Ox 


9cx 

c  c  c 

X  X  X  ^ 


so 
eoo 


O 


X  X  X 


-    £ 


o  '^  a  V      S    "^  E  «-  a 


2-     c-  X  X  X  X  X  X  -  w  —     _  X  -■  w  -<     ^  ^  X  - : 


PHYSICAL  CONSTANTS 


231 


._  d     „  „ 

•0  E      KM 

d  , 
SO 

:  ,1 

0 

•0 

.  1 

td  °    00 

1= 

d 

add 

jr 

£ 

.s  es 

0 

000 

^  ri 

0 

000 

> 

> 

0 
Q 

0  c  0 

QQQ 

d 

If 

:  d 

0 

0  s 

•  E 

0 

05    .-- 

8-2  0  8 

•  0 

'"' 

t»  0 

Jo 

■  0 

CO    QJ 

•  0 

t^ 

:^Q 

:q 

(M 

do  a 

Q 

•S  g 

S.  d 

d 

d       §        1 

S§£ 

c 

to  *^  0 

S 

.   .  £ 

■I  . 

SS  c 

0       8-2  0  8 

C    to          M  —  .- 

K   B   C 

m.^    "    "^ 

O  ■•  Q. 

in 

3 

>         eg 

«g 

c 

"""    0 

"^    > 

Q-^C 

;^Q 

Q 

Q 

in 

d 

0 

L't 

10 

s 

d 

g 

c3  dd 

b-iO  0 

o-^ 

in 

£o 

•^t-O  5  P  P     1 

•* 

« 

(Nro  u 

sS 

1^ 

■^  0  c 

til 

•* 
•* 

1 

CO      0 

1  " 

o) 

O"-! 

■* 

0 

0 

CJ 

P3 

CJQQ 

ad 

--2t 

■^:2o 

dd 

~ 

S  S 

10 

IC 

-^ 

3  M 1— t 

y  in 

X  M  M  L'^ 

o  o 

0 

00 

1 

o^-^g 

t~  3>n 

1  ~y 

Tl 

5  5'-'' 

Ji;  1^  T)<  c  t^  ■^^      1 

«  o 

»- 

i— '  •— '  "^    0 

'3^ 

d  0 

1 

PQ 

-a 

QQ 

Q 

c: 

o) 

o 

X 

^t^oi 

•XX 

X 

•t^iO 

CO 

•0 

1 1^ 

c~.  0 

d 

ooo^oo 

-ct- 

M 

•  oc^ 

0 

•  Xrt 

inn 

^N 

3 

rH  i-<  ^  ^ 

•-^c 

l^ 

•■no 

in 

■-HJ^ 

^lOC 

t^t-- 

C5 

C-.  t^  C-.  v:  — 

1^  -.c 

X     oc 

•n  0 

c^  0  <N 

CM     ox 

Ot-l> 

00 

0 

cocr. -c- 

000 

ooxL-: 

inic  »o 

10  "3  ^ 

moo  CO 

ci^'c 

C^(N 

■* 

a:'  0  c-i  X  ?? 

TJ-IC—I 

C5  CC"  X  C 

c>ini~- 

t^CV  X 

S-. -*<i>o 

-^Xi- 

COCO 

CO 

C2XO  t-t-- 

OC«X 

i-lfiTM-. 

01  (•^'N 

t-Lt  0 

'M  0  ■^— 1 

"""""" 

,-1  ^ »- 

,-lrH 

■«"r  ^;cs 

M—  -H 

-<  ^J  M  CO 

C 

C" 

hH 

■< 

••^ 

xt 

+ 

10 

';, 

_J 

■rrnv. 

Qgy: 

K 

« 

0    -.9-, 

0    « 

6^' J:  , 

c 

HO 

Wc-H 

0     ^ 

HOC 

0    c^ 

H     ^O 

>. 

c 

t-  0  r 
3  it  != 

■■1:2  1 

2 

0     -"c  s- 

" 

0) 

ci 

0 

0 

c 

«   1 

£  t31 

0  c 
3  5 

3— 

3__ 

3 

-3.-  3 

1 

•|4 

3 

2fi 

■S  3 

>.-c 

3 
0 

.-Sc 

1^ 

c  0 
?'S 

5^ 

X 

r. 

3< 

CO 

^ 

M 

X 

*r^ 

Uli, 

' 

02 

<z 

^ 

5< 

< 

c 

'^ 

S^ 

■*!' 

c 

1^ 

< 

C 

H 

c 

H 

1 

232      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


i> 
d 
jt 

B 

C 

o 

3! 

n, 
>. 

!5 

"c 
r. 

00 

< 

o 
1 

«.. 

00 

o: 
1 

.2 
"a 
^  z 

8-conc. 
acids 

8 

8-ether 

4*      . 

<'5 

- 

- 

00  00   ; 

§ 

d 

0 
o 

Q 

- 

- 

- 

00    M 

o                   e-d 

•lU       >  — —       c  o 

dd 

ES 

—  O  O       m 

t  1) 

ca 

o 

c 

•S"c   M 

d 

S 

o 
o 

a 

O       "5 

t-     n 

0! 

d 
E 
o 
o 

tot. 

a 

o 

■JZ 

-a 

u 

j3 
4) 

OS 

d 
E 
o 

u 

V 

G 

as 

CO  M 

XM       t^ 

T 

d 

lO 

Mole- 
cular 
weight 
O  =  16 

oo     to-")"©     o>'<«'^iN-<     osojor^     OOU5     wo        cc-^us'c 
f-O      os:-i      ooc^—oo— '■*      o-rXCJ      o?cco      cot-          rc-^oao 

0 

0 
K 

SI"  §2,   ofeSojo"..   i9,o   ^„o      od      §66o 

Hf-     HHw     Hf-Hf-HH     Hf-^^     tB^D     DD         DSPS 

o 
c 

c 

3 
7! 

0^ 

c 

E 

3 
C 

e 

a 

_e 

a 

3 

1 

3:s 

e 

J 

X 

3 

2X 

_a 

-1 

c 

=  T.3X  z 

■p  _- S:ii  j.-j 

-J? 

H"-' 

'/. 

h^ 

-Ph^~^^'-'-hh^-h""h'-'^55^'^   ^«w«w 

PHYSICAL  CONSTANTS 


233 


o 
"a 

0^6:2 
5^^  5 

OaShS-^  00  01  OQ        a 

i-HCl 
8-alkalis 

8 
8 

oQ  mS 

a 

-» 

..- 

- 

o 
o 

00 

._  _^.  ^.._ 

o 

•.0 

- 

ori 

o 

^ 

o        o2    2              5 
o   .     o  ••     ••              .o 

2       t. 

LO               o   > 

2         Q 

. 

00 

00 1>. 

o 

^ 

O 

c 
o 

IS 

d 

so      00 

d 
co-s<  soc^ 

CICO  §MM 

d    d 

ESS 

Q    Q 

d  d 

ill 

;5q 

a 

d 

a  ^ 

COU5        CO 

....  1     . 

•  lO       •  -H  L-S  ■* 

•       CO 

"5 

c^ '.o  c<t  to —1     e^CLOino     csx'>jc 

—  C:  ^^  C.  "O  ^       X 

c:t^r-xr~t^c  c 

—  c:  X  ■--;  X  c;  C5  — 

?)  c 

CO  0 

3ii5 

X?J(N  O 
COMOOX 

S2:^^K.     "g;  c  a  c    a  c  c  c  c  q  a  c  c  c  t-t:  t:i:rt:tt 

t33,^>-i>      >SS!tS:tSJ      NtSJS!N!!SJNNSlNS:SlS3S)S3S!NtS!N 

c 

0. 

'c 

&. 

c 

_e 

J5-£-  d  5     a  S  , 

1 

-Ss^  3'H'H'Oi^ 
0  a-^q  5-5  2i:S 
SKxIaoSiSc 

-1 

xx 

■«    O    fci 

O  *  ^ 

S  "^ 

OS  +^  . 

K-c  o 
"^'S  a 

"a  " 

^!§ 

"2  J^ 


0£^ 


«*;  5f 


Sad 

5  i  0) 


O 


o:^  II  ^ 

•2    -  "^    00 

'r~  M  a 

—    -•5  ° 
-5T3    si 

.2—  _  a 


c  =  =  a 
-=  5  .S  Ml 


234     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Magnetic  Susceptibilities  of  the  Elements' 


H 


=  magnetic  force. 
=  intensity  of  magnetization. 
=  magnetic  moment  per  cm.' 
=  pole  strengtli  per  cm.* 
=  magnetic  induction,  or  flux  den- 
sity  =  h  +  4jr/. 
=  permeability  =  B'h. 

=  susceptivity  =  I  /h  =  — 


1  B,  h  and  /  are  in  lines 
I    per  cm.* and  are  vector 
>   quantities. 
I  Unit  :4Tlinesstart from 
J    a  unit  magnetic  pole. 


Coercivity,  hB=0,  is  the  demagnetizing  force  required  to  make 
B  =  0  after  saturation. 

Coercive  force  is  the  demagnetizing  force  required  to  make 
5=0  after  some  particular  field  strength. 

Remanence,  Bjj^q,  is  the  induction  remaining  when  the  mag- 
netizing force  is  removed  after  saturation. 

The  work  done,  i.e.,  hysteresis  loss,  Qe,  in  taking  a  cm.'  of 
magnetic  material  through  a  magnetic  cycle  between  the  limits 


+  H,  and  -  H,  = 


X+H.  r+H. 

hfll  =  H'T  I       hdB. 
H,  J-H, 


Steixmetz's  empirical  formula  for  the  hysteresis  loss  is 
ijB]^  where  r?  is  a  constant  and  -n  =  1.6  (usually).  The 
magnetic  properties  of  a  material  depend  not  only  on  its  chem- 
ical composition,  but  on  its  previous  mechanical  and  heat 
treatment;  thus  only  general  characteristics  are  indicated 
below. 

Good  permanent  magnet  steel  contains  about  0.5  per  cent. 
W  and  0.6  per  cent.  C.  Cast  iron,  chilled  from  1000°C.,  may 
also  be  used,  but  the  results  will  never  be  so  good  as  with  steel. 
The  Heusler  alloys  (Cu,  Mn,  Al|  are  remarkable  in  showing 
high  magnetism  when  the  components  do  not.  With  an  alloy 
of  96.69c  Fo  and  3.4  Si  (Yensen's  alloy),  the  permeability  rises 
to  over  60,000  when  the  alloy  is  annealed  at  1100°C. 

PkILMEABILITV     yu 


Material 

h  =  0.5 

i 

h  =  1 

h  =  b 

h  =  20 

^1  =  60 

h  =  150 

1 

Swedish  wrought  iron...  . 

.\nnealed  cast  steel 

L'nannealed  cast  steel...  . 

2500 

1450 

490 

3710 

3500 

970 

2060 

2100 

1700 

81 

68' 

80> 

736 
747 
680 
182 
78 
119 

274 
280 
270 
117 
193 
204 

120 

123 

122 

65 

1      100 

Magnet  steel  ^['^;;^n^^«:- •;•:;; 

I      100 

The  figures  given  are  only  roughly  comparative  and  can  only  be  used  as  a 
general  working  guide.  I  f  exact  results  on  particular  speciinens  are  wanted, 
laboratory  determinations  are  necessary. 


'  K.\YE  and  Labv, 
'  .\t  A  =   15. 
»  At  A  =  10. 


Physical  and  Chemical  Constanta." 


PHYSICAL  CONSTANTS 


235 


Material 

Coerc- 
ivity 

Rema- 
nence 

H, 

Hysteresis 
loss  Qe, 
ergs/cm.' 

0.8 

0.97 

2.08 

11.9 

52.6 

27.5 

4,000 
7,100 
9,000 
4,230 
11,700 
9,880 

200 
151 
156 

6,700 

11,700 

20.400 

155      1           .^4.300 

Magnetsteel{hard-«d....... 

234 
505 

211,000 
116.000 

The  figures  given  are  only  roughly  comparative  and  can  only  be  used  as  a 
general  working  guide.  If  exact  results  on  particular  specimens  are  wanted, 
laboratory  determinations  are  necessarj'. 


Induction,  B, 
for 

limaz 

For  hmc 

X 

Material                hmaz 

hmaz           JQO 

1 

Coer. 

Reman. 

Hyst. 

loss, 
ergs/ 

cm.' 

Mild  steel 

i              i 
129  1  18.190   17.7001   8.350 

0.6 
56.0 

72.0 

85.0 
85.0 

2.21 

1.6> 

1.2' 

18.0 
2.5 

'8!6' 
12.0 

10,300 
6,400= 

7,000= 

4,7002 
6,700 

53% 

Bn,az 

43% 

Bmaz 

39% 

10,000 
12,500 

4,900 

Steel,  2.8  %  Cr,  0.8  %  C. 

Steel,  5.5%  W,0.6%  C; 
hardened  at  770°. . . . 

.... 

280,000 

Steel,  7.7%  W,  1.9%  C; 
hardened  at  800°   .  .  . 

Steel,  4%  Mo,  1.2%  C; 

hardened  at  800° 
Iron 

'so" 

55 
56 
210 

17,100 
16,000 
15,100 
21  2.=;o 

1.750 
1,900 
2,500 

Silicon    iron,   0.6%   Si, 
Silicon   iron,    4.5%    Si, 





Electrolytic  iron  heated 

16,666 

to  1200°  C. 

1.3-1.5 
296 

174 
177 

Small 
3,570 
3.400 

Nickel,  annealed 

Cobalt 

Cobalt,  96  %     ... 

100 ;   5,i37i 

140 '10,000     9.500 
114  i    8,237     7,800 

i9,6ob 

Heusler  alloy* 

92      2.7.'^.T 115 

The  figures  given  are  only  roughly  comparative  and  can  only  be  used  as  a 
general  working  guide.  If  exact  results  on  particular  specimens  are  wanted, 
laboratory  determinations  are  necessary. 


U  =  I/h  = 


1 


H  =  0  for  a  vacuum. 


The  susceptibility  depends  very  much  upon  the  purity  of  the 
material,  especially  upon  the  absence  of  iron.  It  appears  to  be 
a  periodic  property  of  the  atomic  weight. 

'  H  =  10. 

*  Bar  magnet. 

'  12  per  cent.  Mn,  1  per  cent.  C. 
«  Mn  24,  Al  16,  Cu  60. 

An  alloy  of  iron  and  boron  FeiB  is  highly  magnetic,  as  is  also  MnB  (16.66 
per  cent.  B).     "Trans.  VIII  Int.  Cong.  App.  Chem." 


23r)     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Elcm. 
solids 

//  X  10 -• 

Elem. 
solids 

H  X  10-« 

Elcni. 
solids 

//  X  10  • 

Al« 

+  0.65 

P 

-  0.9 

U 

+  0.9> 

Sb 

-  0.95 

-  0.31 

-  1.4 

-  0.71 

Pt 

K 

Rh 

Ru 

+  1.32 
+  0.4 
+  1.1 
+  0.56 

V 

+  1.5 

As 

Zn 

-  0.15 

Bi 

Zr 

-  0.45 

B 

Liquids: 

Cd 

-  0.17 

+  3.7 
+  1.3(?) 

Se 

Si 

Ag 

-  0.32 

-  0.12 

-  0.2 

Br 

-  0.41 

Cr 

Hg 

-  0.19 

Cb 

N  (liq.) 

+  0.28 

Cu 

-  0.087 

Na 

+  0.51 

O  (liq.) 

+  0.324 

Au 

-  0.15 

S 

-  0.5 

HiO  (15°)... 

-  0.80 

I 

-  0.36 

Ta 

+  0.93 

Gases: 

Ir 

4-  0.15 

Te 

-  0.32 

Air  (16').... 

+  0.032 

Fe 

see  p.  229 

Tl 

-  0.31 

A 

-  0.010 

Pb 

-  0.12 

Th 

+  1.8 

He 

-  0.002 

Mg 

+  0.55 

Sn 

+  0.025 

H 

-  0.008 

Mn 

+  10. 6(?) 

Ti 

+  2.0' 

N 

+  0.024 

Mo 

+  0.04(?) 

W 

+  0.33 

O 

+  0.123 

The  figures  given  are  only  roughly  comparative  and  can  only  be  used  as  a 
general  working  guide.  If  exact  results  on  particular  specimens  are  wanted, 
laboratory  determinations  are  necessary. 

There  is  a  critical  temperature  above  which  magnetic  per- 
meability is  very  small;  in  the  case  of  iron  it  is  one  of  the  recal- 
escence  temperatures.  The  critical  temperature  is  not  perfectly 
definite,  but  depends  upon  whether  the  material  is  being  heated 
or  cooled. 

Fe,  690-895°C.;  Ni,  95  per  cent.,  300-377°C.;  magnetite, 
5S2''C.;  magnetite,  582°C.;  Heusler  allovs,  about  300°C. ;  Co, 
1102°C.;  Cu,  72°C.;  Zn,  300-350°C.,  possibly  also  at  170°C.; 
Sn,  18°  and  161°C.;  Cd,  64.9°C. 

Electromagnetic  Separation 

M.\GNETIC    PERME.\niLITY 


Iron 

Magnetite 

Spathic  iron  ore. .  . 
Hematite 

100,000 
40,000 
767 
714 
593 
296 

Oxide  of  manganese,.  . 
Black  oxide  of  nickel. . . 
Manganese  sulphate.... 

Ferrous  sulphate 

Nickelous  oxide 

167 
106 
100 

78 

Oolitic  iron  ore. .  .  . 
Limonite 

35 

The  figures  given  are  only  roughly  comparative  and  can  only  be  used  as  a 
general  working  guide.  I  f  exact  results  on  particular  specimena  are  wanted, 
laboratory  determinations  are  necessary. 

Magnetic  Permeability  (in  descending  scale). 

Faraday's  arrangement. 

Paramagnetic :  Fe,  Xi,  Co,  Mn,  Cr,  Ti,  Pd,  Pt,  Os. 

Diamagnetic:  Bi,  Sb,  Zn,  Sn,  Cd,  Hg,  Pb,  Ag,  Cu,  As,  U,  Ir,  W. 

Iron  =  2000;  air  =  1;  Bi  =  0.998. 

'  .\pproximate  only. 

'  Probably  this  paramagnetism  is  due  to  contained  iron,  for  the  more 
nearly  chemically  pure  Al  becomes  the  less  its  magnetism.  This  value  is 
given  by  Honda,  Annalen  der  Phyaik,  1910,  p.  1045. 


PHYSICAL  CONSTANTS 


237 


Action  of  the  Wetherill  Magnet  on  Minerals  Found 

IN  Placer  Sands,  Together  with  Their  Specific 

Gravity^ 


Non-magnetic 

Sp.  gr. 

Separated  by 
current    of    Vi 
amp.  or  less 

Separated  by 

current    of    2 

amp. 

Separated  by 

current    of    3J.4 

amp. 

Mineral: 

22.0 

19.0 

15.6-19.3 

14-19 

14.0 

13.5 

11.0 

8.1 

7.5 

7.2-  7.5 
7.0 
6.0 
6.0 

5.3-  7.3 
5.0 
4.8 
4.7 

4.3-  4.6 

4.0 
3.6 
3.5 
3.5 

3.25 

3.2 

3.1 

2.7 



Gold    

Platinum 

Platinum' 

Platinum' 

Platinum' 

Mercury 

Cast  iron  7.5 
Josephinite  7 

Hematite  5 

Pyrite 

Molybdenite.  .  . 

Magnetite  5.2 

Ilmenite  5 

Monazite    5 

Barite 

Chromite  4.3- 
4.6 
Rutile  4.2 
Limonite  4 

Garnet  3-4 

Pyroxene  3.2- 

3.6 

Epidote  3.5 

Titanite  3.5 

Cyanite 

Brookite  4 

Spinel  3 . 5-4 

Apatite 

Beryl 

Chrysolite  3.3 
Tourmaline  3 

Siderite  3 
Serpentine  2.  5 

Oxides  and  carbonates 

reducing  roast  with 

carbon 


Minerals  Which  Become  Quite  Magnetic  on  Roasting* 

Sulphides 

oxidizing  roast  without 

carbon 

Pyrite,  FeS2 

Marcasite,  reS2 

Chalcopyrite,  FeCuS2 

Bornite,  FeCusSs 

Arsenopyrite,  FeAsS 


Hematite, 
Siderite, 
Wolframite, 
Chromite, 


FejOa 
FeCOs 
FeMnW04 
FeCrsO* 


Zinc-Iron   Separation  by   Magnetic   Separators   Tomboy 
Gold  Mines,  Telluride,  Colo.^ 


Au, 
oz. 


As, 
oz. 


Pb,  Zn, 

per  per 

cent.       cent. 


Fe, 
per 

cent. 


Cu,         SiOi, 

per  per 

cent.        cent. 


Zinc  concentrates. 
Iron  concentrates. 


0.80 
0.75 


4.0C 
6.74 


4.10 
5.14 


45.70 
12.00 


6.20 
40.00 


1.90 
7.00 


13.40 
.12.30 


1  R.  H.  RiCHAHDS,  "Ore  Dressing,"  Vol.  IV. 
'  Probably  due  to  iron. 
'  R.  H.  Richards,  "Ore  Dressing,"  Vol.  II. 
•  R.  H.  Richards,  "Ore  Dressing,"  Vol.  IV. 


238     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Shrixk.\ge  of  Metals* 


Metal         tcn?perl"ure.    Freezing  point. 

1                            1 

Shrinkage                 Total 
during  freezing,        shrinkage, 
per  cent.               per  cent. 

Pb 

Pb 

Zn 

Zn 

Zn 

Sn  (Banca) 

Sn 

Al 

500 
600 
650 
700 
750 
550 
500 
800 
850 

1250 
500 
710 
750 
800 

1050 

326 
326 
416 
416 
416 
225 
225 
683 
683 
1060 
261 
621 
621 
621 

0  065 

0.065 

0.08 

0.08 
.    0.08 
0.1-0.15 
0.1-0.15 

0.82 
0.83 
1.40 
1.40 
1.40 
0.44 
0.55 
1    78 

Al 

1.78 

Cu 

Hi 

Expansion 

1.42 
0   29 

Sb 

0.29 

Sb.      . . 

0  63 

Sb 

0.29 

Sb 

0.66 

2.57 

Na' 

1 

The  expansion  of  copper  is  to  be  attributed  to  the  setting  free  of  dis- 
solved gas.  The  lead,  zinc,  copper  and  antimony  that  Wust  worked  with  were 
not  even  commercially  pure.  This  may  account  for  the  inconsistency  of  his 
results  with  those  of  other  authorities,  given  below. 

Shrinkage  of  Metals^ 

..,   .    I  Percentage  increase  of 

*'*'"'^  volume  on  melting 

Sodium 2.5  (a) 

2.5  (b) 
Potassium 2.5  (a) 

2.6  (6) 
Tin 2.8  (a) 

2.8  (c) 
Cadmium 5.2  (a) 

4.72(c) 
Lead 3.7  (a) 

3.39(c) 

Thallium 3.1   (a) 

Zinc. 0.9  (a) 

Aluminum 4.8  (a) 

Tellurium 7.3  (a) 

Antimony 1.4  (a) 

Bismuth -3.27(a) 

-3.31(c) 
-3.0  id) 

(a)  M.  ToEPLER,  Annalen  der  Physik,  1888,  Vol.  34,  p.  21. 
(6)   H.  Block,  Zeii.  fur  Phys.  Chew..,  1912,  Vol.  78,  p.  385. 

(c)  G.   ViNCENTiMl    and   D.   Omodei,   Atli  R.   Accademia  delle  Scieme  di 
Torino,  1889,  Vol.  31,  p.  25. 

(d)  C.  LuDEKiNG,  Annalen  der  Physik,  1888,  Vol.  .34,  p.  21. 

1  From  Hofman's  "General   Metallurgy,"  originally  from  WtJST,  Metal- 
lurgie.  Vol.  6,  1909,  p.  769. 

»  Chem.  Trade  Journ.,  June  26,  1915. 

*  Compilation  in  Engineering,  Apr.  3,  1914,  p.  473. 


SECTION  IV 
CHEMICAL  DATA 


FUNDAMENTAL  CHEMICAL  LAWS 

Avogadro's. — Equal  volumes  of  all  gases  and  vapors  contain 
the  same  number  of  ultimate  particles  or  molecules  at  the  same 
temperature  and  pressure. 

Conservation  of  Energy. — Whenever  a  change  in  mode  of 
manifestation  of  energy  takes  place,  the  total  amount  of  energy 
remains  a  constant. 

Dalton's. — See  multiple  proportions. 

Definite  Proportions. — -A  chemical  compound  always  con- 
tains the  same  constituents  in  the  same  proportion  by  weight. 

Diffusion  of  Gases. — The  rate  of  diffusion  of  gases  is  approxi- 
mately inversely  proportional  to  the  square  roots  of  their 
specific  gravities. 

Dulong  and  Petit. — The  product  of  the  atomic  weight  and 
the  specific  heat  of  the  same  element  is  a  constant. 

Gay-Lussac's. — "\Mien  gases  or  vapors  react  on  each  other 
the  volumes  both  of  the  factors  and  the  products  of  the  reaction 
always  bear  to  each  other  some  simple  numerical  ratio. 

Indestructibility  of  Matter  (Lavoisier). — Whenever  a  change 
in  the  composition  of  substances  takes  place,  the  amount  of 
matter  after  the  change  is  the  same  as  before  the  change. 

Mariotte's. — The  volume  of  a  gas  is  directly  proportional 
to  the  absolute  temperature  and  inversely  proportional  to  the 
absolute  pressure  upon  it. 

Multiple  Proportions  (Dalton). — If  two  elements  A  and  B 
form  several  compounds  with  each  other,  and  we  consider 
any  fixed  mass  of  A,  then  the  different  masses  of  B  which 
combine  with  the  fixed  mass  A  bear  a  simple  ratio  to  one 
another. 

Periodic. — The  properties  of  an  element  are  periodic  functions 
of  the  atomic  weight.- 

The  Structure  of  the  Atom^ 

The  great  difference  between  the  present  theory  in  regard  to 
the  constitution  of  matter  and  that  held  when  most  of  us  were 
students  seems  to  make  no  apology  necessary  for  introducing  a 
short  discussion  of  this  subject  here. 

The  nineteenth  century  theory  of  the  constitution  of  matter 
postulated  indivisible  bodies  called  atoms,  with  properties  that 

•  This  short  discussion  is  largely  founded  on  the  papers  by  Dr.  Saul 
DusHMAN  in  the  General  Electric  Review. 

2.39 


240     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

were  repeating  functions  of  their  weights,  which  weights 
represented  the  proportions  in  multiples  of  which  they  combined 
with  each  other.  The  atom  of  hydrogen  was  supposed  to  be  the 
smallest  mass  capable  of  existing.  However,  Crookes  even- 
tually showed  that  the  cathode  rays  consist  of  negatively  charged 
corpuscles  the  mass  of  which  is  less  than  one-thousandth  that 
of  a  hydrogen  atom.  Later  the  Ccrtes,  Becquerel,  Ruther- 
FORD  and  SoDDT  showed  that  the  atoms  of  some  elements  were 
certainly  unstable,  and  that  they  disintegrate  spontaneously 
giving  out  negatively  charged  corpuscles  or  electrons  such  as  con- 
stitute Crookes'  cathode  rays  iff  particles),  positively  charged 
particles  (a  particles)  of  the  same  mass  as  helium  atoms,  and  a 
radiation  (known  as  7-rays)  that  has  since  been  shown  to  con- 
sist of  X-rays  of  short  wave-longth. 

It  may  here  be  noted  that  although  the  a  and  /9  rays  travel 
with  speeds  comparable  with  that  of  the  X-rays  that  the  last 
have  the  power  of  ejecting  electrons  from  atoms,  whereas  the 
first  two  never  do  so. 

The  basis  of  late  nineteenth  centur\'  chemistry  was  the  "so- 
called"  periodic  law  of  Mendeleef,  that  the  atomic  weight  of 
any  element  determines  its  properties,  or,  that  the  properties 
of  the  elements  are  periodic  functions  of  the  atomic  weight. 
Roughly,  if  the  elements  are  arranged  in  recurring  "octaves" 
according  to  increasing  atomic  weights,  elements  of  similar  prop- 
erties fall  in  columns.  ^\Tiile  this  is  so  generally  true  that 
Mexdeleef  was  enabled  to  prophesy  the  discovery  of  certain 
elements  with  certain  properties,  it  is  not  without  its  exceptions. 
For  instance,  according  to  atomic  weight,  iodine  should  come 
before  tellurium,  while  according  to  its  properties  it  comes  after 
it.  Argon  and  pota-s-sium  form  another  such  exceptional  case. 
On  the  other  hand  we  have  elements  of  different  atomic  weights, 
yet  inseparable  chemically.  These  exceptions  the  newer  theory 
of  "atomic  numbers"  attempts  to  explain. 

Reverting  to  Mentjelejeff's  work,  and  considering  aL^o  the 
elements  discovered  since  his  time,  if  they  are  arranged  in  order 
of  increasing  atomic  weight  it  is  observed  that  the  first  twenty 
elements  have  similar  properties  at  ever>^  eighth  element.  Thus 
sodium  resembles  lithium,  phosphorus  is  like  nitrogen  and  chlo- 
rine like  fluorine.  But  beginning  ■with  argon,  we  must  pass  over 
18  elements  before  we  come  to  one  similar  to  it  (kn.'pton),and 
then  we  have  another  group  of  18  before  we  come  to  another 
like  it,  xenon.  In  the  next  series,  however,  comes  a  separate 
system,  the  rare  earths,  most  of  them  .so  nearly  alike  chemically 
and  physically  that  their  separation  is  a  matter  of  extreme 
difficulty.  Then  after  another  short  group  of  normal  elements 
come  the  radioactive  elements,  whose  atoms  disintegrate 
spontaneously  in  appreciable  amounts  in  appreciable  times. 
As  said  above,  there  are  discrepancies  in  any  arrangement  by 
atomic  weight  and  the  view  is  now  held  that  it  is  a  so-called 
atomic  number  that  is  the  true  factor  in  determining  the  prop- 
erties of  the  elements.  In  the  table  on  p.  242,  taken  from  the 
General  Electric  Review,  are  shown  the  elements,  their  atomic 


CHEMICAL  DATA 


241 


weights  and  the  atomic  numbers  (in  brackets).  What  these 
last  are  will  be  explained  later  (p.  244). 

In  general  the  members  of  the  0  group  are  inert  (valency  0) ; 
those  of  group  1  monovalent,  E2O,  EH;  of  group  2,  divalent; 
etc.  The  members  of  the  fifth,  sixth  and  seventh  groups  pos- 
sess two  sorts  of  valences:  with  H  they  form  compounds  of  the 
type  EH3,  EH2  and  EH  respectively,  while  with  O,  they  form 
compounds  of  the  type  E2O5,  EO3  and  E2O7  respectively. 

The  most  electropositive  elements  are  in  group  1,  the  most 
electronegative  in  group  7,  and  in  any  given  group,  those  of  low 
atomic  number  are  more  electropositive  than  those  of  high. 
This  property  is  connected  with  the  tendency  to  give  out 
electrons.  A  heated  carbon  filament  gives  off  negative  elec- 
tricity, which  J.  J.  Thomson  showed  was  in  the  form  of  free 
electrons  similar  to  those  making  up  cathode  raj's. 

Richardson  showed  that  platinum  and  other  metals  give  off 
electrons  when  heated  and  that  the  number  of  electrons  emitted 
increases  rapidly  as  the  temperature  rises.  For  every  metal 
there  exists  a  "  heat  of  vaporization  "  (w)  which  represents  the 
amount  of  work  required  to  separate  an  electron  from  the  main 
body.     The  more  electropositive  the  metal  the  smaller  is  w. 

When  metals  are  illuminated  by  radiation  of  frequency  u 
electrons  are  emitted  with  a  velocity  v  (photoelectric  effect) 
expressed  by  the  equation  }'2'>^iv^  =  Ve=  hv—p  where  m  = 
mass  of  electron,  e=  charge  on  electron,  h  =  6.56  .  10~^^  erg. 
sec,  p=work  necessarv' to  get  the  electron  out  of  the  metal 
and  V  =  retarding  potential  necessary  to  prevent  emission. 

Two  types  of  inelastic  collision  between  electrons  and  mole- 
cules of  metallic  vapor  exist.  One  type  results  in  a  displacement 
of  an  electron  in  the  atom  and  the  other  type  in  the  removal 
of  an  electron  from  the  atom.  The  potential  differences 
in  volts  through  which  an  electron  must  fall  to  acquire 
the  proper  velocity  to  suffer  these  two  types  of  collision  are 
known  as  the  resonance  and  ionization  potentials  of  the  metallic 
vapor.  In  many  cases  these  potentials  can  be  computed 
from  a  knowledge  of  v,  some  characteristic  frequency  in  the 
spectrum  of  the  metal.  The  following  direct  determinations 
by  an  electrical  method  are  summarized  by  Foote  and  Mohler. 


Resonance 

(Volts) 

Ionization 

(Volts) 

Theoretical 

Observed 

Theoretical 

Observed 

Li       

1   84 

5  36 

Na 

2.09 

2.12 

5.11 

5.13 

K 

1.61 

1.55 

4.32 

4.1 

Rb 

1.58 

1.6 

4.16 

4.1 

Cs 

1.45 

1.48 

3.87 

3.9 

Mg 

2  70 

2  65 

7  61 

7  75 

Ca 

/1.84 
\2.92 

f  1.93 
13.0 

6.08 

6.04 

Zn 

4.01 
3.78 

4.1 

3.88 

9.34 
8.95 

9.5 

Cd 

8.92 

Hg 

4.86 

4.9 

10.38 

10.35 

Tl 

1.07 

1.07 

7.3 

Pb 

1.26 

8.0 

As 

4.7 

11.5 

16 

242      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


H  .2 


u 

CO 


3  .2 

H    5 


u     -- 


OD 

t- 

-4   ^ 

OC 

"2. 

sll 

ti^ 

cS; 

e> 

o 

r-<or^ 

h^r- 

"«c:- 

r^ 

v^^(- 

eo.;g 

*!? 

n 

m 

?^ 

o 

^SS 

Xt-o 

a>e«^> 

CiiOc^ 

o^ 

M  ■::* 

t_      .0( 

tc 

0>"5 

^  (»'-■> 

a^  " 

o 

«^ 

t-^ 

«  " 

-^®'-^ 

m 

<H 

3   W    NM 

C    ■  ^ 

^s5 

O-^ 

o 

Ch'*"^ 

(S«^ 

,o  w- 

la 

°  ^ 

<*.?? 

«5o5 

W 

»<^^ 

■*^ 

«'^ 

s-.*- 

« 

t- 

»H 

£aw 

o^ 

^_IO^ 

o 

>-S5 

—  CO  ^7- 

lO-i 

Uo»  — 

■* 

OB  ~- 

-:■? 

C- JI 

e 

M^ 

s— 

O    •"■= 

le 

£Ka 
o 

«^ 

r-'OB  -), 

«-il 

"■  w  ^^ 

iSW- 

coo<r- 

<    .9: 

^oi^ 

—    .05 

'"2. 

•*"f 

«^ 

<e^ 

»-t " 

e 

»H 

3° 

ff«C? 

£« 

0 

a 

u-<  — 

o^ 

->:^':r; 

.*^o»'% 

^0>  fT 

=5 « '5    1 

*^ 

^flOO 

MMS- 

!:^•i^ 

-ric 

S".^ 

««§. 

or  4 

M 

^^ 

«o~-' 

e«^ 

n 

(O 

=9 

0-      .  -^ 

•^ 

oW 

tto>^ 

t- 

hi 

(- 

M 

« 

o 

o^ 

»^ 

a^5 

OJooS 

pa2S 

3e-<r- 

MOOj- 

w 

0»^ 

<«'4 

2             "*^ 

•w                 ID 

0       »< 

o 

o 

IS 

r^               00 

a 

M 

K 

f--  W  v^ 

Jig^ 

SsS 

o 

S" 

*^ 

c 

~      00 

M 

CO 

U 

■5;  o  ;: « 

'>  W  <o 

^«  w 

/^e>i'<« 

<«  — 

►soo  — 

l<»-l  ^ 

CHEMICAL    DATA 


243 


est 

oil 

;  i 

00 

w 

184.0 

(74) 

feeo^eo<;eOj^eo,j;eOj^eo<eo 

^o  owiiid.seo£«o  d^,2oo 

eo^eo     eo^eo     eo^^eq     eo 

CO     eo 

t^eotieo 

00 

Ta 
181.5 

(73) 

f          Bi 
208  0 

RaE 
210.2 

AcC 
211.2 
ThC, 
212.2 

RaC 
214.2 

eo 

9? 

2 

HMO 

■e        e 

«     «     s 

g     ^^eo             eo     eoHS     eo«eo 

oeo^eo     eo     eo     eo 

2«Qieo  oMrw^qn 

Keo^eoMeoE-ieOH-Jeo 

Jo 

TI 
204.0 

AcD 
207.2 

ThD 
208.2 

RaCj 
210  2 

Ac 
227.2        1 

MesTh2       (89) 
228.2 

00 

eo 

oo 

00 

AcX 

223.2 

ThX 

224.2 

Ra 

226.2 

MesThi 

228.2 

;oo 

50 

2 

geo  ceo  ceo 

w  -;  w  _  w  ■ 

JJTH^eo^eo 
•«!eoHeo«eo 

244     METALLURGISTS  AND  CHEiMISTS'  HANDBOOK 


From  the  facts  above  noted  we  may  deduce  that  the  electron 
is  a  constituent  of  all  atoms,  and  that  some  atoms  have  a  greater 
affinity  for  electrons  than  do  others.  The  atoms  with  the  low- 
est electron  affinity  are  the  most  electropositive.  There  are  also 
further  considerations  upon  which  are  based  calculations  as  to 
the  number  of  electrons  in  the  atom,  some  of  which  are  dis- 
cussed below. 

High-frequency  Spectra  of  the  Elements 

When  cathode  rays  of  low  velocity  strike  the  surface  of  any 
metal,  the  latter  emits  a  continuous  spectrum  of  X-rays  with 
wave  lengths  of  about  1  X  10~*  cm.  The  spectrum  is  cut  off  at 
an  upper  limit  of  frequency  (V'm)  which  is  connected  with  the 
maximum  voltage  of  the  X-raj'  tube  by  the  relation. 
eV  =  hV„ 

As  the  voltage  of  the  tube  is  raised  above  a  definite  value,  the 
anti-cathode  material  emits  a  characteri.stic  X-radiation  clas- 
sified according  into  three  groups  K,  L  and  M.  In  1913, 
N.  G.  J.  MosELY  measured  the  wave  lengths  of  the  K  and  L 
series  for  most  elements  and  found  that  if  to  each  element  he 
assigned  a  number  agreeing  with  its  place  in  the  periodic  table 
(as  far  as  Au  =  79),  then 

iVV  =  a[N  -  Xo] 
where  V  is  the  frequencj%  a  and  N'o  are  constants  and  .V  is  the 
atomic  number.  According  to  Rutherford  N  is  the  magnitude 
of  the  positive  charge  on  the  nucleus  of  the  atom  and  hence 
must  also  correspond  to  the  number  of  electrons  in  the  atom, 
since  each  electron  carries  a  negative  charge  and  on  a  neutral 
atom  the  number  of  negative  charges  must  equal  the  number  of 
positive  charges. 

Various   Elements,    Their   Atomic   Weights,    and   Wave- 
LE.VGTiis  OF  Their  Characteristic  X-rays 


CHEMICAL    DATA  245 

The  various  constants  of  the  electron  as  determined  by  R.  A. 
MiLLiKAN  are  as  follows  {Proc.  Nat.  Acad.  Sci.,  vol.  3,  p.  314). 

The  electron e  =  4.774  ±  0.005  XlQ-'o 

The  Avogadro  constant : i\r  =  6.062  ±0.006X10=3 

Number  of  gas  mols.  per  cc.  at  0°,  76  cm...  n  =  2.705  ±  0.003  X  lO" 

Kinetic  energy  of  translation  of  a  mol.  at  0°.  Eo  =  5.621  ±  0.006  X  10-'< 

Chanse  of  translational  mol.  energy  per  °C..  =  2.058  ±  0.002  X  lO"'" 

Mass  of  an  atom  of  H to  =  1 .  662  ±0.002X10-2' 

Planck's  element  of  action A  =  6.547  ±0.013X10-" 

Wien  const,  of  spectral  radiation Cs  =   1 .4312  +  0.0030 

Stefan-Boltzmann  const,  of  total  radiation..  =5.72  ±  0.034. X  lO''^ 

Grating  spacing  in  calcite d  =  3.  030  ±  0.001  A 

Diameter  of  atom,  average,  about =2.0                          X  IQ-^ 

Mass  of  an  electron =9.01                       X  lO"" 

Radioactive  Phenomena 

The  periodic  table  indicates  that  as  the  atom  becomes  more 
and  more  massive,  there  is  a  periodic  recurrence  of  the  same 
arrangement  of  the  outermost  electrons  in  the  atom.  The 
observations  on  high  frequency  spectra  and  scattering  of  alpha 
particles  lead  to  the  conclusion  that  the  atom  consists  of  a 
positively  charged  nucleus  of  extremely  small  dimensions  com- 
pared with  those  of  the  atom  itself,  and  furthermore,  that  the 
chemical  properties  of  the  elements  depend  only  upon,  the  mag- 
nitude of  the  positive  charge  on  the  nucleus.^ 

We  now  pass  to  the  discussion  of  observations  which  show  us 
that  not  only  is  the  atomic  weight  of  but  secondary  significance 
in  determining  the  position  of  an  element  in  the  periodic  table 
and  that  we  may  have  several  atomic  weights  for  the  same 
element,  but  that  the  structure  of  the  nucleus  itself  is  quite 
complicated. 

It  has  already  been  mentioned  that  in  the  radioactive  ele- 
ments discovered  by  Becquerel  and  Mme.  Curie,  we  have  un- 
stable atoms  which  disintegrate  spontaneously,  as  has  been 
shown  conclusively  by  Rutherford  and  Soddy.  After  a  certain 
average  period  of  existence,  w'hich  may  range  from  over  a 
thousand  years,  as  in  the  case  of  uranium  (Ui),  to  a  millionth 
of  a  second,  as  in  the  case  of  RaCi,  the  atom  undergoes  a 
sudden  explosion  and  yields  an  atom  which  possesses  totally 
distinct  properties.  The  disintegration  is  detected  by  the  ex- 
pulsion either  of  alpha  or  of  beta  particles.  ^  Accompanying 
the  expulsion  of  beta,  particles  there  is  also  observed  in  a  number 
of  cases,  an  emission  of  gamma  rays.  These  are  electromagnetic 
pulses  of  extremely  short  wave-length  (about  10~^  cm.)  and 
are  probably  due  to  the  bombardment  of  the  atoms  of  the  radio- 
active substance  itself  by  the  beta  particles. 

Further  investigation  has  shown  that  the  rate  at  which 
these   atoms  disintegrate  is  absolutely  uninfluenced  by  any 

I  The  diameter  of  the  nucleus  is  probably  less  than  Hoo.ooo  the  diameter 
of  theatom,  yet  the  nucleus  contains  practically  the  entire  mass  of  the  atom. 

2. The  alpha  particle  has  the  same  mass  as  an  atom  of  helium;  but  differs 
from  the  latter  in  possessing  two  unit  positive  charges,  2jB  =  9.54  X  10  E.S.U. 
The  beta  particles  correspond  in  mass  and  electric  charge  to  the  electrons 
units  of  negative  electricity,  E  =  4.7V  X  10  E.S.U. 


24C      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

of  the  factors,  such  as  temperature,  pressure,  illumination 
with  ultra-violet  or  X-rays,  etc.,  which  are  used  in  controlling 
the  rate  of  ordinary  chemical  and  physical  reactions. 

Since  the  disintegration  of  any  atom  always  yields  an  atom 
occupying  a  different  place  in  the  periodic  table  we  must  con- 
clude that  the  change  actually  occurs  in  the  nucleus  itself. 
Furthermore,  as  electrons  and  alpha  particles  are  emitted  dur- 
ing the  disintegration,  it  follows  that  the  nucleus,  small  as  it 
is,  consists  of  negatively  changed  corpuscles  and  helium  nuclei, 
packed  close  together.  How  is  it  possible  for  positive  and 
negative  charges  to  remain  in  equilibrium  vmder  such  condi- 
tions? Probably  Cottlomb's  law  fails  completely  for  distances 
as  small  as  those  which  exist  inside  the  nucleus.  It  may  indeed 
become  reversed;  that  is,  positive  and  negative  charges  repel 
each  other  at  distances  which  are  less  than  lO"''  cm. 

It  has  been  found  that  each  of  the  radioactive  products  be- 
longs to  one  of  three  well-defined  disintegration  series  whose 
starting  points  are  uranium,  thorium,  and  actinium  respectively. 
Fig.  1  illustrates  diagrammatically  the  manner  in  which  the 
members  of  these  series  appear  to  be  related. 

When  mesothorium  II  disintegrates,  it  yields  radiothorium 
and  as  a  beta  particle  is  expelled  during  the  transformation 
there  is  no  change  in  atomic  weight.  Radiothorium  is  chem- 
icalh-  allied  to  thorium  and  non-separable  from  it.  These 
facts  lead  to  the  conclusion  that  radiothorium  belongs  to  Group 
IV  and  mesothorium  II  must  therefore  belong  to  Group  III. 

Passing  to  thorium  A",  we  here  again  come  to  an  element 
which  is  chemically  similar  to  radium,  thus  placing  it  in  Group 
II.  The  atom  of  thorium  A'  expels  an  alpha  particle  and  yields 
thorium  emanation,  a  gas  which  is  iiwrt  chemically,  and  con- 
denses at  low  pressures  between  —  r20°C.  and  —  150°C.  The 
emanation  resembles,  therefore,  the  rare  gases  of  the  argon 
group. 

Thorium  emanation  is  the  first  member  of  the  group  of 
transformation  products  that  constitute  the  thorium  "active 
deposit."  They  are  indicated  in  Fig.  1  as  thorium  A,  B,  Ci,  Cn 
and  D. 

The  most  noteworthy  feature  about  these  products  is  the 
fact  that  individual  members  of  each  series  appear  to  be  chem- 
ically indistinguishable  from  certain  members  of  the  other 
series.  Owing,  however,  to  the  difference  in  previous  history 
of  these  atoms,  they  possess  different  atomic  weights  and  also 
differ  in  period  of  existence.  In  other  words,  we  have  here 
cases  of  elements  that  are  absolutely  inseparable  by  all  chemical 
methods  so  far  devised,  and  yet  differ  in  that  respect  which 
has  hitherto  been  taken  to  be  the  most  important  characteristic 
of  an  element — its  atomic  weight.  Soddy,  who  has  drawn 
attention  to  these  cases,  has  named  these  products  isotopes, 
since  they  occupy  the  same  place  in  the  periodic  table.  As 
shown  in  the  table  in  Fig.  1,  there  are  three  other  isotopes  of 
thallium,  and  no  less  than  six  isotopes  of  lead.  These  results 
are  thus  in  accord  with  the  conclusion  already  advanced  above, 


ufANWM  sfffi£S  momuM  6£Ri£S 

Umnium  /  ^^  ^^    Thorium 

\  y^^   Mexthoriumt 

/2342\  Uranium X,  \i)/3  '     ^-r-^ 

'           1  ysa^i   MesoUwium  a 

1  ^Affi;  <^) 

JpSt\  Uranium  J,  yi~. 


/Z34Z\  Urtti" 


_  /^^   VKriumX 

Uromum  O  yXseeU       in) 


/Z50i\  Ionium 


/ziSs   TTwium  [manotian 
/\^      1.0) 

\ 


I'      ^-^  /2I6Z\    ThoriumA 

I  ^  /Ai«i/       C') 

/m^\  Radium  /^jjjv    ;;!<y.,i,;„  5 

'  I  -  1 

fladium  £manoticn  a'\Siy\S'^^ 

Thorium  Ci  f2lZe\  /a;8-Z\  Thorium  0 

2oei\  z«w  fT"/*  Of) 


y2l8i\  f?tidiumA  \^l)   C^J 


ACTINIUM  sfmss 


/2l4^  fhd/um  B 


liZ7T\  Acti/n'vm 
SMBiJ        (a) 

I  Y 


,/MSA^(J) 


??37\  Adlnium  X 

W^/«W/i//7?<7,  (Z\^fSx/iumC,  "       "Y 

^^     UZ7)  /^Vfil/       '"" 


19  ?\  Actintum  Emonatiofl 
imj        (O) 


fia?\  ffodiumO  jtr^    ...   .       ^ 


I  t 

Jl^  /fl^  AUInium  8 

(2nT\  Radium e  „/\^V       W) 

fiT^j  Adinium  C 

/^io&\  /bdiu/n  f  \ 

^/\s^        m  jd^ActmiumD 

/^oi^  Lead  [IfodiumG)  ^xiSLeod 

Fig.    I. — Method  of  disintegration  of  radioactive  elements.  (247) 


248      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

that  the  most  characteristic  property  of  any  element  is  its  atomic 
number,  and  not  the  atomic  weight.  The  different  isotopes  of 
any  element  may  therefore  be  regarded  as  consisting  of  atoms 
which  are  all  alike  as  far  as  the  number  of  electrons,  their 
arrangement,  and  the  charge  on  the  nucleus;  but  the  arrange- 
ment of  electrons  and  alpha  particles  in  the  nucleus  of  each  of 
these  atoms  is  evidently  not  the  same.  Hence  arise  the  differ- 
ences in  mass  and  average  life. 

Soddy's  Law  of  Sequence  of  Changes. — A  comprehensive 
survey  of  the  chemical  properties  of  the  different  radioactive 
elements  has  led  Soddy  and  Faj.\ns  independently  to  an  inter- 
esting and  extremely  important  generalization  which  enables 
them  to  assign  these  isotopes  to  their  places  in  the  Periodic 
Table. 

It  will  be  remembered  that  an  alpha  particle  is  a  helium  atom 
with  two  positive  charges.  By  its  expulsion,  therefore,  the 
atom  must  lose  two  positive  charges,  and  the  atomic  weight 
must  decrease  by  four  units.  Similarly,  the  expulsion  of  a 
beta  particle  means  the  loss  of  a  negative  charge  or,  what  is 
equivalent,  the  gain  of  one  positive  charge;  and  since  the  mass 
of  the  beta  particle  is  extremeh'  small  compared  with  that  of 
the  atom,  there  is  practicallj'  no  decrease  in  atomic  weight. 
Now  in  the  Periodic  Table  the  valency  for  oxygen,  an  electro- 
negative element,  increases  regularly  as  we  pass  from  Group  0 
to  Group  VllI,  while  that  for  hydrogen,  an  electropositive 
element,  decreases,  i.e.,  the  electropositive  characteristic 
increases  by  one  unit  for  each  change  in  the  group  number  as  we 
pass  in  any  series  from  left  to  right.  Furthermore,  in  each 
group  the  electropositive  character  increases  regularly  with  in- 
creasing atomic  weight. 

These  considerations  led  Soddy  and  Fajans  to  this  conclusion : 

The  expulsion  of  an  alpha  particle  from  any  radioactive 
element  leads  to  an  element  which  is  two  placef.  lower  in  the  Periodic 
Table  (and  has  an  atomic  weight  which  is  four  units  less)  while 
the  emission  of  a  beta  particle  leads  to  art  element  which  is  one  place 
higher  up,  but  has  the  same  atomic  weight. 

It  is  possible,  therefore,  to  have  elements  of  the  same  atomic 
weight  but  possessing  distinctly  different  chemical  properties, 
and,  on  the  other  hand,  since  the  effect  of  the  emission  of  one 
alpha  particle  may  be  neutralized  by  the  subsequent  emission  of 
two  beta  particles,  it  is  possible  to  have  two  elements  which 
differ  in  atomic  weight  by  four  units  (or  some  multiple  of  four) 
and  yet  exhiVjit  chemicallj'  similar  properties. 

As  an  illustration,  let  us  consider  the  Uranium  Series. 
Uranium  1  belongs  to  Group  VI.  By  the  expulsion  of  an  alpha 
particle  we  obtain  uranium  Xi,  an  element  of  Group  IV.  This 
atom  in  turn  disintegrates  with  the  expulsion  of  a  beta  particle. 
Consequently  uranium  A' 2  must  belong  to  Group  V.  In  this 
manner  we  can  follow  the  individual  changes  that  lead  to  the 
different  members  of  the  series,  and  by  means  of  the  generaliza- 
tion of  Soddy  and  Fajans  we  cannot  only  assign  to  each  element 


CHEMICWL  DATA  249 

its  place  in  the  Periodic  Table  but  also  its  atomic  weight,  as  has 
been  done  in  Fig.  1. 

This  generalization  has  been  of  material  assistance  in  elucidat- 
ing some  of  the  difficult  problems  in  the  study  of  the  disintegra- 
tion series.  More  than  this,  it  has  led  to  the  intensely  inter- 
esting conclusion  that  the  end  product  of  each  of  the  three 
radioactive  series  in  an  isotope  of  lead.  The  results  of  the 
most  recent  work  on  the  atomic  weight  of  lead  are  in  splendid 
accord  with  this  deduction,  as  it  has  been  found  that  lead  which 
is  of  radioactive  origin,  has  a  slightly  lower  atomic  weight  than 
ordinary  lead.i 

In  a  couple  of  cases  the  isotope  has  not  been  definitely 
isolated,  but  there  can  hardly  be  any  doubt  of  its  existence. 
Thus,  the  disintegration  product  of  radium  C2  must  be  an  ele- 
ment of  Group  IV,  but  the  evidence  for  its  existence  is  very 
meager. 

General  Conclusions  Regarding  the  Structure  of  Atoms 

It  is  obvious  that  any  theory  of  the  structure  of  the  atom 
which  we  can  form  at  present  must  be  regarded  as  only  a  first 
approximation.  But  there  are  some  conclusions  which  can  be 
drawn  with  a  certain  degree  of  assurance  from  the  above 
observations. 

Firstly,  the  atom  must  be  constituted  of  a  positive  nucleus 
of  extremely  small  dimensions  (but  approximately  equal  in 
mass  to  the  atom  itself),  and  a  number  of  electrons  distributed 
presumably  in  one  or  more  rings  or  spherical  shells  outside  the 
nucleus,  the  total  number  of  electrons  being  equal  to  the  positive 
charge  on  the  latter.  Secondly,  all  the  physical  and  chemical 
properties  of  the  atom  (excepting  radioactive  and  gravitational) . 
are  governed  solely  by  the  magnitude  of  this  charge  on  the 
nucleus  (or  atomic  number). 

Thirdly,  in  order  to  explain  chemical  combination  and  peri- 
odic properties,  we  must  assume  that  there  are  two  classes  of 
electrons,  an  inner  and  outer  set.  The  outer  ones  are  the  elec- 
trons which  are  active  in  chemical  combination  and  conduction 
of  electricity  through  metals.  They  are  the  so-called  valency 
electrons.  The  number  of  electrons  in  this  outer  set  undergoes 
periodic  changes  in  value  as  the  atomic  charge  increases,  and 
the  maximum  number  of  electrons  which  are  stable  on  the  outer 
surface  of  the  atom  is  eight,  thus  accounting  for  the  periodicity 
of  eight  in  Mendeljeff's  table'. 

The  outer  electrons  are  also  those  which  are  active  in  the 
production  of  ordinary  emission  spectra.  If  Lorentz's  explana- 
tion of  the  Zeeman  effect  is  right,  and  it  is  the  only  one  that 
explains  the  phenomenon  quantitatively,  then  we  must  con- 
clude that  the  lines  visible  in  ordinary  emission  spectra  are  due 
to  the  vibration  of  electrons  with  frequencies  ranging  around 
10'*  per  second.  The  fact  that  these  emission  spectra  are 
modified  by  method  of  excitation  and  also  differ  with  different 
compounds,  shows  that  the  electrons  producing  these  phenom- 

1/.  Am.  Chem.  Soc,  36,  1329,  1914. 


250     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

cna  are  near  the  surface  of  the  atom  and  therefore  probably 
the  same  as  the  valency  electrons. 

On  the  other  hand,  the  inner  electrons  are  unaffected  by 
ordinary  methods,  but  hijj;h  velocity  electrons  may  stimulate 
them  and  thus  produce  the  high-frequency  spectra  observed 
by  MosELEY  and  others.  As  pointed  out  by  Kossel  the  con- 
tinuity of  the  A'-line  spectra  for  the  different  elements  from  the 
lowest  atomic  number  to  the  hip;hest,  shows  that  the  periodicity 
observed  in  the  outer  electrons  does  not  extend  to  the  innermost. 

C.  A.  Kraus  has  stated  the  reasons  for  drawing  tlie  same 
conclusions  from  a  chemical  standpoint.  "The  outer  elec- 
trons," he  writes,  are  held  loo.sely  and  are  able  to  move  from 
atom  to  atom.  These  electrons  are  very  sensitive  to  changes 
in  condition,  such  as  temperature,  pressure,  the  presence  of 
other  atoms,  etc.  So  weak  is  the  bond  emitting  the  electron 
to  an  atom,  that  more  electro-negative  atoms  may  remove  it 
from  the  original  atom  in  question.  The  electrons  to  which 
conduction  is  due  in  metals  are  the  same  electrons  which  are  in- 
volved in  the  common  chemical  combi7iations  of  metals  with  other 
elements. 

"The  less  tendency  the  metal  has  to  retain  its  electron,  the  more 
electro-positive  it  becomes  and  the  more  readily  does  it  in  general 
react.  Ordinarily,  the  positive  and  negative  constituents  of  a 
compound  are  held  together  through  the  medium  of  the  electron. 
Under  certain  conditions,  however  (for  example  in  solution  in 
a  dielectric  medium)  the  electrostatic  force  acting  between  the 
metallic  atom  and  its  electron  becomes  weakened  to  such  an 
extent  that  the  negative  constituent  escapes,  carrying  the  elec- 
tron with  it.  The  same  result  may  be  obtained  at  high  tem- 
peratures with  the  fused  salt  or  even  with  the  solid  compound." 

That  is,  when  sodium  and  chlorine  combine,  the  sodium 
atom  gives  up  an  electron  to  the  atom  of  chlorine  (which  is 
the  electro-negative  element),  and  the  atoms  are  thus  held 
together  by  the  electrostatic  forces  between  the  positively 
charged  residue  of  the  sodium  atom  and  the  negatively  charged 
atom  of  chlorine.  In  a  solution  of  high  dielectric  constant  such 
as  water,  these  electrostatic  forces  are  weakened  to  such  an 
extent  that  we  have  the  phenomenon  known  as  "dissociation" 
and  the  formation  of  Na  (sodium  ion)  and  CI  (chlorine  ion). 
Naturally  the  properties  of  those  ions  are  radically  different 
from  those  of  metallic  Na  and  gaseous  CI2  as  we  know  them. 

Sodium  sulphite  (NaiSOs) 20  g. 

Sodium  carbonate  (NaiCOrlOHiO) 20  g. 

Sodium  bisulphite  (HXaSOs) 20  g. 

Cupric  acetate  (Cu-2C2H302-HiO) 20  g. 

Potassium  cyanide  (100  per  cent.  KCN) 20  g. 

The  electrolytic  conductivity  of  metallic  lithium  dissolved  in 
liquid  ammonia  is  explained  in  a  similar  manner.  Here  we 
actually  have  a  separation  of  the  lithium  atom  into  Li  and  an 
electron,  and  in  the  electrolysis,  the  lithium  is  deposited  at  the 
cathode  while  electrons  are  carried  to  the  anode. 


CHEMICAL   DATA  251 

Similar  ideas  have  been  expressed  by  Sir  Wm.  Ramsay;  G.  N. 
Lewis;  W.  Kossel  and  others.  All  are  agreed  upon  this  conclu- 
sion that  chemical  combination  between  different  atoms  con- 
sists in  the  transference  of  one  of  the  outer  electrons  from  one 
atom  to  the  other.  But  as  to  the  actual  distribution  of  the 
electrons  in  the  different  atoms  and  the  nature  of  the  forces 
between  the  electrons  and  the  positive  nucleus — regarding  these 
and  allied  questions  there  is  quite  a  variation  of  opinion. 


252    METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


The  Periodic  Tab 

LE   OF  THE 

Elements 

Series 

Zero  group 

Group  I 
R,0 

Group  II 
RO 

Group  III 
R.Oj 

Group  IV 
RH. 
ROi 

I 

V 
He=      4.0 
Ne=    20.0 
Ar  =   39.88 

kr -"82.92 

Xe=i30.'2" 

H       =      1  COS 
Li       =      6.94 
Na     =    23.0 
K       =    39.1 
(Cu)=    63.57 
Rb     =    85.45 
(Ag)  =107.9 
Cs      =132.8 
(-) 

2 
3 

4 
5 
6 
7 
8 
g 

Be  =      9.1    |B     =    11 
Mg=    24.32  Al    =    27.1 
Ca  =    40.07  Sp    =    44,1 
Zn  =    65.37  Ga  =    69.9 
Sr    =    87.63  Yt  =    88.7 
Cd  =112.4   lln    =114.8 
Ba  =137.37  La   =139.0 

C    =12 
Si    =28.3 
Ti   =48.1 
Ge  =72.5 
Zr    =90.0 
Sn   =119 
Ce  =140.25 

10 

Yb  =173.2 
Tl   =204.0 

11 

12 

(Au')  =  197.2 

Hg  =200.6 
Ra  =226.2 

Pb-207.1 
Th  =  232.4 

Series 


Group  V 
RHi 

Rj06 


Group  VI 
RHt 
ROj 


Group  VII 
RH. 
RjOi 


Group  VIII 
RO4 


N  =    14.01 
P    =   31.04 


O    = 

S     = 

Or   = 


16.0    F     -   19.0 
32.07  CI    =   35.46 


V   =   51.0 

A8=   74.96  ]Se   = 
Cb=  93.5    |mo  = 


52.0 
79.2 
96.0 


Sb  =120.2     Te  =127.5 


Ta  =  181.5 
'bI  =208.0 


W   =184.0 


I'     =  238 . 5 


Mn=    54.93 
Br   =    79.92 

=  100.0 
I      =126.92 


Fe 
Co 


55.84.  Ni  ■■ 
58.97,  Cu. 


58.68 
63.57 


(  Rh  = 
\Pd  = 


102.9,  Ru  =  101.7 
106.7,  Ag  =  107.88 


Ir 
Os 


■  193.1.  Pt  =195.2 
=  190.9.  Au  =  196.7 


Examples  of  the  manner  in  wliich  the  properties  of  the  ele- 
ments are  progressive  functions  of  the  atomic  weight  are  shown 
in  the  tables  of  the  Ca-Sr-Ba,  and  Fl-Cl-Br-I  families  which 
follow : 


Element 

Calcium 

Strontium 

Barium 

Atomic  mass 

40 

88 

137 

Specific  gravity. . . 

1.0 

2.5 

3.6 

Carbonate      disso- 

ciates;    tempera- 

ture  

OOOC. 

llOO^C. 

1400°C. 

Grams  of   hydrox- 

ide   soluble    in    a 

liter   of   water  at 

15''C 

1.32 

18 

50 

Heat  of  formation 

of  chloride;  units. 

170 

185 

105 

CHEMICAL  DATA 


253 


Element                 Fluorine      1      Chlorine 

Bromine 

Iodine 

Atomic  mass 

19 

35.5 

80 

127 

Boiling      tempera- 

ture   

-  187°C 

-33° 

59° 

184° 

Specific  gravity 
Union  with  hydro- 

1.15  (liquid) 

1.5  (liquid) 

3.2   (liquid) 

5  (solid) 

In     the    dark 

In  sunlight. 

At  red  heat. 

At    red    heat 

gen  takes  place. 

at     ordinary 
tempera- 
tures. 

but    incom- 
pletely. 

Heat  of  formation 

37.6        heat             22 

8 

-6.1 

of  hydrogen  com- 
pound. 
Stability  of  hydro- 

units. 

Most  stable.     Decomposed 

Decomposed 

Decomposed 

gen  compound 

at  1500°C. 

at  800°C. 

at  180°C. 

Electrochemical  Equivalents^ 


Element 


Valence 


Atomic  weight 


Electrochemical 

equivalent  (1  amp. 

1  sec.) 


Al  + 
Ag-f 
Br  - 
Cd  + 
Ca  -f 
Cl  - 
Co  + 
Cu  -f 
Cu  + 
Sn  + 
Sn  + 
Fe  -f- 
Fe  + 
F  - 
H  + 
I  - 
Hg-f 
Hg  + 
Ni  + 
Au  -f- 
O  - 
Pt  + 
Pt  + 
Pb  + 
K  + 
Na  -f 
Zn  -f 
Sb  + 
Li  -f 
Mg-f 
Mn-f 
Si  - 
S     - 


27.1 

107.88 
79.92 

112.40 
40.0 
35.46 
58.97 
63.57 
63.57 

119.0 

119.0 
55.84 
55.84 
19.0 
1.008 

126.92 

200.6 

200.6 
58.68 

197.2 
16.00 

195.2 

195.2 

207.1 
39.10 
23.00 
65.37 

120.2 
6.94 

.24.32 
54.93 
28.3 
32.07 


0.00009363 

0.0011183 

0.00082845 

0.00058257 

0.00020732 

0.00036758 

0.00030564 

0.00032948 

0.00065897 

0.00061678 

0.00030839 

0.00028947 

0.00019267 

0.00019695 

0.000010449 

0.00131566 

0.00103661 

0.00207322 

0.00030414 

0.00068139 

0.000082928 

0.00050584 

0.00101168 

0.00107340 

0.00040531 

0.00023842 

0.00033881 

0.00041532 

0.00007245 

0.00011567 

0.0001891 

0.0001449 

0.0001656 


iGoRE,  "The  Art  of  Electrolytic  Separation  of  the  Metals." 


254     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
International  Atomic  Weights,  1916. 


Element 

1 
Symbol 

Weight 

Val- 
ence* 

Electro- 
chem.  equi- 
valents,   g. 
per  amp.- 
hr. 

Melting 
points 

Boiling 
points 

Aluminum.  . 
Antimony... 
Argon 

Al 
Sb 
A 
As 
Ba 

Bi 
B 
Br 
Cd 
Cs 

Ca 
C 
Ce 
CI 
Cr 

Co 
Cb 
Cu 

Er 

Eu 

F 

Gd 
Ga 
Ge 

Gl 
Au 
He 
Ho 
H 

In 
I 

Ir 
Fe 
Kr 

La      . 

Pb 

Li 

Lu 

Mg 

Mn 
Hg 

Mo 
Xd 
Ne 

27.1 

120.2 

39.88 

74.96 

137.37 

208.0 

11.0 

79.92 

112.40 

132.81 

40.07 
12.05 
140.25 
35.46 
52.0 

58.97 

93.1 

63.57 

162.5 

167.7 

152.0 

19.0 
157.3 

69.9 

72.5 

9.1 
197.2 

4.002 
163.5 

1.008 

114.8 
120.92 
193.1 
55.84 
82.92 

1.39.0 
207.20 
6.94 
175.0 
24.32 

54.93 
200.6 

96.0 

144.3 

20.0 

3 
3 
0 
3 
2 

3 
3 
I 
2 

1 

2 

4 
4 
1 
3 

2 
5 
2 

0.3368 
1 . 4966 

658.7 
630.0 
-188.0 
850.0 
850.0 

271.0 

2350.0 

-7.3 

320.9 

26.0 

810.0 
>3600.0 

623.0 
-101.5 
1520  toFe 

16101 

1950-2200 

1083.0 

1800.0 

1460.0 

—  186.0 

.Arsenic 

Barium 

0.9324 
2.5619 

2.5854 

450. 0^ 

Bismuth. . .  . 
Boron 

1440.0 

Bromine 

Cadmium. .  . 

2.98i4 
2.0955 

58.75 
778.0 

0.7477 
0.1118 

Carbon 

Chlorine. . . . 
Chromium. . 

Cobalt 

1.3220 
0.6476 

1.1000 

-   37.6 
2200.0 

Copper.  .  .  .  . 

1 . 1858 

2100.0 

Fluorine. . . . 

...1.. 

0.7085 

-223.0 

-187.0 

30.1 
958.0 

1800.0 

1063.0 

-271.9 

Gold     . 

3 
0 

2.4513 

Helium 

-268.8 

Holmium. . . 

Hydrogen. .  . 

1 

0.03759 

-259.0 

154.5 

114.0 

2300.0 

1530  ±  5 

-169.0 

810.0 
327.4 
186.0 

-252.8 

Iodine 

1 
4 
2 

4.7303 

184.35 

Iron 

Krypton. .  .  . 

1.0404 

2450.0 
-151.7 

Lead 

2 

1 

3.8613 
0.2622 

1625.0 

Magnesium . 

Manganese. 
Mercury..  .  . 
Molybde- 

2 

2 
2 

2 

0.4531 

1.0255 
7.4803 

1.7900 

651.0 

1260  ±  20 
-38.7 

2500.0 

840.0 

-253.0 

1120.0 

1900.0 
357.0 

Neodymium 

.0 

'  In  those  cases  in  which  a  metal  has  two  valences,  the  valence  given  corre- 
sponds to  the  electrochemical  equivalent,  and  may  not  necessarily  be  the 
commoner  one. 

'Sublimes.     J  Commercial  metal,  about  1480°  C. 


CHEMICAL  DATA  255 

International  Atomic  Weights,  1916,     Continued 


Element 

Symbol 

Weight 

Val- 
ence! 

Electro- 
chem.  equi- 
valents,   g. 

per  amp.- 
hr. 

Melting 
points 

Boiling 
points 

Nickel 

Ni 

Nt 
N 

Oa 
O 

Pd 
P 

Pt 
K 

Pr 

Ra 
Rh 
Rb 
Ru 
Sa 

Sc 
Se 
Si 
Ag 
Na 

Sr 

S 

Ta 
Te 
Tb 

Tl 
Th 
Tm 
Sn 
Ti 

W 
U 
V 

Xe 
Yb 

Yt 
Zn 
Zr 

58.68 
222.4 

14.01 
190.9 

16.00 

106.7 
31.04 

195.2 
39.10 

140.9 

226.0 
102.9 
85.45 
101.7 
150.4 

44.1 
79.2 
28.3 
107.88 
23.00 

87.63 
32.06 
181.5 
127.5 
159.2 

204.0 
232.4 
168.5 
118.7 
48.1 

184.0 
238.2 
51.0 
130.2 
173.5 

88.7 

65.37 

90.6 

2 
0 
3 

1.0945 

1452  ±  3 



Nitrogen 

0.1745 

-210.5 
2700.0 
-218.0 

1550.0 
44.1 

1755.0 
62.3 

940.0 

900.0 

1940.0 

38.0 

> 1950.0 

1350.0 

1200, 0(?) 
218.5 

1420.0 

961.0 

97.5 

>S05,  850< 

>Ca<Ba 

116.5 

2850.0 

451.0 

-195.7 

Oxygen 

Palladium  . . 
Phosphorus . 
Platinum.  .  . 
Potassium  .. 
Praseody- 

2 
2 

0.2983 
1.9951 

-183.0 
287!6 

4 
1 

1.8206 
1.4584 

'    667 .0" 

2 

Selenium  . . . 

Silicon 

Silver 

Sodium 

Strontium.. . 
Sulphur 

2 
4 

1 
1 

2 
2 

1.477 
0.2638 
4.0248 
0.8596 

1.6333 
0 . 5980 

690.0 

1955. 6' 
742.0 

444.5 

Tellurium..  . 
Terbium. . . . 

2 

2.379 

1390.0 

Thallium...  . 

302.0 
>1700.0<Pt 

1700.0 

Thulium 

1 

Tin 

Titanium.  .  . 

Tungsten.  .  . 
Uranium 

2 
4 

6 

2.2188 
0.4490 

1 . 1437 

231.9 
1795.0+15.0 

3267 

Near  Mo. 

1720.0  +  20.0 

-140.0 

1800. 0(?) 

1200. 0(?) 

419.3 

2350.  0(?) 

2270.0 

Xenon 

0 

-109.0' 

Yttrium.  .  .  . 

Zinc... 

2 

1.2194 

918.0" 

Note. — ^In  addition  to  the  above  elements,  there  is  some  reason  to  believe 
in  the  existence  of  a  gas  "  coronium  "  (so  called  from  its  existence  in  the  solar 
corona)  which  would  form  0.00058  per  cent,  of  the  earth's  atmosphere  ac- 
cording to  Dr.  a.  Wegener's  calculations  {Science,  Oct.  31,  1913}. 

1  In  those  cases  in  which  a  metalhas  two  valences,  the  valence  given  corre- 
sponds to  the  electrochemical  equivalent,  and  may  not  necessarily  be  the 
commoner  one. 


256     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

A  SHORT  ACCOUNT  OF  THE  COMMON  ELEMENTS.* 

Aluminum. — Atomic  weight,  27.1;  trivalent;  sp.  gr.,  cast, 
2.56;  rolled,  2.66.  A  silver-white  metal;  breaks  with  crystalline 
fracture.  Melts  at  657°C.;  volatilizes  at  a  very  high  tempera- 
ture; specific  heat  from  0°  to  100°C.,  0.2270  (mean);  latent  heat 
of  fusion,  100  cal.;  coefficient  of  linear  expansion,  0.0000231; 
heat  conductivity,  31.33  (Ag  =  100).  Is  friable  at  530°C. 
The  tensile  strength  of  cast  aluminum  is  about  15,000  lb.  per 
sq.  in.>J)ut  this  may  be  increased  by  drawing  to  35,000  lb.  per 
sq.  in.     Its  conductivity  is  about  58  (Ag  =  100). 

The  metal  cannot  be  reduced  with  carbon ;  but  forms  a  carbide 
AliCj;  and  a  nitride  AIX.  It  is  reduced  by  sodium  from  its 
compounds.  Said  to  be  paramagnetic,  susceptibility  0.6  X  10~«. 
Is  very  malleable  between  100°  and  150°C.  Is  notable  for 
the  lightness  of  its  alloys,  and  for  its  energetic  reduction  of 
oxides  of  other  metals  (thermit  process).  It  cannot  be  pro- 
duced by  direct  electroh'sis  in  aqueous  solution  but  is  deposited 
electrolytically  from  a  solution  of  its  oxide  in  cryolite.  The 
oxide  forms  the  base  of  most  artificial  gems. 

Antimony. — Atomic  weight,  120.2;  trivalent  usually;  sp.  gr. 
6.71;  melts  at  632°F.,  and  volatilizes  at  about  1,500°C.  Is 
in  no  degree  malleable  or  ductile;  its  electric  conductivity  is 
4.2  (.A.g  =  100).  Has  extremely  crj-stalline  structure;  coeffi- 
cient of  linear  expansion,  along  axis  0.0000168;  normal  to  axis 
0.0000089.  It  may  readily  be  crushed  to  powder.  Hydro- 
chloric acid  has  a  slight  solvent  action  on  it;  nitric  acid  converts 
it  to  the  pentoxide;  sulphuric  acid  first  oxidizes  it  and  then 
converts  it  to  sulphate.  Chlorine  reacts  directly  with  the 
metal,  forming  anhydrous  chloride.  The  classic  process  for 
the  recovery  of  antimony  is  its  liquation  as  sulphide,  Sb2Sj, 
from  rich  ores  and  the  subsequent  throwing  down  of  the  an- 
timony by  melting  with  scrap  iron.  It  is  also  recovered  by 
subjecting  the  ore  to  an  oxidizing  roast,  driving  off  the  anti- 
mony in  fume,  which  is  caught  and  reduced  to  metal.  Anti- 
mony can  also  be  recovered  by  lixiviation  of  the  ores  with 
sodium  sulphide,  obtaining  either  NaaSbSs  or  Na3SbS4.  From 
these  solutions  it  can  be  regained  either  chemically  or  by 
electrolysis.  Another  important  source  of  antimony  is  in 
refining  argentiferous  lead.  Before  mixing  in  zinc  for  the 
Pattinson  process  the  lead  is  oxidized  slowly  for  some  time  to 
purify  it  (softening  process).  The  slag  thus  formed  runs  high 
in  antimony  from  which  it  is  recovered  as  antimonial  lead. 

In  refining  crude  antimonj'  (not  hard  lead)  the  crude  metal 
is  fused  with  8  to  12  per  cent,  of  Sb^Ss  and  4  to  5  per  cent,  of 
NaCl  to  bring  it  up  to  98  to  99  per  cent.,  and  then  itis  given  a 
final  purifying  by  "starring,"  in  which  it  is  melted  in  the 
presence  of  SbjSs  and  soda  ash.  No  iron  must  be  allowed  to 
get  into  it  during  this  process;  so  the  iron  ladles,  etc.,  are 
kept  well  covered  with  whitewash. 

Argon. — Occurs  in  the  air  to  the  extent  of  0.935  per  cent. 

'  For  the  ordinary  properties,  see  the  preceding  table. 


CHEMICAL  DATA  257 

It  can  be  prepared  by  passing  atmospheric  nitrogen,  free  from 
oxygen  and  moisture,  over  red-hot  magnesium  ribbon;  magne- 
sium nitride  is  thus  formed  while  the  argon  does  not  combine. 

Arsenic. — Atomic  weight  74.96;  trivalent  usually;  sp.  gr., 
cr\-stalline  5.73,  amorphous  4.71;  a  brittle  steel-colored  metal, 
volatilizes  at  450°C.,  without  melting.  The  metal  and  the 
pentavalent  compounds  are  not  poisonous,  but  the  metal  easily 
oxidizes  and  the  pentavalent  form  easily  reduces  to  the  ex- 
tremely poisonous  trivalent  form.  Forms  a  very  volatile 
hydride  AsHs,  which  serves  as  the  basis  for  the  famous  Marsh 
test.  Most  of  the  arsenic  on  the  market  is  recovered  from  flue 
dust,  in  which  the  arsenic  concentrates.  This  is  roasted  in 
reverberatories  and  the  roasted  arsenious  oxide  condensed  in 
large  chambers. 

Barium. — The  properties  of  this  metal  are  still  in  doubt, 
as  it  is  probable  that  it  has  not  yet  been  prepared  in  a  high 
degree  of  purity.  The  impure  form  is  prepared  by  reducing 
the  oxide  with  magnesium.  The  peroxide,  Ba02,  formed  by 
heating  BaO  to  500°C.  in  the  presence  of  air,  serves  as  the  basis 
of  hj'drogen  peroxide  manufacture.  At  a  still  higher  tempera- 
ture it  again  gives  off  oxygen. 

Beryllium. — Atomic  weight,  9.1;  bivalent;  sp.  gr.  1.842.  A 
hard,  lustrous,  white,  malleable  metal.  Melts  at  1278°C.  Does 
not  volatilize  at  1900°C.  Hardness,  over  6.  Burns  like  mag- 
nesium when  in  powder  or  ribbon.  Withstands  water  better 
than  magnesium,  but  this  apparent  inertness  may  be  due  to  a 
film  of  oxide.  Prepared  by  electrolyzing  a  mixture  of  sodium 
and  beryllium  fluorides,  or  by  decomposition  of  the  fluoride  by 
sodium,  potassium  or  magnesium.  Has  highest  heat  of  fusion 
of  any  metal,  277  cal.  Derives  its  former  name,  glucinum,  from 
the  sweetish  taste  of  its  compounds. 

Bismuth. — Atomic  weight,  208;  trivalent;  sp.  gr.,  9.80; 
the  metal  is  neither  malleable  nor  ductile;  it  melts  at  266°C. 
and  volatilizes  between  1100  and  1450°.  Electric  conductivity, 
1.3  (Ag  =  100).  This  metal  is  remarkable  in  that  it  expands 
on  solidifying;  its  sp.  gr.  is  about  10.055  just  above  the  melting 
point.  It  is  the  most  diamagnetic  material  known.  Is 
obtained:  (1)  by  liquation  in  crucibles  or  retorts  of  ores  carrying 
native  bismuth;  (2)  by  reduction  processes,  using  Na2C03  as  a 
flux,  beside  CaO  and  FeO,  since  the  fusion  temperature  of  the 
slag  must  be  low;  (3)  as  a  by-product  of  electrolytic  lead  re- 
fining; (4)  as  a  by-product  of  steam  Pattinsonizing  (Htjlst 
process) ;  (5)  as  a  result  of  the  wet  treatment  of  the  last  oxide 
coming  from  the  cupellation  of  lead-silver  bullion.  Some  of  its 
alloys  melt  at  remarkably  low  temperatures  (see  fusible  metals 
under  "alloys"). 

Boron. — The  element  is  found  in  nature  as  boric  acid  and 
borax.  It  is  obtained  by  reduction  as  a  brown  amorphous 
powder,  which,  on  dissolving  in  molten  aluminum,  separates 
on  cooUng  in  crystalline  form,  said  to  rival  the  diamond  in  hard- 
ness. The  suboxide  is  an  energetic  deoxidizer,  recommended 
by  Weintkaub  for  insuring  high-conductivity  copper  castings. 


258     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Bromine. — Occurs  in  the  mother  Hquors  of  certain  salt-wells 
in  the  United  States  and  at  Stassfurt,  CJermany.  It  is  liberated 
from  these  liquors  by  the  action  of  chlorine,  or  by  direct  elec- 
trolysis. It  is,  at  ordinary  temperatures,  a  fuming  red  liquid 
of  unbearable  odor,  from  which  it  takes  its  name.  It  is  more 
active  than  iodine  and  less  than  clilorine. 

Cadmium. — Atomic  weij!;ht,  112. -1;  always  bivalent;  sp.  gr., 
cast,  S.OO;  white  metal  of  bhiish  tinge,  intermediate  in  hardness 
between  tin  and  zinc.  Melts  at  ;-{'20°C.;  boils  at  778°C.,  so  can 
be  separated  from  zinc  by  volatilization.  Is  precipitated  from 
solution  by  zinc.  Is  remarkable  for  its  fusible  alloys:  thus, 
2  parts  Bi,  1  part  Sn,  1  part  Pb  melt  at  93.75°C.;  but  with 
10  per  cent.  Cd  added  melt  at  75°C.,  while  Cd  14.3,  Sn  19.0, 
Pb  33.1  and  Bi  33.0  melt  at  6G°C.  Its  metallurgy  is  simply 
that  of  a  by-product  of  zinc.  It  is  greatly  concentrated  in  the 
first  zinc  dust  formed  in  roasting  the  ores.  The  cadmium  may 
then  be  freed  from  the  zinc  in  a  wet  way  owing  to  the  fact  that 
if  a  mixture  of  cadmium  and  zinc  oxides  be  treated  with  in- 
sufficient sulphuric  acid  to  dissolve  both,  the  cadmium  will  be 
dissolved  before  the  zinc  will.  Moreover,  if  a  mixture  of 
cadmium  and  zinc  sulphates  be  agitated  with  a  mixture  of 
cadmium  and  zinc  oxides,  the  cadmium  will  be  dissolved  and 
zinc  o.xidc  will  be  precipitated.  It  is  eventually  freed  from  the 
last  zinc  by  electrolysis,  if  a  very  pure  metal  be  desired.  If 
this  is  not  necessary,  advantage  is  simply  taken  of  the  fact 
mentioned  above,  that  CdO  is  more  volatile  than  ZnO,  and  also 
that  CdO  reduces  at  a  lower  temperature  than  does  ZnO,  and 
that  CdO  precipitates  Zn  from  ZnSO*  as  ZnO. 

Caesium. — Of  no  commercial  value.  Atomic  weight,  132.8. 
Discovered  by  Kihcuoff  in  the  Diirkheim  mineral  water.  Its 
spectrum  contains  two  characteristic  blue  lines,  whence  its 
name. 

Calcium. — Atomic  weight,  40.07;  bivalent;  sp.  gr.,  1.85.  A 
lustrous,  silvery-white  brittle  metal.  It  is  less  malleable  than 
the  alkali  metals;  shows  a  crystalline  fracture.  It  melts  in 
vacuo  at  7(J0°C.  It  forms  a  hydride.  Calls;  a  nitride,  CasNj 
and  a  carbide,  CaCz.  It  is  a  powerful  deoxidizer.  Cannot  be 
reduced  by  carbon.  The  metal  can  be  cut  with  a  knife  and 
wUl  scratch  lead  but  not  calc  spar. 

Cerium. — Atomic  weight,  140.25;  sp.  gr.,  6.73.  It  has  an 
iron-gray  color,  is  soft,  being  somewhat  harder  than  lead,  is 
malleable  and  easily  rolled.  Fuses  at  about  800°C.  Its  most 
remarkable  property  is  that  of  combining  with  heavy  metals, 
such  as  iron  or  copper,  to  form  dense  but  easily  oxidizable 
alloys  (the  pyropiioric  alloys).  Fine  wire  made  from  the 
metal  burns  with  a  brilliancy  even  exceeding  that  of  mag- 
nesium. It  dissolves  easily  in  dilute  acids,  but  only  to  a  limited 
extent  in  cold  concentrated  sulphuric  or  nitric  acid.  It  will 
reduce  the  oxides  of  most  metals  or  metalloids.  On  filing  or 
scraping  cerium  wdth  a  knife,  the  filings  or  scrapings  will  take 
fire.  It  can  be  prepared  by  fusion  of  the  anhydrous  chloride,  but 
not  by  direct  reduction  of  its  oxide  by  carbon,  as  a  carbide  is 


CHEMICAL  DATA  259 

formed.  Lanthanum,  praeseodj'mium  and  ncodymium  greath' 
resemble  it.     Cerium  fluoride  is  used  in  the  "flaming-arc"  lamj). 

Chlorine. — Atomic  weight,  35.46.  Gas  at  ordinary  tempera- 
tures. It  derives  its  name  from  its  greenish-yellow  color. 
Strongly  corrosive  to  organic  tissues  as  well  as  to  most  metals. 
A  violent  poison.  Liquefies  readih'.  It  is  nuich  used  in  com- 
merce as  a  bleaching  material,  for  which  it  is  derived  by  the 
Weldon  process  iq-i'-),  or  by  electrolysis  of  sodium  chloride 
solutions  (Castner-Kellk:er,  Gibbs  process,  etc.).  The  hypo- 
chlorites form  the  basis  for  many  disinfectants;  the  chlorates 
form  the  basis  of  many  modern  explosives. 

Chromium. — A  bright  gray,  very  lustrous,  very  hard  crystal- 
line metal.  Atomic  weight,  52.0;  sp.  gr.,  6-7.  It  oxidizes 
slowly  in  cold  air,  readily  on  heating.  Does  not  burn  so  readily 
as  iron  on  heating  in  oxygen.  Combines  readih'  with  the 
halogens,  sulphur,  silicon  and  carbon. 

Chrome-iron  ore  can  be  directly  smelted  with  carbon  to 
give  ferrochrome.  To  obtain  pure  chromium  the  chrome- 
iron  ore  is  roasted  with  sodium  carbonate  or  sodium  carbonate 
and  lime.  The  mass  should  not  be  fused.  From  this  sintered 
mass  sodium  chromate  can  be  leached  out.  If  H2SO4  is  added 
to  sodium-chromate  solutions  the  bichromate  is  produced. 
Sodium  bichromate  can  be  reduced  with  sulphur  to  give 
chromous  anhydride,  which  can  then  be  reduced  with  carbon 
or  with  aluminum.  In  the  carbon  reduction  the  metal  is  not 
fused,  but  remains  as  a  powder.  Chromium  alloys  readily  with 
iron,  manganese,  cobalt  and  tungsten ;  with  other  metals  only 
with  difficulty.     It  can  also  be  prepared  bv  aluminum  reduction. 

Cobalt.— Atomic  weight,  58.97;  trivalent;  sp.  gr.  8.66-8.92. 
A  silver-white  metal,  melts  at  1610°C.  if  pure.  Yield  point, 
31,200-65,600  lb.  per  sq.  in.  Specific  heat,  0.1056  (15°-100°). 
This  is  the  most  magnetic  element  except  iron.  Exceeds  iron 
both  in  hardness  and  tenacity.  May  be  turned  with  ordinary 
lathe  tools.  Brinnell  hardness,  chilled  from  melting  point, 
90.8;  annealed  from  250°C.,  77. .3.  Cobalt  may  be  separated 
from  nickel  when  both  are  in  solution  b^'  precipitation  with 
milk  of  lime  or  with  calcium  hypochlorite;  the  cobalt  comes 
down  first. 

Copper. — Atomic  weight,  63.57.  The  only  red  metal. 
Bivalent.  Tough;  ductile.  The  best  conductor  of  electricity 
(except  perhaps  silver);  the  third  best  conductor  of  heat. 
Recoverj'  of  copper  is  chiefly  by  smelting  sulphide  ores  to  give 
a  copper-iron  sulphide,  the  earthy  materials  forming  a  fusible 
slag,  then  blowing  air  through  the  sulphide  (known  as  matte) 
getting  metallic  copper,  sulphur  dioxide,  and  ferrous  oxide, 
which  is  slagged  by  addition  of  silica.  This  smelting  may  be 
done  in  either  blast  or  reverberator^'  furnaces.  The  metal 
from  the  desulphurizing  operation  (converting)  is  then  furnace 
refined  if  non-argentiferous,  or  by  electrolysis  if  silver-bearing. 
Copper  is  also  produced  by  direct  reduction  of  oxide  and  car- 
bonate or  roasted  sulphides  to  metal  (black  copper)  and  by 
wet  processes,  as  at  Rio  Tinto,  Wallaroo,  Chuquicamata,  etc. 


260     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

A  preliminar>'  concentration  of  the  copper  minerals  in  an  ore 

hy  gravity  or  flotation  is  also  niurh  practised. 

Fluorine. — A  slifj;htly  greenish-yellow  gas,  occurring  in  nature 
chiefly  in  fluorspar.  One  of  the  most  active  of  the  elements. 
Combines  with  hydrogien  even  in  the  dark.  It  is  the  only 
element  e.xcept  those  of  the  argon  group  which  will  not  combine 
with  oxygen.  It  attacks  all  metals  except  platinum  and  gold, 
and  decomposes  most  organic  compounds.  It  is  used  to  etch 
on  glass  (as  HF),  as  an  electrolyte  in  lead  refining  (as  HjSiFg), 
as  a  valuable  flux  (as  CaFjj,  and  in  the  manufacture  of  alu- 
minum (as  NajAlFe). 

Gallium. — A  rare  metal  which,  although  tough,  may  be  cut 
with  a  knife.  With  aluminum  it  forms  a  liquid  alloy  which 
will  decompose  water. 

Gold. — Atomic  weight,  197.2  (O  =  16);  trivalent;  sp.  gr., 
19.29-19.37;  the  only  yellow  metal;  most  malleable  and  ductile 
of  all  metals;  softer  than  silver,  harder  than  tin;  tenacity, 
about  14,000  lb.  per  sq.  in.  with  30.8  elongation.  Melts  at 
1063°C.,  begins  to  volatilize  at  1100"C.  and  volatilizes  four 
times  as  fast  at  1250°C.  Electric  conductivity  76.7  (Ag  =  100). 
One  oz.  of  gold  leaf  covers  about  160  sq.  ft.  U.  S.  gold  coin  is 
900  parts  gold,  10  parts  copper.  Gold  is  recovered  either  by 
purely  mechanical  concentration  (panning,  etc.),  by  amalgama- 
tion, by  dissolving  it  in  chemical  reagents  (chlorination,  cyanida- 
tion)  or  by  recovering  it  in  a  fusion  process  with  copper  or  lead. 
Has  very  small  tendency  to  absorb  gases  when  molten,  but 
absorbs  about  0.7  per  cent.  H,  CO,  and  other  electropositive 
gases  when  cold,  if  it  is  finely  divided.  It  is  dissolved  by  no 
one  acid  except  nitrous,  but  is  dissolved  by  any  mixture  (such 
as  aqua  regia)  generating  chlorine  and  bromine.  Except  in 
the  thiosulphate,  it  does  not  play  the  part  of  base  to  oxy-acids. 

Gold  possesses  the  lowest  solution  tension  of  any  metal. 
It  may  be  precipitated  from  its  solution  by  even  the  weakest 
reducing  agents,  such  as  H,  P,  As,  Sb,  C,  by  nearh'  all  metals 
(except  from  cyanide  solution,  from  which  it  can  be  separated 
only  by  zinc  and  metals  more  electropositive  than  zinc), 
by  metallic  sulphides,  by  protosalts  of  iron,  tin,  etc.,  by  hypo- 
phosphites,  sulphites,  SO2,  the  lower  oxides  of  nitrogen,  arsenic, 
oxaUc  acid,  etc. 

Helium. — First  discovered  by  spectroscopic  observation  of 
the  sun.  One  of  the  rarest  of  the  elements  on  the  earth's  surface. 
Found  in  some  uranium  minerals,  is  given  off  by  the  gases  of 
certain  .spring.s,  and  is  found  in  the  air  in  the  proportion  of 
0.0005  per  cent.    It  is  absolutely  inactive.    Atomic  weight,  3.96. 

Iodine. — Atomic  weight,  126.92.  Occurs  at  ordinary  tem- 
peratures as  beautiful  violet  to  black  crystals.  It  is  largely 
used  in  the  aniline  color  industry,  in  making  iodoform  and  in 
potassium  iodides  in  photography  and  medicine.  The  chief 
sources  of  iodine  are  the  mother  liquors  of  the  Chilean  nitrate 
industry  and  the  ashes  of  sea  weeds.  It  is  readily  precipitated 
from  iodates  thus: 

2Nal03  -t-  SXajSOj  +  2XaHS03  =  SXazSO^  +  H2O  +  I2 


CHEMICAL  DATA  261 

Iridium  is  insoluble  in  every  acid,  differs  from  platinum  in 
not  being  soluble  in  aqua  regia,  although  when  the  iridium  is 
very  finely  divided  it  is  attacked  by  this  reagent.  Fusion  with 
acid  potassium  sulphate  oxidizes  it  but  does  not  dissolve  it 
(distinction  from  ruthenium).  It  also  oxidizes  to  the  trioxide, 
lr203  when  heated  with  fused  sodium  nitrate  and  hydroxide, 
or  with  hydroxide  alone  in  the  presence  of  air,  but  the  residue 
is  but  slightly  soluble  in  water.  Iridium  may  be  distinguished 
from  platinum  by  suspending  the  precipitate  produced  with 
caustic  alkalis  in  a  solution  of  potassium  nitrite  and  the 
solution  saturated  with  SO2  and  boiled,  renewing  the  water  so 
long  as  SO2  is  given  off,  all  of  the  iridium  is  converted  to  an 
insoluble  brownish-green  basic  iridic  sulphite.  Iridic  salts  are 
reduced  by  alcohol  in  alkaline  solutions  to  iridous  compounds 
soluble  in  hydrochloric  acid.  For  a  method  of  decomposing 
osmiridium,  see  "osmium,"  p.  264. 

Iron. — A  white  metal  of  atomic  weight,  55.84.  Forms  two 
series  of  compounds,  ferric  (trivalent)  and  ferrous  (bivalent) 
which  pass  from  one  form  to  the  other  by  very  gentle  reduction 
or  oxidation. 

Iron  is  the  most  magnetic  of  the  metals.  It  alloys  readily 
with  most  of  the  earth  metals,  onh'  slightly  with  Pb  and  Cu. 
In  the  presence  of  Si,  iron  will  dissolve  more  Cu  than  otherwise, 
that  is  cuprosilicon  is  dissolved  more  readily  than  is  pure  Cu.  Fe 
alloys  readily  with  C,  Si,  P,  S  and  O. 

Iron  Metallurgy. — Iron  is  produced  by  a  reducing  smelting 
after  concentration  or  roasting  or  both.  The  slag,  usually 
known  as  cinder,  differs  from  that  of  the  lead  and  copper 
metallurgists  in  being  a  calcium-aluminum  silicate.  The  use 
of  preheated  blast,  often  previously  dried,  is  also  at  variance 
with  non-ferrous  practice.  The  iron  produced  always  contains 
Si,  C,  P,  S,  etc.  Indeed  most  of  the  usefulness  of  iron  de- 
pends on  its  carbon  content;  so  a  list  is  herewith  appended  of 
the  carbides  of  iron  and  their  modifications,  with  the  names 
applied  to  them  by  the  iron  metallurgists. 

Ferrite. — Chemically  pure  iron:  a-iron,  magnetic  and  free 
from  C,  passes  at  780°C.  into  /3-iron,  which  is  non-magnetic 
and  practically  incapable  of  dissolving  C.  Above  880°C. 
/3-iron  passes  into  7-iron  which  is  non-magnetic  and  capable 
of  dissolving  C  or  FesC. 

Cementite. — Iron  carbide,  FesC. 

Austenite  and  Martensite. — Solid  solutions  of  FcaC  in 
7-iron. 

Troosite. — Colloidal  solution  of  FcsC  in  Fe. 

Sorbite. — Mixtures  of  Fe,  Fe^C  and  solid  solutions  of  FesC 
in  Fe. 

Penrlile. — The  eutectic  between  ferrite  (Fe)  and  cementite 
(FeaC).     It  corresponds  to  0.9  per  cent.  C,  or  (FejC  +  20Fe). 

Temper  Carbon. — Non-graphitic  carbon  which  separates 
from  white  iron  by  keeping  it  for  a  long  time  at  a  temperature 
near  1000°C.,  during  which  time  the  finely  divided  cementite 
changes  into  a  mixture  of  ferrite,  pearlite  and  temper  carbon. 


262     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Temper  carbon  is  more  readily  oxidizable  than  graphite  or 
carbide  carbon. 

Forgeablc  Iron. — The  saturation  point  of  FcsC  in  Fe  is 
reached  at  2  per  cent.  C  (2  FcsC  +  15Fe).  Anything  up  to 
this  point  may  be  regarded  as  forgeable  iron. 

Steel  Hardening. — This  is  explained  by  assuming  a  trans- 
formation of  pcarlite  to  martensite,  and  the  maintenance  of  this 
s&lid  solution  by  quenching. 

Malleablizing. — By  exposing  white  iron  for  a  long  time  to 
about  1000°C.,  the  dissolved  FcsC  is  converted  into  Fe  and  C, 
but  the  carbon  is  not  present  as  graphite,  but  in  an  easily 
oxidized  state.     It  is  then  oxidized  by  FC2O3  or  FeCOa. 

White  iron  is  a  supercooled  solution  and  may  be  regarded 
as  a  metastable  system  between  FcsC  and  Fe,  in  which  the 
reaction  FcaC  =  3Fe  +  C  has  not  been  allowed  to  take  place. 

Gray  iron  is  a  stable  system  Fe — FcsC — C.  It  has  had  time, 
at  the  different  temperatures  and  concentrations  to  reach  a 
more  or  less  complete  state  of  equilibrium.  During  the  cooling 
some  of  the  FcaC  has  decomposed  into  Fe  and  C,  the  latter 
being  found  as  graphite.  See  also  Bessemer  (p.  493),  Thomas 
GiLCHHisT  (p.  496)  and  Siemens-Martin  (p.  496). 

Krypton. — Present  in  tlie  proportion  of  1  : 1,000,000  in  air. 
Inert.  Has  a  characteristic  spectrum,  noticed  especially  in 
the  Aurora  Borealis.  Atomic  weight,  45.  Discovered  by 
Kamsay  in  the  last  liquid  from  the  evaporation  of  liquid  air. 

Lanthanum. — Greatly  resembles  cerium,  which  see.  It  occurs 
chiefly  in  monazite  sand. 

Lead. — Atomic  weight,  207.1;  tetravalent;  sp.  gr.,  11.35- 
11.37,  when  molten,  10.37-10.65;  a  dull  gray  metal,  malleable 
but  not  ductile;  tenacity  the  lowest  of  any  common  metal. 
Melts  at  about  326°C.;  electric  conductivity  10.7  with  silver 
100.  Heaviest  of  all  base  metals.  Fuses  at  325°C.;  boils  at 
1525''C.  Has  a  great  affinity  for  all  the  noble  metals  and  is 
often  used  as  a  carrier  in  their  extractions. 

Lead  is  obtained  by  its  ores  by  roast-reaction  process 
(2PbO  -I-  PbS  =  3Pb  +  S02or  PbSO*  +  2PbS  =  3Pb  -I-3SO2); 
by  the  so-called  precipitation  process  (PbS  +  Fe  =  Pb  ^-  FeS); 
or  by  reduction  with  carbon  of  oxide  and  carbonate  ores  or 
previously  roasted  sulphides.  The  argentiferous  lead  is  re- 
fined by  either  the  Parkes,  Pattinson  or  Betts  processes 
iq.v.,  pp.  493,  494,  495). 

Lithium. — Atomic  weight,  6.94;  monovalent;  sp.  gr.,  0.5936. 
A  soft  silver-white  metal.  Alelts  at  186°C.;  vaporizes  at  about 
lOOO'C.  Below  200°G.  may  be  melted  in  the  air;  above  that, 
bursts  into  flame.  Decomposes  water  at  ordinary  temperatures. 
It  is  the  lightest  known  metal. 

Magnesium. — Atomic  weight,  24.32;  bivalent;  sp.  gr.,  1.75. 
A  white  lustrous  metal  of  fibrous  crystalline  structure.  Mal- 
leable and  ductile,  not  tough.  Melts  at  651°C.;  boils  at  about 
1 120°C.  Large  pieces  oxidize  superficially.  In  powder  it 
burns  readily.  Comljines  readily  with  nitrogen  at  elevated 
temperatures.     Is  a  good  deoxidizer.     Lightest  of  metals  in 


CHEMICAL  DATA  263 

common  use.  When  powdered,  it  is  highly  combustible, 
burning  with  a  vivid  light. 

Manganese. — Atomic  weight,  54.93;  usually  bivalent,  may 
be  heptavalent;  sp.  gr.  given  by  various  authorities  at  from 
7.39  to  8.30.  Silvery,  lustrous,  hard,  brittle,  smooth  fracture. 
Melting  point,  1260°C.  Volatilizes  considerably  even  at  the 
melting  point.  Boils  about  1900°C.  Cannot  be  reduced  by 
carbon  to  pure  metal,  as  some  MusC  is  always  formed,  but  can 
be  produced  in  comparative  purity  by  reduction  of  Mn203  by 
aluminum.  Is  used  commerciallj'  mainly  as  ferromanganese, 
which  is  formed  b}^  direct  reduction  of  manganese  and  iron  ores. 

Mercury. — Atomic  weight,  200.6;  bivalent;  sp.  gr.,when  fluid 
at  0°C.  ,13.59,  solid  at  -  40°C.,  14.19.  Silver  white  with  bluish 
tinge.  Melts  at  —  39.38°C.  Contracts  on  solidification, 
forming  a  white,  very  ductile,  very  malleable  mass,  which 
can  be  cut  with  a  knife.  Specific  heat  from  —  78°  to  —  40°C. 
is  0.0247;  of  the  fluid  metal,  0  to  100°C.,  0.0333.  Electric  con- 
ductivity at  22.8°C.  is  1.63.  Heat  conductivity,  67.7  (Ag 
=  100).  Boils  at  360°C  (Dtjlong  and  Petit).  Amalgamates 
readily  with  gold,  silver,  zinc,  tin,  cadmium,  lead  and  bismuth; 
with  copper  when  finely  divided;  with  arsenic,  antimony  and 
platinum  with  difficulty ;  with  iron,  nickel  and  cobalt  not  at  all 
directly.  Is  obtained  by  smelting  the  ores  and  catching  the 
flue  dust,  in  which  the  mercury  condenses. 

Molybdenum. — Atomic  weight,  95.3;  quadrivalent;  sp.  gr., 
8.62-9.01.  A  white,  extremely  lustrous,  very  hard  metal. 
Acids  scarcely  affect  it,  except  nitric,  which  converts  it  to 
molybdic  oxide  or  acid.  The  sulphides  readilj^  form  thio-salts 
with  alkaline  sulphides.  Remains  unchanged  in  air  at  ordinary 
temperatures,  but  oxidizes  slowly  when  heated  to  redness.  Used 
in  high-speed  steels,  where  it  exercises  about  twice  the  influence 
that  tungsten  does.  It  cannot  be  produced  pure  by  direct 
reduction  of  the  oxide  by  carbon. 

The  reduction  test  for  molybdenum  is  as  follows :  A  small 
quantity  of  molybdate  or  wulfenite,  in  a  powdered  state, 
together  wath  a  scrap  of  paper,  should  be  placed  in  a  test-tube 
with  a  few  drops  of  water  and  an  equal  quantity  of  concentrated 
sulphuric  acid.  The  tube  and  its  contents  should  then  be 
heated  until  the  acid  fumes  begin  to  come  over.  After  allowing 
the  tube  to  cool,  watej  should  be  added,  a  drop  at  a  time.  The 
addition  of  the  first  drops  gives  rise  to  a  deep  blue  color,  which 
disappears  as  more  water  is  added. 

Neodymium. — Greatly  resembles  cerium,  which  see. 

Nickel. — Atomic  weight,  58.58;  sp.  gr.,  cast,  8.35,  rolled  or 
hammered,  8.6  to  8.9;  is  very  hard;  can  be  rolled  to  sheets  not 
over  0.0008  in.  thick  and  drawn  into  a  wire  0.0004  in  diameter. 
According  to  Shakell  the  tenacity  is  42.4  tons  per  sq.  in.  for 
annealed  wrought  nickel.  It  melts  at  1452°C.  when  pure;  the 
melting  point  is  considerably  lowered  by  carbon.  Nickel 
is  attracted  by  a  magnet  (Ni  :  Fe::  1  : 1.54),  but  it  loses  this  power 
at  340°C.  Its  electric  conductivity  is  12.9  (Ag  =  100).  The 
metallurgy  of  nickel  somewhat  resembles  the  fire  metallurgy 


264     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

of  copper,  in  that  the  ores  are  smelted,  following  either  wet 
concentration  or  roasting,  or  both,  and  tiie  nickel-copper 
matte  is  bessemcrized,  but  the  converting  process  is  not 
carried  so  far  as  in  copper.  In  constitution  nickel  matte  seems 
to  vary,  as  the  nickel  content  increases,  from  (NijS  and  FeS) 
to  (XiaSjand  FeS)  to  pure  Ni3S2  or  even  a  solution  of  Ni  in  NiaSj. 
Nickel  speiss  consists  of  NisAso,  NiAs  and  probably  NijAsz. 
The  partly  bessemcrized  mattes  and  speisses  are  then  given  the 
so-called  "top  and  bottom  smelting" — a  reducing  fusion  with 
sodium  sulphate.  The  product  of  this  fusion  consists  of  a 
layer  of  slag,  a  Cu-Fe-Na  matte,  and  a  Ni-Fe  matte  at 
the  bottom.  By  repeated  top  and  bottom  smeltings  a  copper 
matte  practically  free  from  nickel  and  a  nickel  matte  practically 
free  from  copper  are  obtained. 

The  nickel  matte  is  then  worked  up  by  one  of  numerous  wet 
processes.  A  part  of  the  present  Ni-Cu  matte  from  the 
Canadian  Copper  Co.'s  works  is  worked  down  into  metal  (the 
so-called  monel  metal)  without  separation  of  the  nickel,  copper 
and  iron.  The  electrolytic  baths  are  probably  neutral  sulphate 
containing  considerable  amounts  of  borate.  An  interesting 
method  of  nickel  recovery  from  products  in  which  the  nickel 
occurs  as  oxide,  oxide  ores  or  wasted  sulpliides  is  the  Mond 
process.  A  reducing  roast  is  given  the  ores  in  retorts  heated 
to  300°C.  with  gases  containing  H,  wherebj'  the  nickel  oxide 
is  reduced  to  sponge  Ni.  The  reduced  nickel  is  then  exposed 
to  gas  containing  CO  at  100°C.  and  15  atmospheres  pressure. 
Volatile  nickel  carbonyl  is  formed.  This  is  stable  at  50°C.  at 
2  atmospheres  pressure;  at  100°  at  15  atmospheres;  at  180° 
at  30  atmospheres;  and  at  250°  at  100  atmospheres.  The 
vapors  of  Ni(C0)4  escaping  from  the  vessels  under  pressure 
can  be  dissociated  by  simply  lowering  the  pressure.  The 
electrolyte  formerly  used  by  the  Balbach  works  was  said  by 
Ulke  to  be  a  hot  nickel  sulphite,  the  current  density  to  be  15 
amp.  per  sq.  ft.  and  a  tank  voltage  of  1.7-1.8  volts. 

Osmium, — The  heaviest  of  all  metals;  sp.  gr.,  22.48;  atomic 
weight,  190.9.  Osmium  is  volatilized  in,  but  not  melted  by 
the  oxyhydrogen  blowpipe.  When  strongly  heated  in  contact 
with  air  the  finely  divided  metal  burns  to  osmic  anhydride, 
OsO^  (usually  known  as  osmic  acid).  This  oxide  is  remarkable 
for  its  peculiar,  exceedingly  irritating  and  offensive  odor.  It 
is  injurious  to  the  eyes  and  is  extremely  poisonous.  This 
oxide  is  soluble  in  water,  giving  a  neutral  solution,  from  which 
it  is  precipitated  by  nearly  all  metals,  even  silver,  as  a  black 
precipitate.  Fuming  nitric  acid  or  aqua  regia  also  oxidizes 
osmium  to  Os04.  When  intensely  ignited,  osmium  is  rendered 
insoluble  in  acid,  and  must  be  fused  with  niter  and  distilled 
with  HNO3,  when  OSO4  will  distil  over.  All  compounds  of 
osmium  yield  the  metal  when  ignited  in  hydrogen.  Osmiridium 
may  be  attacked  by  mixing  it  with  common  salt  or  potassium 
chloride  and  exposing  it  in  a  glass  or  porcelain  tube  to  a  current 
of  moi.st  chlorine  gas.  Osmic  acid  is  formed,  which  volatilizes 
below  212°C.  and  can  be  condensed  and  fixed  by  passing  the 


CHEMICAL  DATA  265 

fume  into  an  alkaline  solution.  Iridium  remains  behind  in  the 
tube  as  a  double  chloride,  2KCMrCl4. 

Palladium  is  the  most  fusible  of  the  so-called  platinum  metals. 
The  metal  oxidizes  when  heated  in  air.  It  absorbs  hydrogen  to 
a  large  extent.  A  solution  of  iodine  produces  a  black  stain  on 
palladium,  but  has  no  effect  on  platinum.  The  best  solvent 
for  palladium  is  aqua  regia.  It  is  sparingly  soluble  in  pure 
nitric  acid,  but  dissolves  more  readily  in  fuming  nitric  acid, 
forming  palladious  nitrate,  Pd(X03)2.  All  palladium  com- 
pounds decompose  on  ignition. 

Phosphorus. — Found  in  nature  chiefly  as  the  tri-basic 
calcium  phosphate.  To  produce  phosphorus  the  calcium 
phosphate  is  treated  with  sulphuric  acid  in  lead-lined  tanks. 
This  converts  the  tricalcium  into  monocalcium  phosphate. 
The  clear  solution  is  then  drawn  off  and  the  precipitate  thor- 
oughly washed.  The  solution  and  washings  are  evaporated 
to  45°Be.  and  about  25  per  cent,  of  coke  or  charcoal  added  and 
the  pastj^  ma.ss  dried  in  iron  pans.  The  dry  mixture  is  then 
distilled  in  cast-iron  retorts  and  the  fumes  passed  into  a  con- 
denser containing  w'ater,  under  which  the  phosphorus  collects. 
Phosphorus  melts  at  44°C.  and  distills  at  269°C.  It  must  be 
kept  under  water. 

Platinum. — Atomic  weight,  195.2;  tetravalent;  sp.  gr.,  cast, 
21.5;  a  white  metal  of  a  grayish  tinge;  is  very  malleable  and 
ductile;  harder  than  copper,  silver  and  gold;  tenacity  about 
23,000  lb.  per  sq.  in.  (Deville  and  Debray);  electric  con- 
ductivity 13.4  at  0°C.  (Ag  =  100);  melts  at  1755°C.,  but  is 
sensiblj'^  volatile  at  1300°C.  Is  mainly  recovered  from  alluvial 
deposits,  but  is  also  got  in  Wohlwill's  process  of  electro- 
Ij'tic  gold  refining,  where  it  remains  in  the  solution.  It  is 
affected  by  fused  alkaline  hj-droxides,  phosphorus,  cyanides, 
sulphides  and  halogens.  Platinum  is  not  acted  upon  either  by 
pure  hydrochloric,  nitric  or  sulphuric  acid.  It  dissolves  in 
aqua  regia  and  other  mixtures,  evolving  chlorine,  but  less 
readily  than  gold,  so  that  gold  which  has  been  fused  to  platinum 
can  be  dissolved  by  dilute  aqua  regia  at  moderate  temperatures 
without  injuring  the  platinum.  When  alloyed  with  silver, 
lead  and  some  other  metals  it  is  dissolved  (see  tables  on 
pp  328,  329). 

Potassium. — Atomic  weight,  39.1;  monovalent;  sp.  gr.,  0.865. 
A  bluish-white  metal,  softer  than  sodium;  fuses  at  62.3°C., 
vaporizes  about  700°C.  The  vapor  is  greenish.  Like  sodium 
in  its  reactions  (q.v.).  However,  there  is  an  explosive  material 
left  in  the  retorts  when  potassium  carbonate  is  reduced  by 
carbon,  and  the  process  is  dangerous.  It  is  found  in  greatest 
abundance  in  the  salt  deposits  of  Stassfurt,  Germany. 

Praeseodymium. — Greath^  resembles  neodj^mium,  which  see. 
Occurs  chiefly  in  monazite  sands. 

Rhodium  is  found  in  the  insoluble  residue  resulting  from  the 
treatment  of  crude  platinum  with  aqua  regia.  It  is,  when  pure 
and  in  a  compact  state,  not  acted  upon  bj-  even  aqua  regia, 
but  when  alloyed  with  lead,  copper  or  bismuth  in  certain  pro- 


26G     METALLURGISTS  AND  CHEMLSTS'  HAXDIJOOK 

portions  it  dissolves  in  it.  When  alloyed  with  gold  or  silver 
it  does  not  dissolve.  It  is  oxidized  by  air  at  a  red  heat,  or  by 
fusion  with  potassium  hydroxide  and  niter.  It  is  converted  by 
fusion  with  acid  potassium  sulphate  into  the  soluble  potassium 
rliodic  sulphate  K6Rh2(S04)6.  Mixed  with  sodium  chloride 
and  ignited  in  chlorine  it  forms  the  easily  soluble  3XaCl- 
RhCUHiO.  Rhodium  is  distinguished  from  the  other  platinum 
metals  by  its  insolubility  in  aqua  regia,  its  solubility  in  fused 
IIKSOi,  and  the  formation  of  a  brown  precipitate  on  adding 
KG  1 1  and  alcoliol  to  rhodium-chloride  solution. 

Ruthenium  is  found  in  the  insoluble  residue  resulting  from 
the  treatment  of  platinum  ore  witli  aqua  regia.  It  is  a  grayish- 
white  metal,  closely  resembling  iridium  and  very  difficultly 
soluble.  When  heated  in  air  it  becomes  covered  with  bluish- 
black  ruthenic  oxide,  RujOs.  When  pure  it  is  unacted  on  by 
acid,  and  is  scarcely  acted  on  by  acid  potassium  sulphate.  It 
is  attacked  by  fusion  with  potassium  hydrate  and  niter,  or 
potassium  chlorate  and  is  converted  into  K2RUO4,  a  dark- 
green  mass,  soluble  in  water  to  an  orange-colored  fluid  which 
stains  the  skin  black.  Ruthenium  is  rendered  soluble  by 
ignition  with  potassium  chloride  in  a  current  of  chlorine,  being 
converted  to  2KCIRUCI4. 

Selenium. — An  element  originally  recovered  from  the  dust 
chambers  and  mud  of  the  lead  chambers  of  sulphuric-acid 
plants.  The  classic  process  is  to  leach  the  mud  with  concen- 
trated potassium  cyanide,  forming  KCXSe,  and  then  precipi- 
tating the  Se  by  adding  hydrochloric  acid.  My  own  process, 
by  which  much  of  the  commercial  selenium  is  now  obtained, 
is  to  oxidize  seleniferous  flue  dusts  with  HCl  and  XaClOj,  then 
after  all  the  free  chlorine  is  gone,  precipitate  the  metal  with 
sulphur  dioxide.  The  precipitate  is  then  washed  and  dried. 
Selenium  occurs  in  several  amorphous  modifications,  some 
soluble  in  CS2,  some  insoluble;  in  certain  crystalline  forms 
when  precipitated  from  solution;  in  a  vitreous  form  when 
melted  and  cooled  quickly;  and  a  so-called  metallic  form  when 
melted  and  cooled  slowly.  This  metallic  modification  has  the 
remarkable  property  of  altering  its  electric  conductivity  when 
illuminated.  The  vitreous  modification  passes  over  into  the 
metallic  when  heated  for  some  time  above  180°F.  There  is  a 
considerable  evolution  of  heat  during  the  change. 

Silver. — Atomic  weight,  107.88;  monovalent;  sp.  gr.,  cast 
10.50.  minted  10.57.  Melts  at  962°C.,  boils  at  1850°C. 
Moissan).  It  is  the  whitest  of  metals,  harder  than  gold,  softer 
than  copper,  more  malleable  and  ductile  than  any  metal  except 
gold,  the  best  conductor  of  heat  and  electricity  of  known 
substances.  (Some  authorities  state  that  gold  is  the  best 
conductor  of  heat  and  copper  of  electricity.  In  any  case  the  dif- 
ference is  slight.)  It  volatilizes  at  high  temperatures,  yielding 
a  green  vapor.  In  the  molten  state  it  has  the  property  of  absorb- 
ing twentj'-t  wo  times  its  volume  of  oxygen,  which  is  given  outon 
cooling,  causing  the  so-called  spitting  of  silver.  This  occurs 
only  with  the  pure  metal.     Small  quantities  of  copper,  bismuth 


CHEMICAL  DATA  2G7 

and  zinc  entirely  prevent  it,  as  does  also  an  inert  cover.  Arsenic 
antimony,  bismuth  and  lead  render  silver  brittle.  It  is  re- 
covered by  amalgamation,  by  chemical  processes  (Augustin, 
ZiERVOGEL,  Kiss,  Russell,  Patera,  Patio,  Cyanide,  etc.)  and 
from  the  impure  bullion  from  lead  or  copper  smelting.  From 
lead  it  is  recovered  by  the  Pattinson,  Parks  and  Betts 
processes  (q.v.)  and  from  copper  by  electrolytic  parting. 
In  both  these  cases  it  contains  gold,  which  is  then  recovered 
either  by  dissolving  the  silver  by  sulphuric  or  nitric  acid,  or 
by  electrolj-tically  refining  the  silver  by  the  Moebius  or 
Thtjm  process.  The  auriferous  silver  bullion  is  known  as  dor6. 
Silver  does  not  oxidize  in  air,  even  if  heated,  but  is  easily  at- 
tacked by  sulphur  and  its  compounds.  It  is  attacked  by  nitric 
acid,  and  by  hot  sulphuric,  scarcely  at  all  by  hydrochloric  nor 
by  the  halogens  and   not  at  all  by  fused  alkaline  hydroxides. 

Sodium. — Atomic  weight,  23.00;  monovalent,  sp.  gr.,  0.974. 
A  soft  silvery-white  metal,  which  may  be  kneaded  at  ordinary 
temperatures.  Melts  at  95.6°C.;  vaporizes  at  about  900°C. 
Dissolves  in  anhydrous  ammonia.  Decomposes  water  at 
ordinary  temperatures,  and  must  be  kept  under  oil.  Burns  in 
dry  air  to  the  peroxide,  Nao02.  Practically  all  sodium  com- 
pounds are  soluble.  Can  be  reduced  from  the  carbonate  by 
carbon. 

Strontium. — A  soft  white  metal.  Found  chiefly  in  nature 
as  carbonate  and  sulphate.  Is  used  in  the  manufacture  of 
fireworks  for  red  fire,  and  in  the  refining  of  sugar. 

Tantalum. — Atomic  weight,  181.5.  A  rare  element  usually 
occurring  with  columbium.  Below  200°C.  the  metal  is  not  at- 
tacked by  air,  oxygen  or  any  acid  except  concentrated  hydro- 
fluoric. Not  attacked  by  aqua  regia,  or  by  alkaline  solutions, 
but  is  by  fused  alkalies.  Can  be  used  for  electrolj^tic  cathodes, 
but  not  as  anodes,  as  it  oxidizes  under  anodic  action. 

Tellurium. — A  metal  much  like  selenium.  Occurs  usually 
as  gold  or  silver  telluride.  About  the  only  method  of  separating 
from  selenium,  if  the  two  are  mixed,  is  to  make  a  fractional 
separation  with  SO2,  for  selenium  precipitates  from  concen- 
trated hydrochloric-acid  solutions  with  SO2,  while  tellurium 
does  not,  or  by  taking  a  mixture  of  finely  divided  precipitates, 
leaching  with  concentrated  cyanide  solutions  at  ordinary  tem- 
peratures, heating  the  solution,  and  filtering  hot.  The  selenium 
is  dissolved. 

Tin. — Atomic  weight,  119.0;  quadrivalent;  sp.  gr.,  cast 
7.287,  rolled  7.30,  tetragonal  form  (electrolytically  deposited) 
7.25,  rhombic  6.55,  ordinary  commercial  about  7.5,  friable 
modification  (due  to  tin  pest)  5.8;  melts  at  232°C.;  boils  at 
2100°C. ;  specific  heat,  0.0562;  coefficient  of  linear  expansion, 
0.00223;  heat  conductivitv,  15.2  (Ag  =  100).  Most  malleable 
at  about  100°C.,  most  brittle  at  about  200°C.  Rolls  to  sheets 
not  over  3^ooo  inch  thick.  Tensile  strength  of  very  pure  bars 
2420  lb.  per  sq.  in.  (H.  Louis),  of  hammered  2540  lb.  per  sq.  in., 
commercial  about  4600  lb.  per  sq.  in.,  tin  foil  about  5980  lb. 
per  sq.  in.     Breaks  down  at  low  temperatures  to  a  gray  granular 


268     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

powder  (tin  pest);  the  change  commences  at  18°C.,  and  is  most 
rapid  at  -48''C.  Boils  at  IoOO°to  1000°C\  if  heated  out  of  access 
of  air.  It  is  but  little  afifected  by  air  and  moisture  at  ordinary 
temperatures.  Electric  conductivity,  14.4  (.\g  =  100).  De- 
creases in  volume  by  6.75  per  cent,  on  solidification.  Acted 
on  by  CI,  HCl,  II2SO4  and  IINOj,  but  is  only  oxidized  by  latter 
and  docs  not  form  nitrates.  Ores  are  usually  concentrated, 
roasted  if  required  and  smelted  in  shaft  or  reverberatory 
furnaces,  and  refined  bv  fire  processes.  Analyses  of  English 
tin  show  (H.  Louis,  "iMetallurgv  of  Tin"):  Sn,  98.64-99.76: 
Fe,  tr-0.13;  Pb,  0-0.20;  Cu,  tr-1.16.  Tin  from  Pulo  Brani 
showed,  Sn,  99.76;  Sb,  0.07;  Pb,  0.02;  Fe,  0.14;  Cu,  As,  none. 
Is  perceptibly  volatile  at  1200°C.  Because  of  the  high  specific 
gravity  of  tin  oxide  it  is  ordinarily  concentrated  by  me- 
chanical means  before  smelting.  The  smelting  of  tin  is  diffi- 
cult because  it  tends,  when  there  is  an  excess  of  base  in  the 
slag,  to  enter  it  as  an  acid,  forming  stannites  and  stannates,  while 
if  there  is  an  exce.s3  of  silica  tin  enters  the  slag  as  a  base. 

Tungsten. — An  almost  white,  very  lustrous  hard  metal. 
Atomic  weight,  184.0;  sp.  gr.,  19.3-20.2.  It  begins  to  oxidize 
only  at  elevated  temperatures  in  air.  It  can  be  reduced  by 
carbon  from  the  oxide.  Ductile  tungsten  is  practically  insolu- 
ble in  the  common  acids,  it  has  the  highest  melting  point  of 
any  metal  (3267°C.);  it  is  paramagnetic,  and  its  wire  can  be 
drawn  to  smaller  sizes  than  can  the  wire  of  any  other  metal. 
The  chief  commerciallj'  important  forms  are  sodium  tungstate, 
largely  used  for  fireproofing  and  as  a  mordant,  and  tungsten 
as  a  constituent  of  high-speed  steels.  The  recovery  is  entirely 
by  chemical  methods:  (1)  fusion  with  sodium  carbonate; 
leaching  out  sodium  tungstate  with  water;  precipitation  of 
WO3  bj'  acidifj'ing  with  hydrochloric  acid,  followed  by  reduc- 
tion with  carbon.  A  little  W2C  and  WC  is  formed  in  this  re- 
duction and  dissolved  by  the  metal.  Ferrotungsten  can  also 
be  formed  by  direct  reduction  of  wolframite  or  scheelite  with 
iron  compounds  and  powdered  quartz  or  glass.  The  carbon- 
free  metal  can  also  be  produced  by  the  aluminum-reduction 
process. 

A  general  test  for  all  tungsten  ores  is  carried  out  as  follows: 

Strong  hydrochloric  acid  is  added  to  the  ore,  which  is  first 
pulverized  to  as  fine  a  powder  as  possible,  and  part  of  the 
tungsten  will  pa.ss  into  the  solution.  Metallic  zinc  should  then 
be  added  and  the  mixture  boiled.  A  fine  azure  blue  denotes  the 
presence  of  tung.sten. 

When  any  ore  containing  tungsten  is  fused  with  sodic 
carbonate,  leached  out  with  hot  water  and  filtered,  the  tungsten 
pa.sses  into  the  filtrate.  If  hydrochloric  acid  is  added  the 
tungsten  is  precipitated.  This  precipitate  is  insoluble  in  all 
acids,  dissolves  readily  in  ammonia,  and  is  of  a  fine  j-ellow 
color.  A  little  of  this  j'ellow  powder,  if  added  to  a  bead  of 
salt  of  phosphorus  and  treated  in  a  reducing  flame,  using  a  blow 
lamp,  gives  the  fine  blue  bead  characteristic  of  tungsten. 

Uranium. — A  white  lustrous,  very  hard  metal,  oxidizing  in  , 


CHEMICAL  DATA  269 

air  only  at  high  temperatures,  but  igniting  in  pure  oxygen  at 
170°.  Fluorine  attacks  it  at  ordinary  temperatures,  chlorine 
at  180°,  bromine  at  210°  and  iodine  at  260°C.  It  combines 
with  sulphur  at  about  1000°C.  to  form  a  black  sulphide  and  with 
nitrogen  at  about  1000°C.  to  produce  a  yellow  nitride. 

Vanadium. — Atomic  weight,  51.0;  sp.  gr.,  5.50;  melts  at  1720°. 
According  to  Borchers  the  purest  metal  yet  obtained  was  a 
gray  lustrous  powder  which  ignites  readily  in  the  Bunsen  flame. 
It  dissolves  with  great  difficulty  in  hydrochloric  or  dilute 
sulphuric  acid,  but  more  readily  in  strong  sulphuric  acid,  in 
hydrofluoric  acid  or  in  nitric.  With  fused  alkali-metal  hydrox- 
ides it  forms  vanadates.  At  elevated  temperatures  it  combines 
readily  with  the  halogens,  sulphur,  or  even  with  nitrogen. 

Xenon. — Occurs  in  the  atmosphere  in  the  proportion  of 
1  :  20,000.     Heaviest  of  the  rare  gases. 

Zinc. — Atomic  weight,  65.37;  always  bivalent;  sp.  gr.,  cast, 
from  6.861  to  7.149;  when  rolled,  7.2  to  7.3;  when  fluid,  6.48  to 
6.55.  Boils  at  about  920°C.  Melts  at  415°C.  Specific  heat 
at  0°  to  100°C.,  0.09555  (Regnault);  probably  0.1015  from 
100°  to  300°C.  It  burns  in  air  at  about  505°C.  Zinc  is  brittle 
at  ordinary  temperatures,  especially  if  impure,  but  between 
100°C.  and  150°C.  it  becomes  malleable  and  ductile,  and  may 
be  rolled  into  sheets  and  drawn  into  wire,  and  retains  these 
properties  after  cooling.  At  205°C.  it  again  becomes  so  brittle 
that  it  may  be  powdered  in  a  mortar.  When  cast  at  a  tempera- 
ture near  its  melting  point  it  is  more  malleable  than  when  cast 
at  a  higher  temperature.  In  malleability  zinc  ranks  between 
lead  and  iron  ;in  ductility  between  copper  and  tin.  In  hardness 
it  stands  between  copper  and  tin;  more  exactly  between  silver 
and  platinum,  being  2.5 on  Moh's scale,  6  on  Turner's sclerome- 
ter,  and  1077  on  Bottone's  scale,  on  which  the  diamond  is 
3010.  The  thermal  conductivity  is  given  from  19  (Wiedemann) 
to  64.1  (Calvert  and  Johnson),  silver  being  100.  Its  electrical 
conductivity  is  16.92,  mercury  at  0°C.  being  unity.  On  the 
basis  of  silver  =  100,  Becquerel  gives  its  conductivity  at 
24.06,  and  Weiller  at  29.90.  According  to  Roberts-Austen 
the  coefficient  of  linear  expansion  is  0.0000291;  Calvert  and 
Johnson  give  it  at  0.00002193  for  hammered  zinc.  The  tensile 
strength  of  zinc  varies  from  2700  lb.  per  sq.  in.  for  cast  metal  to 
17,700  for  an  annealed  rod.  Zinc  dissolves  readily  in  both  acid 
and  alkaline  solutions  with  evolution  of  hydrogen.  A  moderate 
tenor  in  lead  makes  zinc  malleable  and  ductile;  over  1.5  per 
cent.  Pb  is  certainly  detrimental.  Iron  up  to  0.2  per  cent, 
does  not  greatly  affect  the  properties  of  zinc,  above  that  it 
makes  it  less  fluid,  less  malleable,  less  strong,  harder  and  more 
brittle.  Cadmium  seems  to  have  no  injurious  influence  except 
when  the  spelter  or  ore  is  to  be  used  for  making  zinc  oxide. 
Copper  makes  zinc  harder  and  more  brittle,  even  if  only  0.5 
per  cent,  be  present.  Tin  also  makes  it  harder  and  more 
brittle.  Other  impurities  are  of  minor  importance,  but  silver, 
thallium,  indium,  magnesium,  aluminum,  antimony,  arsenic, 
sulphur,    carbon,    chlorine    and    oxygen    occur.     The  metal 


270     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

is  produced  by  smelting  the  ores  in  retorts  with  carbon  as 
a  reducing  agent,  and  extraneous  fuel  to  heat  them.  A  fusible 
slag  is  not  wanted.  Sulphide  ores  must  be  roasted  clean  before 
distillation.  The  loss  of  zinc  in  the  smelting  process,  due  to 
retort  ab.^orption,  escape  through  the  pores  of  the  retorts, 
escape  of  uncondensed  zinc  through  the  adapters,  through  zinc 
left  in  the  retorts,  etc.,  is  very  seldom  below  10  per  cent,  and 
may  amount  to  25  per  cent. 

Zirconium. — Atomic  weight,  90.6;  ."^p.  gr.,  6.4;  melts  about 
2350°C.,  occurs  as  the  natural  oxide  and  as  the  silicate  (zircon). 
It  was  used  as  the  incandescing  material  in  the  first  gas  mantles. 


DETECTION  OF  THE  METALS 

Aluminum. — Is  precipitated  as  white  gelatinous  hydroxide  by 
ammonia.  When  the  oxide  is  strongl}'  heated  on  charcoal  with 
cobalt  nitrate,  a  bright-blue  mass  is  obtained.  With  soda 
before  the  blowpipe  it  swells  and  forms  an  infusible  compound. 

Antimony. — When  a  small  quantity  of  an  antimony  com- 
pound is  heated  in  the  upper  reduction  zone  of  a  Bunsen 
burner  on  a  thread  of  asbestos,  the  flame  is  given  a  bluish  tinge 
and  when  a  small  porcelain  basin  filled  with  cold  water  is  held 
above  it,  a  brownish-black  deposit  of  metallic  antimony  is 
deposited  upon  the  basin,  and  this  is  but  slightly  attacked  by 
cold  nitric  acid  and  is  insoluble  in  sodium  hypochlorite.  Arsenic 
gives  a  similar  reaction,  but  arsenic  gives  a  garlic-like  odor 
during  the  reduction,  and  the  metallic  film  is  readily  soluble  in 
the  hypochlorite.  Antimony  compounds  may  be  obtained  in 
solution  by  treating  with  HCl  or  by  fusing  first  with  potassium 
carbonate  and  potassium  nitrate.  Hydrogen  sulphide  produces 
in  acid  solution  a  ver\'  characteristic  orange-red- colored  pre- 
cipitate of  antimony  trisulphide.  Blo^-pipe  tests — on  coal, 
reducing  flame,  volatile  white  coat,  bluish  in  thin  layers,  con- 
tinues to  form  after  ces.sation  of  blast.  With  bismuth  flux  on 
plaster,  orange-red  coat,  made  orange  by  (\H4)jS;  on  coal, 
faint  yellow  or  red  coat.  In  open  tube,  dense,  white,  non- 
volatile amorphous  sublimate.  The  sulphide,  too  rapidly 
heated,  will  yield  spots  of  red.  In  closed  tube  the  oxide  will 
yield  a  white  fusible  sublimate  of  needle  crystals;  the  sulphide, 
a  black  sublimate,  red  when  cold. 

Arsenic. — Mix  with  sodium  carbonate  and  heat  on  charcoal 
with  the  blowpipe.  All  arsenic  compounds  give  a  garlic  odor. 
Add  to  concentrated  hydrochloric  acid  a  iFew  drops  of  an 
arsenite  solution  and  half  a  cubic  centimeter  of  saturated 
solution  of  stannous  chloride  in  hydrochloric  acid,  warm,  and 
the  solution  turns  brown,  then  black.  Blowpipe — on  smoked 
plaster  gives  a  white  coat  of  octahedral  crystals.  The  action 
on  coal  has  already  been  spoken  of.  With  bismuth  flux  on 
plaster  Sb  gives  a  reddish-orange  coat,  made  yellow  by  (NH4J2S; 
on  coal  a  faint  yellow  coat.  In  open  tube  it  gives  a  white 
sublimate  of  octahedral  crystals.     Too  high  heat  may  form 


CHEMICAL  DATA  271 

brown  suboxide  or  red  or  yellow  sulphide.  In  closed  tube 
may  give  white  oxide,  yellow  or  red  sulphide,  or  black  mirror 
of  metal.     Flame — azure  blue. 

Barivun. — The  Bunsen  flame  is  colored  a  yellowish-green  tint 
when  any  volatile  barium  compound  is  brought  into  it.  Soluble 
barium  salts  are  distinguished  from  those  of  strontium  and 
calcium  inasmuch  as  they  are  immediately^  precipitated  by  a 
solution  of  calcium  sulphate.  Blowpipe — on  coal,  with  soda, 
fuses  and  sinks  into  the  coal.  The  yellow-green  flame  can  be 
improved  by  moistening  with  HCl. 

Bismuth. — On  charcoal  with  soda,  bismuth  gives  a  very 
characteristic  orange-yellow  sublimate.  Brittle  globules  of  the 
metal  are  also  reduced  on  the  charcoal  when  treated  with  soda. 
Hydrogen  sulphide  precipitates  from  solutions  of  bismuth  salts 
a  blackish-brown  sulphide  (Bi2S3)  insoluble  in  ammonium 
sulphide  and  easily  soluble  in  nitric  acid.  Ammonia  throws 
down  a  white  basic  salt  insoluble  in  excess.  Blowpipe — with 
bismuth  flux  (sulphur,  2  parts;  potass,  iodide,  1  part;  potass, 
bisulphate,  1  part)  on  plaster,  bright  scarlet  coat  surrounded  by 
chocolate  brown  with  sometimes  a  reddish  border.  The 
brown  may  be  made  red  with  ammonia.  With  bismuth  flux, 
on  coal,  gives  a  bright-red  coat  with  sometimes  an  inner  fringe 
of  yellow. 

Cadmium. — Cadmium  is  precipitated  as  a  yellow  sulphide 
by  hydrogen  sulphide.  The  sulphide  is  insoluble  in  ammonium 
sulphide  and  in  the  caustic  alkalies.  On  charcoal  with  soda, 
compounds  of  cadmium  give  a  characteristic  sublimate  of  the 
reddish-brown  oxide. 

To  test  for  cadmium  in  a  sulphide,  roast  it  to  oxide,  and 
reduce  some  of  the  oxide  in  the  upper  reducing  flame  of  the 
Bunsen  burner,  at  the  same  time  holding  a  glazed  porcelain 
dish  which  contains  water  just  above  the  flame  to  receive 
a  brown  coating.  To  the  brown  coating  add  a  drop  of  AgNOs 
solution;  if  Cd  is  present,  black  metallic  silver  will  be  de- 
posited. Blowpipe — on  coal,  reducing  flame,  greenish  yellow 
in  thin  layers.  Beyond  the  coat,  at  first  part  of  operation, 
the  coat  shows  a  variegated  tarnish.  On  smoked  plaster 
with  bismuth  flux  Cd  gives  a  white  coat  made  orange  by 
(NH4)2S.  With  borax  or  sodium  phosphate,  oxidizing  flame, 
clear  yellow  hot,  colorless  cold,  can  be  flamed  milk  white.  The 
yellow  bead  touched  to  Na2S203  becomes  yellow. 

Caesium. — H2PtCl6  produces  a  bright-yellow  crystalline 
precipitate,  a  brighter  color  than  the  potassium  salt  thus  pro- 
duced, and  is  much  more  soluble  than  the  potassium  salt. 
The  flame  test  is  reddish  violet,  similar  to  potassium. 

Calcium. — Calcium  compounds  moistened  with  hydrochloric 
acid  and  placed  on  a  platinum  wire  in  the  hottest  part  of  a 
Bunsen  flame  impart  a  red  color  to  the  flame. 

Calcium  may  be  precipitated  from  solution  as  oxalate  by 
first  making  the  solution  ammoniacal  and  then  adding  am- 
monium oxalate  or  oxalic  acid.  Blo^T^ipe — on  coal  with  soda, 
insoluble  and  not  absorbed  by  the  coal.     Flame — yellow  red, 


272     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

improved  by  moistening  with  HCl.  With  borax  or  sodium 
phosphate,  clear  and  colorless;  can  be  flamed  opaque. 

Cerium. — Fuse  with  sodium  carbonate.  Treat  with  dilute 
hydrochloric  acid,  evaporate  to  dr>-ness  and  bake.  Take  up 
with  dilute  hydrochloric  acid,  filter.  Add  ammonia  to  the 
filtrate,  filter.  Dissolve  the  precipitate  in  hydrochloric  acid, 
add  ammonia  and  oxalic  acid,  filter.  Dissolve  the  precipitate 
in  concentrated  hydrochloric  acid,  nearly  neutralize  with  am- 
monia; add  1  cc.  of  hydrogen  peroxide  and  then  ammonia, 
drop  by  drop,  until  just  alkaline.  When  just  neutral,  white 
thorium  peroxide  is  precipitated;  when  ammoniacal,  the  orange 
cerium  peroxide  is  precipitated. 

Chromium. — Chromium  oxide  is  detected  in  its  insoluble 
compounds  by  its  characteristic  green  color.  It  forms  an 
emerald-green  head  with  borax  or  microcosmic  salt.  Caustic 
potash  or  soda  gives  a  green  precipitate  in  solutions  of  chromic 
salts.  This  dissolves  in  an  excess  of  alkali  in  the  cold,  but  is 
precipitated  on  boiling  the  solution.  The  detection  of  chromic 
acid  is  rendered  easj'  by  the  bright-yellow  color  of  its  salts. 
The  yellow  color  of  the  normal  chromates  becomes  red  on  the 
addition  of  an  acid,  and  again  yellow  when  made  alkaline. 
Blowpipe — with  borax  or  sodium  phosphate,  oxidizing  flame, 
reddish  when  hot,  fine  yellow  when  cold.  Reducing  flame,  in 
borax,  green  hot  and  cold.  In  sodium  phosphate,  red  when  hot, 
green  when  cold.  With  soda — oxidizing  flame,  dark  j'ellow  when 
hot,  opaque  and  light  yellow  cold.  Reducing  flame,  opaque 
and  yellowish  green  cold.  Manganese  interferes,  giving  a 
bright  yellowish  green  with  soda  bead  in  the  oxidizing  flame. 

CobaJt. — Ammonium  sulphide  produces  a  black  precipitate 
(CoS)  insoluble  in  acetic  acid  and  in  dilute  hydrochloric  acid. 
Ammonium  sulphocyanate  produces  a  beautiful  blue  color, 
Co(CNS)2.  With  a  borax  bead  cobalt  gives  the  characteristic 
cobalt-blue  color.  Blowpipe — on  coal,  reducing  flame,  the 
oxide  becomes  magnetic  metal.  The  solution  in  HCl  will  be 
rose-red,  but  on  evaporation  will  be  blue.  With  borax  or 
sodium  phosphate,  pure  blue  in  either  flame. 

Columbium. — Fuse  with  potassium  bisulphate.  Pulverize 
the  fusion  and  treat  it  with  hot  water;  then  treat  it  with  dilute 
hydrochloric  acid.  Digest  the  residue  with  ammonium 
sulphide  to  remove  W,  Sn,  etc.  Wash  and  treat  again  with 
dilute  hydrochloric  acid.  The  residue  should  be  colorless 
and  contain  only  silica  and  the  oxides  of  columbium  and 
tantalum.  This  residue  in  a  bead  of  microcosmic  salt  is 
colorless  if  no  columbium  is  present  or  if  heated  in  the  oxidizing 
flame;  but  if  heated  in  the  reducing  flame,  columbium  imparts 
a  violet  color  to  the  bead,  or  blue  if  saturated  with  oxide.  Add- 
ing ferrous  sulphate  turns  the  bead  blood  red. 

If,  when  the  mixed  oxides  are  boiled  in  dilute  sulphuric  acid 
with  metallic  zinc,  the  white  precipitate  turns  intensely  blue 
and  remains  so  on  dilution,  columbium  is  present;  if  it  turns 
bluish  gray  and  colorless  on  dilution,  tantalum  is  predominant. 

Copper. — Copper  can  easily  be  detected  by  the  reduction 


CHEMICAL  DATA  273 

to  the  red  metallic  bead  on  charcoal  before  the  blowpipe. 
Copper  compounds  moistened  with  HCl  color  the  non-luminous 
flame  green.  An  excess  of  ammonia  added  to  a  nitric  acid 
solution  of  copper  produces  an  azure-blue  color.  With  borax 
or  sodium  phosphate,  oxidizing  flame,  green  when  hot,  blue  or 
green  blue  cold.  (By  repeated  oxidation  and  reduction,  the 
borax  bead  becomes  ruby  red.)  Reducing  flame,  green  or 
colorless  hot,  opaque  and  brownish  red  cold. 

Erbium.— Erbium  oxide  heated  on  a  platinum  wire  colors 
the  flame  distinctly  green. 

Gallium. — If  a  neutral  solution  of  gallium  chloride  be  warmed 
with  zinc,  gallium  oxide  or  basic  salt  separates  but  not  the 
metal. 

Germanium. — Fuse  with  sulphur  and  sodium  carbonate. 
Treat  with  hot  water,  filter,  add  a  few  drops  of  hydrochloric 
acid  to  the  filtrate  to  precipitate  white  germanium  sulphide. 
Filter  and  heat  the  residue  in  a  current  of  hydrogen  to  reduce 
it  to  gray-black  crystalline  germanous  sulphide.  Dissolve 
the  crystals  in  hydrochloric  acid  and  pass  hydrogen  sulphide 
into  the  solution  to  precipitate  reddish-brown  germanous 
sulphide. 

Glucinum. — Ammonium  carbonate  produces  a  white  pre- 
cipitate, GICO3,  soluble  in  an  excess  of  the  reagent;  by  boiling 
the  solution  it  is  precipitated  as  a  basic  carbonate. 

Gold. — Gold  may  be  reduced  from  its  ores  on  charcoal  to  a 
yellow  malleable  bead  which  is  soluble  in  aqiia  regia;  if  the 
solution  be  dropped  on  filter  paper  and  one  drop  of  stannous 
chloride  added,  a  purple-red  color  is  produced. 

Indium. — Heated  on  charcoal  before  the  blowpipe  it  colors 
the  flame  blue,  and  gives  an  incrustation  of  the  oxide.  It 
slowly  dissolves  in  hydrochloric  and  dilute  sulphuric  acids, 
but  readily  in  nitric  acid. 

Iridium. — Ammonium  chloride  produces  in  a  tolerably  con- 
centrated solution  of  iridium  a  dark-red  crystalline  precipitate. 
Iridium  is  distinguished  from  platinum  by  the  formation  of  a 
colorless  solution  of  potassium  chloriridiate  when  caustic  potash 
is  added  to  the  chloride  of  the  metal,  and  on  exposure  to  the 
air  this  colorless  solution  first  becomes  red  colored  and  after- 
ward blue. 

Hydrogen  sulphide  precipitates  brown  iridium  sulphide, 
which  is  soluble  in  ammonium  sulphide. 

Iron. — Ferrous  salts  with  potassium  ferricyanide  produce  a 
dark -blue  precipitate.  Ferric  salts  with  ammonia  or  the  fixed 
alkalies  produce  a  brown  precipitate.  Ferric  salts  with  potas- 
sium or  ammonium  sulphocyanate  produce  a  blood-red -colored 
precipitate.  Ferrous  salts  with  a  bead  of  microcosmic  salt  or 
borax  are  colored  dark  green.  This  color  readily  changes  to 
yellow  or  reddish  brown  by  oxidation.  Blowpipe — on  coal, 
with  reducing  flame,  many  compounds  become  magnetic. 
Soda  assists  this  reaction.  With  borax,  oxidizing  flame, 
yellow  to  red  hot,  colorless  to  yellow  cold.  With  reducing 
flame,  bottle   green.     With  tin  on  coal,  violet-green.     With 

18 


274     METALLURGISTS  AND  CHEMISTS' HANDBOOK 

sodium  phosphate,  oxidizing  flame,  yellow  to  red  hot,  greenish 
when  cooling,  colorless  to  yellow  cold.  Reducing  flame,  red 
botli  hot  and  cold,  greenish  when  cooling. 

Lead. — Black  precipitatate  formed  with  hydrogen  sulphide, 
chrome  yellow  with  chromates.  In  nitric  acid  .solution  dilute  sul- 
phuric acid  gives  a  wliite  precipitate  of  lead  sulphate.  Blowpipe 
— on  coal,  lead  is  reduced  in  either  flame  to  malleable  metal, 
and  yields  near  the  assay  a  dark  lemon-yellow  coat,  sulphur 
yellow  cold,  and  bluish  white  at  border.  The  phosphate  yields 
no  coat  without  the  aid  of  a  flux.  With  bismuth  flux  on  plaster 
chrome-yellow  coat,  blackened  by  (NH4)2S.  On  coal,  volatile 
yellow  coat,  darker  hot.  Flame,  azure  blue.  With  borax  or 
sodium  phosphate,  oxidizing  flame,  yellow  hot,  colorless  cold. 
Flames  opaque  yellow.  In  reducing  flame,  borax  bead  becomes 
clear;  S.  Ph.  bead,  cloudy. 

Lithium. — In  the  Bunsen  flame  a  fine  carmine-red  color  is 
produced,  visible  if  sodium  is  present  by  viewing  the  flame 
through  cobalt  glass.  If  silicon  is  present,  make  into  a  paste 
with  lioracic-acid  flux  and  water  and  fuse  in  the  blue  flame. 
Ju.st  after  the  flux  fuses  the  red  flame  will  appear. 

Magnesium. — To  a  solution  of  magnesium  add  ammonium 
chloride,  ammonia  and  sodium  phosphate;  a  white  precipitate 
(MgNH4P04)  forms.  The  action  is  hastened  by  rubbing  the 
sides  of  the  beaker  with  a  glass  rod.  Blowpipe — on  coal, 
with  soda,  Mg  is  insoluble  and  not  absorbed  by  the  coal. 
With  borax  or  sodium  phosphate,  clear  and  colorless;  can  be 
flamed  opaque  white.  With  cobalt  solution,  strongly  heated, 
becomes  a  pale  flesh  color.  (With  silicates  this  action  is  of 
use  only  in  absence  of  coloring  oxides.  The  phosphate,  arsenate 
and  borate  become  violet  colored.) 

Manganese. — .\mmonium  sulphide  produces  a  flesh-colored 
precipitate.  A  solution  containing  traces  of  manganese  boiled 
in  concentrated  nitric  acid  with  lead  peroxide  or  sodium 
bismuthate  and  allowed  to  settle  gives  a  violet-red-colored 
solution  (HMn04).  The  borax  bead  with  manganese  in  the 
oxidizing  flames  gives  an  amethyst-colored  bead  (with  much, 
black  or  opaque)  and  this  in  the  reducing  flame  becomes 
colorless  or  with  black  spots.  With  soda,  oxidizing  flame, 
bluish  green  and  opaque  when  cold.  Nitrate  assists  the  reac- 
tion. If  silicon  is  present,  dissolve  in  borax,  then  make  soda 
fusion. 

Mercury. — Stannous  chloride  heated  with  a  solution  of 
mercury  precipitates  graj'  metallic  Hg.  Mercury  compounds 
mixed  with  sodium  carbonate  and  heated  in  a  closed  tube 
produce  a  gray  mirror  of  metallic  Hg.  With  bismuth  flux,  on 
plaster,  Hg  gives  a  volatile  yellow  and  scarlet  coat.  If  too 
strongly  heated  the  coat  is  black  and  yellow.  On  coal  Hg  gives 
a  coat  faint  yellow  at  a  distance.  In  matrass  gives  mirror-like 
sublimate,  which  may  be  collected  in  globules.  (Gold  leaf  is 
whitened  by  the  least  trace  of  mercury  vapor.) 

Molybdenum. — To  a  strong  nitric  acid  solution  of  molybde- 
num add  nearly  enough  ammonia  to  neutralize  the  acid  and 


CHEMICAL  DATA  275 

then  add  a  few  drops  of  sodium  phosphate  sokition,  A  bright- 
yellow,  crystalline  precipitate  forms  when  the  solution  is 
warmed.  A  hydrochloric  or  sulphuric  acid  solution  of  molybde- 
num, to  which  zinc  or  stannous  chloride  is  added,  turns  first 
blue,  then  green,  and  finally  brown.  On  coal,  with  oxidizing 
flame  Mo  gives  a  coat,  yellowish  when  hot,  white  when  cold, 
crystalline  near  assay;  in  reducing  flame  the  coat  is  turned  in 
part  deep  blue,  in  part  copper  red.  Its  Bunsen-burner  flame 
is  yellowish  green.  With  borax,  oxidizing  flame,  yellow  when 
hot,  colorless  when  cold.     Reducing  flame,  emerald  green. 

Neodymium. — The  didymium  salts  are  violet  and  are  identi- 
fied by  a  characteristic  absorption  spectrum. 

Nickel. — Potassium  cyanide  produces  a  bright-green  pre- 
cipitate, Ni(CN)2.  When  nickel  compounds  are  heated  with 
reducing  agents  before  the  blowpipe,  an  infusible  magnetic 
powder  is  produced.  If  this  powder  is  dissolved  in  a  drop  or  two 
of  dilute  nitric  acid  and  evaporated  to  complete  dryness,  a 
characteristic  green  stain  is  obtained  which  becomes  yellow  on 
further  heating.  Nickel  compounds  color  the  borax  bead 
brownish  yellow  in  the  oxidizing  flame,  the  bead  becoming 
gray  and  opaque  in  the  reducing  flame,  owing  to  the  separation 
of  metallic  nickel.  Nickel  is  precipitated  in  alkaline  solution 
by  ammonium  sulphide,  which  dissolves  in  an  excess  of  ammo- 
nium sulphide  forming  a  dark -colored  solution. 

Osmium. — It  is  dissolved  in  fuming  nitric  acid,  or  by  fusing 
with  sodium  hydroxide  and  potassium  nitrate  and  then  treat- 
ing with  nitric  acid  and  distilling.  Osmic  oxide  (OSO4),  which 
sublimes  at  a  moderately  low  temperature,  passes  over  and 
condenses  as  a  colorless  crystalline  mass.  The  osmic  oxide  has 
an  odor  similar  to  chlorine  and  is  poisonous. 

Palladium. — Dissolves  in  nitric  acid  or  aqua  regia.  Potas- 
sium iodide  added  produces  a  black  precipitate,  palladous 
iodide  (Pdl2),  soluble  in  an  excess  of  the  reagent  but  not 
soluble  in  water,  alcohol,  or  ether.  Mercuric  cyanide, Hg(CN)2, 
produces  a  yellowish-white  gelatinous  precipitate,  Pd(CN)2, 
which,  on  ignition,  leaves  the  spongy  metal.  See  also  special 
articles  on  palladium  determination  on  p.  264. 

Platinum. — When  heated  with  sodium  carbonate  on  charcoal, 
gray  spongy  metal  is  reduced.  This,  rubbed  on  a  mortar  with  a 
pestle,  gives  a  metallic  luster  and  is  insoluble  in  any  single  acid. 
See  also  special  articles  on  platinum  determination  on  p.  264. 

Potassium. — A  solution  of  H2PtCl6  added  to  concentrated 
solutions  of  potassium  gives  a  yellow  precipitate  KaPtCle.  In 
the  Bunsen  flame  potassium  gives  a  violet  color,  visible  if 
sodium  also  is  present  if  viewed  through  cobalt  glass. 

Praseodymium. — See  Neodymium. 

Radium. — To  the  Bunsen  flame  a  radium  salt  imparts  an 
intense  carmine-red  color.  Radium  rays  discharge  a  charged 
electroscope  and  may  be  used  for  making  photographs  on 
ordinary  X-ray  plates. 

Rhodium. — Before  the  blowpipe  on  charcoal  with  sodium 
carbonate  the  salts  of  rhodium  are  reduced  to  the  metal,  which 


276     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 

is  insoluble  in  aqua  regia,  but  may  be  dissolved  by  fusing  it 
with  potassium  pyrosulphate  and  then  treating  the  fusion  with 
water.  By  adding  to  this  solution  potassium  hydroxide  and  a 
little  alcohol  the  brown  rhodium  hydroxide  is  formed. 

Rubidium. — A  solution  of  HjPtCle  produces  a  white  cr3-stal- 
line  precipitate,  RboPtCe,  which  is  less  soluble  than  the  corre- 
sponding potassium  salt  and  more  soluble  than  the  caesium 
salt.     The  flame  test  gives  a  color  similar  to  the  caesium  test. 

Ruthenium. — Ruthenium  is  practically  insoluble  in  all  acids 
and  in  aqua  regia.  Fuse  it  with  potassium  hydroxide  and 
potassium  nitrate.  The  resulting  K2Ru04  heated  with  NaCl 
in  a  current  of  chlorine  yields  soluble  KjRuCU.  The  greenish- 
black  fusion  treated  with  water  yields  an  orange-yellow  solution, 
which  stains  the  skin  black. 

Scandium. — ^A  hydrochloric  acid  solution  of  scandium  treated 
with  sohd  sodium  silicofluoride  and  boiled  30  min.  gives  a 
precipitate  containing  scandium  free  from  the  rare  earth  metals. 
^  Silver. — When  fused  with  sodium  carbonate  on  charcoal 
before  the  blowpipe,  a  bright  metallic  silver  bead  is  produced, 
which  may  be  dissolved  in  nitric  acid  and  precipitated  from 
the  solution  by  hydrochloric  acid  as'  a  curdy  precipitate  of 
silver  chloride,  or,  if  only  a  trace  of  silver  is  present,  as  a  mere 
opalescence. 

Sodium. — To  a  neutral  or  weakly  alkaline  solution  add 
potassium  pyroantimonate,  KjHsSbjOa,  and  a  heavy  white 
crystalline  precipitate,  Na2H2Sb203,  is  quickly  formed  by 
rubbing  the  sides  of  the  beaker  with  a  glass  rod.  Solutions  of 
sodium  on  a  platinum  wire  in  a  Bunsen  flame  give  a  yellow 
color. 

Strontium. — Solutions  on  a  platinum  wire  color  the  Bunsen 
flame  carmine  red,  improved  by  moistening  with  HCl.  Stron- 
tium sulphate  is  less  soluble  than  calcium  sulphate,  but  more 
soluble  than  barium  sulphate.  If  barium  is  present  the  flame 
turns  brownish  j'ellow.  The  lithium  flame  is  unaffected  by 
addition  of  barium  chloride. 

Sulphur. — Fuse  on  coal  with  soda  and  a  little  borax  in  the 
reducing  flame  and  place  melt  on  a  bright  silver  coin.  Moisten, 
crush,  and  let  stand.  In  presence  of  sulphur  the  coin  will 
turn  brown  or  black. 

Thallium. — Dissolve  in  dilute  acid,  add  H2S,  filter.  Add  to 
the  filtrate  ammonium  sulphide  and  filter.  If  thallium  is 
present  in  the  precipitate  it  will  color  the  Bunsen  flame  emerald 
green. 

Thorium. — Fuse  in  a  platinum  crucible  with  sodium  carbon- 
ate. Cool,  dissolve  in  water  and  hydrochloric  acid.  Evapo- 
rate to  dryness  and  bake.  Take  up  with  dilute  hydrochloric 
acid,  filter.  Add  ammonia  to  the  filtrate,  filter.  Dissolve  the 
precipitate  in  hydrochloric  acid;  reprecipitate  with  oxalic  acid, 
filter,  ignite  the  residue.  Dissolve  in  hydrochloric  acid. 
Evaporate  to  dryness.  Take  up  with  water.  Add  an  excess 
of  sodium  thiosulphate  and  boil  to  precipitate. 

Tin. — Mercuric  chloride  added  to  a  solution  of  a  stannous 


CHEMICAL  DATA  277 

salt  precipitates  white  mercurous  chloride.  A  trace  of  stannous 
chloride  in  solution  added  to  a  solution  of  gold  chloride  pre- 
cipitates finely  divided  gold,  brown  by  transmitted  light  and 
bluish  green  by  reflected  light.  Metallic  zinc  precipitates  tin 
from  solution  as  a  spongy  mass,  which  adheres  to  the  zinc. 
Heat  the  ore  on  charcoal  with  sodium  carbonate  or  potassium 
cyanide;  a  metallic  bead  is  produced  which  is  coated  with  white 
oxide  when  the  flame  is  removed.  Cassiterite  in  lumps  in  a 
test-tube  with  metallic  zinc  and  dilute  sulphuric  acid  is  soon 
coated  with  metallic  tin. 

Titanium. — Titanium  sulphate  with  hydrogen  peroxide  in  a 
slightly  acid  solution  produces  an  orange-red  color,  or  a  clear 
yellow  with  small  amounts  of  titanium.  Vanadic  acid  with 
h\'drogen  peroxide  produces  a  similar  effect.  Tin  or  zinc  in 
hydrochloric  acid  solutions  of  titanium  produces  a  violet  color 
due  to  TioClz. 

Tungsten. — Treat  with  hydrochloric  and  nitric  acids  (4:1) 
and  take  to  dryness,  wash  by  decantation,  add  dilute  hydro- 
chloric acid  and  metallic  zinc,  aluminum,  or  tin  and  shake;  a 
fine  blue  coloration  or  precipitate  is  produced,  W2O5;  the  color 
disappears  when  diluted  with  water.  Fuse  in  platinum  with 
potassium  bisulphate,  digest  with  a  solution  of  ammonium 
carbonate,  filter,  add  to  the  filtrate  a  few  drops  of  SnCl2  solu- 
tion, acidify  with  hydrochloric  acid, warm  gently ;  a  fine  blue  color 
is  produced.  The  microcosmic  salt  bead  made  in  the  reducing 
flame  is  clear  blue;  if  iron  is  also  present,  the  bead  will  be  red 
brown.     In  the  oxidizing  flame  the  bead  is  colorless. 

Uranium. — Potassium  ferrocyanide  produces  a  brown  pre- 
cipitate, in  dilute  solution  a  brownish-red  coloration.  The 
borax  (or  microcosmic  salt)  bead  is  yellow  in  the  oxidizing 
flame  and  green  in  the  reducing  flame. 

Vanadium. — Vanadium  compounds  can  be  dissolved  by  a 
treatment  with  acids  or  alkalies.  The  hydrochloric  acid 
solution  assumes  a  bright  blue  color  on  addition  of  zinc.  A 
solution  of  hydrovanadic  sulphate  cannot  be  distinguished  in 
color  from  one  of  copper  sulphate  when  sufficiently  diluted  with 
water,  but,  of  course,  does  not  become  colorless  in  the  presence 
of  metallic  iron.  Solutions  of  certain  vanadates  also  closely 
resemble  solutions  of  the  chromates.  For  instance,  a  solution 
of  the  tetravanadate  of  potassium,  K2V4OU,  does  not  differ  in 
appearance  from  one  of  potassium  dichromate.  They  may, 
however,  be  distinguished  from  one  another,  since  the  vanadate 
solution  becomes  blue  and  the  chromate  assumes  a  green 
color  on  deoxidation.  When  a  solution  of  vanadic  acid  or  an 
acid  solution  of  an  alkali  vanadate  is  shaken  up  with  ether 
containing  hydrogen  peroxide,  the  aqlieous  solution  assumes  a 
red  color  like  that  of  ferric  acetate.  This  reaction  serves  to 
detect  one  part  of  vanadic  acid  in  4000  parts  of  the  liquid. 
Chromic  acid  does  not  interfere  with  the  reaction. 

Yttrium. — Extract  the  yttrium  in  the  manner  described 
under  Cerium  and  separate  it  from  the  other  rare  earths  in  a 
solution  of  their  sulphates  by  adding  a  saturated  solution  of 


278     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

potassium  sulphate.  Yttrium  sulphate  is  soluble;  the  others 
are  not. 

Zinc. — Ammonium  sulphide  precipitates  ZnS.  Potassium 
ferroryanido  produces  a  white  i)recipitate,  Zn2Fo(CN6).  Before 
tlic  hl()\vi)ipc'  on  cliarroal  with  sodium  carbonate,  a  coating  of 
oxide  is  produced  whicli  is  yellow  while  hot  and  white  when 
cold.  With  cobalt  nitrate  on  charcoal  an  infusible  green  mass 
is  produced. 

Zirconium. — Treat  with  dilute  sulphuric  acid  (2  : 1),  filter, 
add  ammonia  to  the  cold  filtrate,  filter;  wash,  dissolve  the  pre- 
cipitate in  hydrochloric  acid,  evaporate  to  dryness.  Take 
up  with  a  little  water  and  add  to  the  cold  saturated  solution 
hydrochloric  acid,  drop  by  drop;  if  zirconium  is  present,  the 
oxychloride  will  be  precipitated.  Heat  to  dis.solve  the  pre- 
cipitate. Cool  and  after  some  time  fine  silky  needles  of 
ZrOCU  +  8H2O  will  precipitate. 

DETERMINATION    OF    PLATINUM,    PALLADIUM    AND 
GOLDi 

Scorif}'  the  lead  buttons  from  two  or  more  ^-a.t.  crucible 
fusions  together,  adding  at  least  six  times  as  nmch  silver  as  the 
combined  weight  of  the  Ft,  Pd  and  Au  present,  and  cupel  hot. 
In  rich  materials  such  as  slimes  or  concentrates,  two  J^-a.t. 
fusions  suffice,  but  low-grade  ores  maj'^  require  10  or  more  ^-a.t. 
fusions  combined  for  each  determination. 

Part  the  silver  beads  with  HNO3  (1:6),  followed  by  stronger 
parting  acid  (1:1)  and  wash  with  water  as  usual.  All  Pd 
goes  into  solution,  together  with  considerable  Pt.  The  residue 
consists  of  Au  plus  some  Pt.  Dissolve  residue  in  strong  aqua 
regia  and  resers^e  the  solution  (solution  A).  Precipitate  the 
silver  in  the  nitric-acid  .solution — containing  Ag,  Pd  and  some 
Pt — with  HCl.  Practically  all  the  Pt  will  remain  in  solution; 
but  the  precipitated  AgCl  is  pink  in  color  and  contains  con- 
siderable Pd.  Filter  off  the  AgCl,  scorify  and  cupel  it  and  part 
again  with  HNOj  (1:0);  all  should  dissolve.  Reprecipitate 
the  Ag  with  HCl.  The  liquid  now  contains  most  of  the  re- 
maining Pd,  but  some  is  co-precipitated  with  AgCl.  Filter  off 
the  AgCl  and  add  the  filtrate  to  the  first  filtrate  from  AgCl. 
Again  scorify  and  cupel  the  silver  chloride,  dissolving  the  silver 
in  nitric  acid  as  before  and  reprecipitating  the  silver  as  chloride. 
In  most  cases  the  filtrate  from  this  silver  chloride  contains  all 
the  remaining  Pd.  If,  however,  the  AgCl  is  distinctly  pink, 
another  separation  must  be  made. 

Unite  all  filtrates  from  AgCl  precipitations  and  evaporate  to 
small  bulk,  adding  the  aqua-regia  solution  of  the  Au  and  Pt 
(solution  A).  The  liquid  now  contains  all  the  Au,  Pt  and  Pd 
present  in  the  original  ore,  together  with  traces  of  Ag  due  to 
solubility  in  AgCl  in  excess  of  HCl,  and  also  traces  of  Pb 
gathered  from  the  lead  retained  in  the  silver  buttons  from  the 
several  recupellations. 

'  From  an  article  by  A.  M.  Smoot,  Enu.  and  Min.  Journ.,  Apr.  17,  19)5. 


CHEMICAL  DATA  279 

Evaporate  the  liquid  to  dryness  on  the  steam  bath;  take  up 
with  dilute  HCl  (1:3)  and  evaporate  again  to  dryness;  take 
up  with  five  drops  of  HCl  and  40  cc.  H2O.  Pay  no  attention  to 
any  insoluble  residue  of  AgCl  or  PbCL.^  Precipitate  gold  by 
adding,  say,  3  grams  of  oxalic  acid  to  the  solution  and  boiling 
it.  Let  stand  over  night  and  filter  off  the  Au.  If  Pt  and  Pd 
are  high,  it  is  necessary  to  redissolve  the  Au  in  aqua  regia, 
evaporating  with  HCl  to  dryness  and  repeating  the  oxalic-acid 
precipitation,  uniting  the  filtrate  with  that  from  the  first  gold 
precipitation.  Burn  the  filter  containing  the  gold  and  scorify 
it  with  six  times  its  weight  of  silver  and  a  little  test  lead;  cupel, 
part  and  weigh  the  gold  as  usual. 

To  the  oxalic-acid  filtrates  from  Au  add  5  cc.  of  HCl  and  make 
volume  up  to  150  cc;  heat  to  boiling  and  precipitate  Pt  and  Pd 
with  a  rapid  current  of  H2S  in  hot  solution,  passing  the  current 
of  gas  for  some  time  and  keeping  the  solution  hot  during  pre- 
cipitation. Filter  and  wash  the  Pt  and  Pd  sulphides  w-ith 
HaS  water  containing  a  little  HCl.  Wash  the  precipitate  from 
the  filter  with  a  fine  water  jet  into  an  original  beaker;  spread 
the  filter  paper  (which  will  contain  a  small  amount  of  precipitate 
impossible  to  wash  off)  with  the  precipitate  side  down  over  the 
lower  side  of  a  watch-glass  cover.  Add  aqita  regia  to  the 
precipitate  in  the  beaker  and  place  the  cover  on  the  beaker; 
warm  gently  to  dissolve  the  Pt  and  Pd  sulphides.  The  fumes 
arising  from  the  acid  dissolve  the  traces  of  Pt  and  Pd  adhering 
to  the  filter  paper.  When  solution  is  complete  and  the  filter 
paper  is  white,  remove  the  watch-glass  cover  and  wash  the 
paper  with  hot  dilute  HCl  thrown  against  it  in  a  fine  stream. 

Evaporate  the  aqua-regia  solution  to  dryness,  take  up  the 
residue  with  HCl  and  evaporate  again  to  dryness  to  remove  all 
HNO3.  Take  up  the  residue  with  two  or  three  drops  of  HCl  and 
about  2  cc.  of  H2O.  The  solution  is  usually  perfectly  clear, 
but  it  may  be  slightly  cloudy  owing  to  the  presence  of  a  little 
AgCl  in  it.  No  attention  need  be  paid  to  this,  however.  Add 
5  to  10  cc.  of  a  saturated  solution  of  NH4CI,  stir  well  and  allow 
to  stand  over  night.  Platinum  is  precipitated  as  ammonium- 
platinum  chloride — (NH4)2PtCl6.  Filter  and  wash  the  pre- 
cipitate with  20  per  cent.  NH4CI  solution.  All  Pd  passes  into 
the  filtrate  w^hich  is  reserved  (solution  B).  Dissolve  the  Pt 
precipitate  in  boiling  hot  5  per  cent.  H2SO4;  heat  the  liquid  to 
actual  boiling  and  precipitate  with  H2S  as  before,  filtering  and 
washing  with  HjS  water.  Burn  the  filter  and  precipitate  at  a 
low  temperature  in  a  scorifier;  add  six  times  as  much  Ag  as  Pt, 
scorifying  with  lead,  cupel  and  part  the  silver  bead  containing 
the  platinum  with  HiS04;  decant  off  the  silver  solution  and 

1  In  materials  rich  in  palladium  the  small  amount  of  AgCl  +  PbCh  may 
be  distinctly  pink  in  color  and  retain  weighable  quantities  of  Pd.  If  this  is 
the  case,  the  Pd  may  be  recovered  in  the  solution  from  the  nitric  acid  parting 
of  the  gold.  To  do  this,  precipitate  the  silver  in  this  liquid  by  adding  HCl, 
filter  off  the  silver  chloride  and  evaporate  the  filtrate  to  dryness.  Take  up 
with  a  drop  of  HCl  and  a  little  water,  let  stand  over  night  and  filter  through  a 
very  small  filter.  This  liquid  may  be  added  to  solution  B  before  precipitat- 
ing palladium  with  glyoxime. 


280     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

wash  once  with  strong  HjSO*,  followed  by  50  per  cent.  HsS04 
until  practically  all  silver  is  washed  away;  finally  wash  with 
water,  anneal  and  weigh.  A  minute  quantity  of  Ag  is  retained 
with  the  platinum,  but  it  can  usually  be  neglected.  In  very 
important  work  where  the  amount  of  platinum  i.s  large  dissolve 
in  aqua  regia,  evaporate  the  solution  to  dryness,  take  up  with 
a  drop  of  HCl,  dilute  largely  with  water  and  let  the  AgCl 
settle  over  night;  filter  on  a  small  paper,  cupel  it  with  a  little 
sheet  lead  and  deduct  the  weight  from  the  weight  of  platinum. 
This  refinement  need  not  be  considered  in  materials  running 
less  than  15  or  20  oz.  to  the  ton. 

It  may  seem  an  unnecessary  step  to  precipitate  the  platinum 
as  sulphide,  scorify  it  with  silver  and  part  it  as  described  in  the 
foregoing.  General  practice  has  been  to  ignite  the  ammonium- 
platinum-chloride  precipitate  and  weigh  the  metallic  residue. 
When  this  is  done,  however,  there  is  danger  of  losing  con- 
siderable platinum,  which  is  carried  awaj'  mechanically  during 
the  decomposition  of  the  compound;  furthermore,  it  is  extremely 
difficult  (if  not  impossible)  to  collect  the  finely  divided  residue 
for  weighing,  and  the  precipitate  invariably  contains  lead  and 
silver.  Precipitation  as  sulphide,  scorification  and  cupellation 
with  excess  silver  and  parting  with  sulphuric  acid  overcome 
the  difficulties  inherent  in  handhng  the  ammonium  precipitate. 

The  palladium  is  all  contained  in  the  filtrate  and  washings 
from  the  platinum-ammonium-cliloride  precipitates  (solution 
B).  Add  to  this  solution  at  least  seven  times  as  much  di- 
methylgh'oxime  as  there  is  Pd  present  (in  any  case,  at  least 
0.1  gram  glyoxime).  The  precipitant  should  be  dissolved  in 
a  mixture  of  two-thirds  strong  HCl  and  one-third  water. 
Dilute  the  liquid  to  250-300  cc,  heat  on  a  steam  bath  for  half 
an  hour  and  let  stand  over  night.  Pd  is  precipitated  as  a 
voluminous,  vellow,  easilj^  filtered  glyoxime  compound 
(C8Hi4N404)3Pd,  containing,  when  dried "  at  110°C.,  31.686 
p>er  cent,  of  Pd.  Filter  the  Pd  precipitate  on  a  weighed  Gooch 
crucible  and  wash  it  first  with  dilute  HCl,  half  and  half,  then 
with  warm  water  and  finally  with  alcohol;  dry  it  at  110°  to 
115°C.  and  weigh.  The  disadvantage  of  weighing  palladium 
on  a  Gooch  crucible  is  overcome — at  least  to  some  extent — by 
the  fact  that  the  Pd  compound  contains  a  relatively  small 
amount  of  Pd — less  than  one-third  of  its  weight.  This  com- 
pound may  also  be  weighed  on  carefully  counterpoised  papers; 
but  it  is  better  to  use  Gooch  crucibles,  if  they  are  available, 
because  of  the  relatively  strong  acid  which  is  required  for 
washing.  The  object  in  using  half-and-half  hydrochloric 
acid  as  a  wash  liquid  is  to  dissolve  out  any  excess  of  the  glyoxime 
precipitant.  This  is  easily  soluble  in  moderately  strong 
HCl,  but  is  substantially  insoluble  in  water.    . 


CHEMICAL  DATA  281 

DETERMINATION    OF    SILVER    IN    ORES    AND    CON- 
CENTRATES CONTAINING  PLATINUM   AND 
PALLADIUM 

Make  the  usual  crucible  fusion  on  one-quarter,  one-half 
or  full  assay  ton,  according  to  the  amount  of  silver  present. 
Instead  of  cupeling  the  lead  button,  hammer  it  free  from  slag 
and  dissolve  it  in  dilute  nitric  acid.  Most  of  the  silver  passes 
into  solution  together  with  palladium,  and  perhaps  a  trace  of 
platinum;  but  gold  and  most  of  the  platinum  remain  insoluble. 
The  gold  and  platinum  retain  an  appreciable  proportion  of 
silver  which  cannot  be  washed  out.  Filter  out  the  insoluble 
residue  and  wash  it  thoroughly  with  hot  dilute  nitric  acid, 
followed  by  hot  water.  Scorify  the  residue  once  more  with  a 
little  lead  and  dissolve  the  lead  button  as  before,  filtering  into 
the  beaker  containing  the  first  filtrate.  In  this  liquid  pre- 
cipitate the  silver  as  AgCl  by  adding  standing  NaCl  in  sufRcient 
quantity;  stir  well,  and  if  the  amount  of  silver  is  small,  add 
about  }/2  cc.  of  strong  H2SO4  to  form  a  precipitate  of  lead 
sulphate.  Let  the  silver  chloride,  or  the  silver  chloride  plus 
lead  sulphate,  settle  over  night  or  until  the  supernatant  liquid 
is  clear;  filter  through  double  filter  papers;  ignite  and  scorify 
the  residue  of  silver  chloride  with  test  lead. 

If  the  amount  of  palladium  contained  in  the  sample  is  small, 
the  silver  bead  obtained  by  cupeling  the  lead  button  obtained 
by  scorifjang  the  silver  chloride  may  be  considered  as  sufficiently 
pure  for  ordinary  purposes.  It  contains,  of  course,  some 
palladium,  and  in  accurate  silver  determinations  the  lead  button 
from  the  first  silver-chloride  precipitation  should  be  redissolved 
and  the  silver  reprecipitated,  filtered  and  scorified  as  before. 
The  amount  of  palladium  retained  after  the  second  precipitation 
and  scorification  is  so  small  as  to  be  negligible. 

SCHEME    FOR    QUALITATIVE    ANALYSIS    OF    HEAVY 
METALS   AND   ALKALINE  EARTHS 

(The  material  is  either  in  solution  or  is  capable  of  being 
readily  dissolved.) 

(A)  Slightly  acidulate  solution  with  HCl.  It  is  best  to  take 
only  a  small  portion  of  the  solution,  and  if  a  precipitate  forms, 
see  whether  it  redissolves  in  more  acid.  If  it  does,  it  indicates 
Sb  or  Bi.  Permanent  precipitate  shows  Ag,  Pb,  or  Hg  (ous). 
Filter  precipitate  {B)  and  reserve  solution  (C). 

{B)  Wash  with  hot  water,  and  add  K2Cr207  solution  to  fil- 
trate. Heavv  vellow  precipitate  shows  lead.  Wash  residue 
(5)  with  NH46H,  and  acidulate  filtrate  with  HNO3.  Pre- 
cipitate shows  Ag.  Blackening  of  filter  paper  shows  Hg  (ous). 
(C)  Pass  in  H2S  until  precipitate  coagulates.  Precipitate  may 
be  As  (vellow),  Sb  (orange),  Sn"  (brown),  Sn""  (vellow), 
Hg'  or  Hg"  (black),  Bi  (brown),  Cd  (yellow),  Pb  "(black), 
Cu  (black).     Filter,  giving  precipitate  (D)  and  solution  {E). 

iP)  Warm  with  ammonium  polysulphide  and  filter.     Fil- 


282     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 

trate  (G)  may  contain  As,  Sb,  Sn,  and  traces  of  Cu.  (Also 
Au,  Ir,  Se,  W,  Pt,  Te,  V,  of  the  rare  elements.)  Precipitate 
(E)  contains  Hg,  Bi,  Cd,  Pb,  Cu. 

(G)  Throw  down  precipitate  from  (NH4)2S2  solution  with 
HCl.  Leach  precipitate  with  ammonium  carbonate.  Arsenic 
dissolves.  P'iltor.  Add  HCl  to  filtrate  to  faint  acidity.  Pass 
in  HoS.  Yellow  precipitate  shows  arsenic.  (May  be  confirmed 
by  M.\R.SH  test.)  Dissolve  remaider  of  precipitate  E  in  strong 
IlCl.  Dilute  and  add  metallic  zinc  in  contact  with  a  small 
piece  of  platinum.  Precipitate  of  metallic  tin  and  antimony 
form.s.  Treat  with  HCl  and  filter.  To  filtrate  add  HgClj 
solution.  White  to  gray  precipitate  of  Hg^CU  shows  tin. 
Treat  residue  from  extraction  with  aqua  regia,  boil  off  excess 
CI  and  HNO3,  and  pass  in  H2S.  An  orange  precipitate  of 
SbjSs  confirms  the  presence  of  antimony,  already  indicated  by 
a  blackening  of  the  platinum. 

(F)  Heat  residue  from  ammonium  polysulphide  leaching 
with  dilute  (10  per  cent.)  HNO3  and  filter.  Heat  residue  with 
concentrated  HNO3.  dilute  and  filter,  combining  the  two  filtrates. 
The  precipitate  (H)  remaining  consists  of  HgS  and  S.  The 
filtrate  (/)  contains  Cd,  Bi,  Cu,  Pb.i  (If  the  original  treat- 
ment is  made  with  concentrated  HNO3  all  of  the  PbS  maybe 
oxidized  to  Pb.S04  and  remain  with  the  mercury.  PbS  is 
soluble  in  10  per  cent.  HNO3  according  to  the  equation  PbS 
+  2HNO3  =  Pb(X03)2  +  US). 

(//)  Di.ssolve  precipitate  in  aqtm  regia.  Boil  off  excess  of 
CI  and  HNO3  and  add  SnCh.  A  white  to  gray  precipitate 
confirms  presence  of  mercury,  probably  already  indicated  by 
the  black  residue  from  the  HNOs  leaching. 

(/)  Add  a  few  drops  of  H2SO1  to  solution.  White  pre- 
cipitate indicates  lead.  Filter,  getting  precipitate  (J)  and 
solution  (K). 

(J)  Treat  precipitate  on  filter  with  hot  ammonium  acetate 
and  filter,  adding  KjCraO,  to  filtrate.  Chrome-yellow  pre- 
cipitate confirms  presence  of  lead. 

(K)  Evaporate  to  small  bulk,  add  about  eight  times  bulk  of 
alcohol,  warm,  and  filter  (to  ensure  removal  of  all  lead).  Evapo- 
rate off  alcohol  on  sand  bath  and  make  strongly  ammoniacal. 
White  precipitate  indicates  Bi.  Blue  solution  indicates  Cu. 
The  blue  may  be  so  intense  as  to  mask  the  Bi(0H)3  precipitate. 
Filter  and  wash,  and  treat  filter  paper  with  strong  HCl,  catch- 
ing strong  HCl  solution  in  a  beaker.  Dilute  largelj\  White 
precipitate  shows  Bi.  Take  blue  copper  solution  and  add 
KCN  solution  until  blue  color  just  disappears  and  pass  in  H2S. 
Bright-vellow  precipitate  indicates  Cd. 

(E)  Boil  off  all  H2S  from  the  filtrate  from  the  H2S  pre- 
cipitation, making  sure  finally  that  it  is  all  gone  by  adding  a 
few  drops  of  HXO3  and  boiling.  If  organic  acids,  tartaric, 
citric,  or  the  like  are  present,  it  is  best  to  destroy  them  by 
evaporating  almost  to  dryness  and  adding  some  concentrated 

'  Pd  and  Os  belong  in  the  HjS  group  of  metals  whose  sulphides  are  in- 
soluble in  (NHt)jSi. 


CHEMICAL  DATA  283 

II2SO4  and  fuming  HXO3.  Test  a  little  of  the  solution  for 
phosphoric  acid  bj'  means  of  ammonium-molybdate  solution 
ia  nitric  acid.  If  a  yellow  precipitate  shows  phosphates, 
evaporate  to  a  thick  soup,  and  add  a  little  tin  and  nitric  acid 
and  boil  until  action  ceases.  Dilute,  filter,  and  repeat.  The 
phosphorus  is  removed  as  stannous  phosphate,  all  but  traces  of 
tlie  tin  remain  undissolved  as  metastannic  acid.  If  only  traces 
of  the  further  groups  of  metals  are  being  looked  for,  boil  off 
all  the  nitric  acid  with  repeated  additions  of  HCl,  throw  out  the 
last  of  the  tin  with  HoS,  filter,  then  boil  off  the  H2S  and  remove 
the  last  traces  of  it  with  HXO3,  as  above  specified.  If  phos- 
phorus is  not  present,  all  of  this  is  unnecessary.  Add  a  little 
NH4CI  and  make  the  solution  ammoniacal.  Fe,  Al  and  Cr 
are  precipitated^  (L).  Boil  off  excess  of  ammonia,  filter; 
solution  (M)  contains  Co,  Mn,  Ni  and  Zn  and  the  alkaline 
earths  and  alkalis. 

(L)  Leach  precipitate  wnth  hot  KOH  solution.  Make 
teachings  acid  with  HCl  and  add  ammonia.  White  flocculent 
precipitate  indicates  alumina.  Dissolve  half  of  original  pre- 
cipitate with  HCl  and  add  K4FeCy6.  Precipitate  of  Prussian 
blue  confirms  presence  of  iron,  probably  already  indicated  by 
red  color  of  precipitate.  Take  the  other  half  of  the  precipitate 
and  fuse  with  sodium  carbonate  and  sodium  nitrate.  A  yellow 
melt  indicates  sodium  chromate.  Dissolve  melt  in  water, 
acidify  with  acetic  acid  and  add  a  drop  of  lead-acetate  solution. 
Precipitate  of  lead  chromate  confirms  presence  of  chromium, 
probably  already  indicated  by  a  greenish  hydroxide  precipitate 
or  the  yellow  melt. 

(M)  Pass  in  H2S  into  solution.  IMn,  Zn,  Co,  Ni  precipitate. 
Filter.  Filtrate  (N)  contains  alkalies  and  alkaline  earths. 
Treat  precipitate  with  cold  dilute  HCl.  Mn  and  Zn  dissolve. 
Add  KOH  in  excess.  Filter,  acidify  filtrate  with  acetic  acid 
and  pass  in  H2S.  A  white  or  nearly  white  flocculent  precipitate 
confirms  the  presence  of  Zn.  Take  the  precipitate  from  the 
KOH  precipitation  and  fuse  with  Xa2C03  and  XaXOs.  A 
green  melt  shows  manganese.  Take  the  residue  insoluble  in 
HCl  and  touch  a  borax  bead  to  it  and  heat.  A  bead,  violet 
when  hot,  blue  when  cold,  shows  cobalt.  A  gray  bead  (cold) 
shows  Xi  only,  but  this  is  easily  masked  by  cobalt  blue.  So  if 
the  bead  is  blue,  dissolve  the  residue  in  aqua  regia,  evaporate 
to  soup,  dilute,  and  add  KCX  until  the  precipitate  first  formed 
redissolves.  Heat  solution  gently,  add  a  little  XaOH,  then  Br 
{under  a  hood).     A  black  precipitate  shows  nickel. 

(.V)  Boil  until  H2S  odor  becomes  faint,  add  NH4OH  and 
(NH4)2C03  and  warm  shghtly.  Ba,  Sr,  and  Ca  precipitate. 
Filter  and  dissolve  precipitate  in  HCl.  Add  H2S04topart  of  the 
solution.  Precipitate  indicates  Ba  or  Sr  or  both.  To  another 
part  of  the  solution  add  K2Cr04.  An  immediate  precipitate 
of  a  pale  yellow  color  shows  Ba.     In  the  filtrate  Sr  can  be 

'  The  hydroxide  precipitate  will  carry  down  As,  Sb,  Se,  Te,  Sn,  P  and  Ti  if 
they  are  present,  which  reaction  affords  an  easy  way  to  concentrate  these 
elements  from  a  large  bulk  of  copper  in  exact  copper  analysis. 


284     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

determined  by  the  reddish  color  given  a  Bunsen  burner  flame, 
while  Ca  can  be  precipitated  as  calcium  oxalate  (white)  in 
ammoniacal  solution.  Calcium  colors  a  Bunsen  flame  reddish 
yellow,  and  Ba  a  vivid  green. 

(O)  Add  ammonium-  or  sodium-phosphate  solution  to  the 
filtrate  from  the  Ba,  Ca,  Sr  precipitation.  Stir,  cool,  and  al- 
low to  settle  over  night.     Granular  white  precipitate  shows  Mg. 

Qualitative  Tests  for  Acids^ 

The  acid-radicals  cannot  be  advantageou.sly  precipitated  in 
groups,  and  the  members  separated  and  identified  as  with  the 
metals.  They  are  usually  detected  in  the  course  of  analysis 
by  special  tests.  They  may,  however,  be  arranged  in  groups  of 
such  acid-radicals  as  resemble  one  another.  A  consideration 
of  the  metals  present,  in  case  the  material  is  in  solution,  will 
often  rule  out  many  acids  as  possibilities  at  once. 

The  acids  may  be  arranged  as  follows: 

Group  I. — Acids  which  are  precipitated  by  AgNOa  in  presence 
of  nitric  acid. 

Hydrosulphuric  acid  HjS 

Hydrochloric  acid  HCI 

Hydrobromic  acid  HBr 

Hydriodic  acid  HI 

Group  II. — Acids  whose  salts  deflagrate  on  charcoal. 
Nitric  acid  HNOa 

Chloric  acid  HCIO, 

Group  III. — Acids  which  cannot  be  classified. 

Boracic  acid  HaBOs 

Carbonic  acid  HoCOs 

Chromic  acid  H^CrOi 

Hydrofluoric  acid  HF 

Phosphoric  acid  H3PO4 

Silicic  acid  H4Si04 

Sulphuric  acid  H2SO4 

Arsenic  acid  H3.\sO« 

Hydrocyanic  acid,  acetates  HCN 

GROUP  I 

H2S. — AgNOa  gives  a  black  pp.  of-  Ag2S  insoluble  in  dilute 
acids. 

Lead  acetate — a  black  pp.  of  PbS  insoluble  in  dilute  acids. 

Dilute  HCI — many  sulphides  when  heated  with  dilute  HCI 
evolves  H2S,  which  blackens  paper  moistened  with  lead 
acetate.  If  much  H2S  is  present,  there  will  be  the  characteristic 
odor  present,  but  do  not  smell  the  gas  coming  off  unless  3'ou  are 
sure  no  cyanides  are  present.  It  is  safer  to  have  some  one  else 
smell  it,  anyway. 

'.lames  Park,"  A  Test-Book  of  Practical  Assaying,"  with  some  original 
additions. 


CHEMICAL  DATA  285 

HCl. — AgXOs — a  white  pp.  of  AgCl  at  first  white,  turns  violet 
on  exposure  to  hght.  Readilj^  soluble  in  ammonia  and  KCN. 
Insoluble  in  dilute  nitric  acid. 

Lead  acetate — a  white  pp.  of  PbCl2  soluble  in  hot  water. 

Strong  H2SO4 — when  heated  with  dry  chlorides  causes  evolu- 
tion of  HCl  gas,  chlorides  of  Hg  and  Sn  excepted.  Bromides, 
iodides,  fluorides,  cyanides,  carbonates,  sulphides,  sulphites, 
thiosulphates  and  acetates  also  give  off  characteristic  gasesi 
during  this  test. 

MnOa  +  H2SO4 — when  mixed  with  a  chloride  causes  evolu- 
tion of  chlorine,  which  bleaches  wet  litmus  paper  or  a  green 
leaf.  Iodine  and  bromine  are  also  evolved  by  this  means.  The 
colors  are  characteristic. 

HBr. — AgNOa — a  yellowish-white  pp.  of  AgBr;  sparingly  solu- 
ble in  ammonia  but  readily  in  KCN.  Insoluble  in  dilute  nitric 
acid.  Phosphates  also  give  a  yellow  precipitate.  Test  for 
phosphoric  acid  with  ammonium  molvbdate  in  HXO3  solution. 

Lead  acetate — a  white  pp.  of  PbBr2. 

Strong  H2SO4 — with  a  dry  bromide  causes  evolution  of  HBr 
vapors. 

Mn02  +  H2SO4 — causes  evolution  of  Br,  which  turns  starch 
paper  yellow. 

Chlorine  water  or  HCl  -f  two  drops  of  NaClO,  when  added, 
drop  by  drop,  to  a  solution  of  a  bromide  liberates  Br,  which  colors 
solution  orange  red.  Avoid  excess  of  CI,  as  it  destroys  color. 
When  a  portion  is  warmed,  reddish-brown  vapors  are  given  off. 
If  three  drops  of  CS2  are  added,  the  Br  will  sink  to  the 
bottom. 

HI. — AgNOa — a  yellowish-white  pp.  of  Agl.  Sparingly 
soluble  in  ammonia;  readily  in  KCN.  Insoluble  in  dilute 
nitric  acid. 

Lead  acetate — bright  yellow  pp.  of  Pbl2. 

Chlorine  water — reacts  for  iodine,  giving  a  brown  solution 
and  violet  vapors.  To  a  portion  add  starch  solution,  an  in- 
tense blue  is  produced. 


GROUP  II 
Nitric  Acid  (Nitrates)^ 

Dry  Reactions. — 1.  If  a  nitrate  is  heated  on  charcoal  it 
deflagrates,  the  charcoal  burning  at  the  expense  of  the  O  of 
the  nitrate.  Nitrites,  chlorates,  chromates,  manganates  and 
permanganates  also  give  this  reaction. 

2.  If  a  mixture  of  a  nitrate  and  KCN  powder  be  heated  on 
platinum  foil,  deflagration  takes  place.     This  is  a  delicate  test. 

Wet  Reactions. — 1.  Strong  H0SO4  heated  with  nitrates  causes 
evolution  of  fumes  of  nitric  acid.     Nitrites  give  this  reaction. 

2.  Mix  sol.  of  a  nitrate  with  strong  sol.  of  FeS04.  Hold 
test-tube  in  a  slanting  position  and  pour  strong  H2SO4  down  to 

1  Nitrites  also  give  most  of  these  reactions. 


280     METALLLRC'.ISTS  AND  CHEMISTS' HANDBOOK 

bottom.     A  purple  or  brown  color  will  mark  the  plane  of  contact 
of  the  fluids.     Nitrites  also  give  this  and  the  following  reaction. 

3.  Copper  filings  and  HjSO,  heated  with  a  nitrate  lil)erate 
NO,  which  becomes  pcroxidized  to  NO5  on  contact  with  the  air. 

4.  A  sol.  of  indigo  boiled  with  HCl  and  a  .sol.  of  a  nitrate 
is  decolorized.     Not  ciiaracteristic,  as  chlorine  reacts  the  same. 

5.  A  little  brucine  dissolved  in  H2SO4  when  added  to  a  sol. 
of  a  nitrate  gives  a  fine  red  color.     This  is  a  very  delicate  test. 

6.  Free  nitric  acid  may  be  detected  by  evaporating  to  dryness 
with  quill-cuttings.     These  will  be  colored  yellow. 

It  gives  with  FeS04  a  brown  ring;  and  with  copper  filings  or 
foil  a  reddish-brown  gas,  NO2,  and  a  blue  color. 

The  most  delicate  test  for  nitrates  is  to  take  2  or  3  c.c.  of  the 
solution  in  HCl,  add  12  drops  of  a  solution  of  diphenylamine  in 
pulphiiric  acid,  then  run  in  H'>S04  ))elow  the  mixture.  A  faint 
blue  will  be  given  by  1  part  in  1,000,000  of  HXO3. 

Chloric  Acid  (Chlorates) 

Dry  Reactions. — 1.  Chlorates  when  heated  on  charcoal  de- 
flagrate far  more  violently  than  nitrates.     So  do  perchlorates. 

2.  Heated  on  charcoal  with  KCX,  chlorates  detonate  vio- 
lently.    Use  only  small  quantities  in  this  experiment. 

Wet  Reactions.  —I.  A  few  drops  of  H2SO4  added  to  a  small 
quantity  of  a  chlorate  liberate  chlorine  peroxide  (C102),  which 
colors  the  H2SO4  intensely  yellow,  and  has  a  strong  odor  of  CI 
and  a  greenish  color.  This  experiment  should  be  tried  in  a 
watch-glass  rnthout  heat,  as  an  explosion  might  take  place. 

2.  If  a  cold  sol.  of  indigo  is  added  to  a  cold  sol.  of  a  chlorate 
till  distinctly  blue,  and  .some  H2SO4  then  poured  in  and  shaken, 
the  blue  color  of  the  indigo  is  at  once  destroyed.  Chlorites, 
perchlorates.  and  hypochlorites  also  give  this  reaction. 

3.  If  a  chlorate  is  mixed  with  Xa2C03  and  ignited,  O2  is 
given  off  and  a  chloride  remains.  On  dissolving  tlie  residue, 
acidifying  with  nitric  acid,  and  adding  silver  nitrate,  a  white 
pp.  of  AgCl  is  formed. 

GROUP  III 
Boracic  Acid 

Dry  Reactions. — 1.  Boric  acid  tinges  the  Bunsen  flame 
green. 

2.  Pour  some  methylated  spirits  on  finely  powdered  borax 
in  a  porcelain  dish;  add  a  little  H2SO4;  mix  and  ignite;  the 
flame  will  show  a  green  edge. 

Wet  Reactions. — 1.  If  a  sol.  of  an  alkaline  borate  is  mixed 
with  HCl  to  slight  but  distinct  acid  reaction,  and  a  strip  of 
turmeric  paper  is  half  rUpped  into  it  and  then  dried  at  212''F. 
(lOO'C),  the  dipped  half  will  show  a  peculiar  red  color — very 
delicate.  Sodium  carbonate  turns  this  to  a  dark  blackish-green, 
and  HCl  will  restore  the  color. 


CHEMICAL  DATA  287 


Carbonic  Acid 

Wei  Readions. — 1.  Almost  any  acid  when  poured  on  a  car- 
bonate in  a  test-tube  causes  effervescence  due  to  rapid  evolution 
of  CO2.  When  conducted  into  lime-water  this  gas  causes  a  pp. 
of  CaCOs,  which  is  sol.  in  large  excess  of  the  gas.  Cyanides, 
sulphites,  tellurides,  selenides,  sulphides,  and  thiosulphates 
also  effervesce.     Be  careful  about  inhaling  these  gases. 

Chromic  Acid 

Dry  Reactions. — 1.  Compounds  of  chromic  acid  give  an 
emerald-colored  bead  with  borax  on  platinum  loop  in  both 
outer  and  inner  blowpipe  flames. 

Wet  Reactions. — 1.  HjS  added  to  an  acidified  sol.  of  a  chro- 
mate  produces  a  green  coloration  due  to  reduction  of  the  chromic 
acid  [CrOs].  A  white  precipitate  of  sulphur  is  formed  at  the 
same  time. 

(Readily  oxidizable  substances  deoxidize  K2Cr207  with  pro- 
duction of  a  chromic  salt;  the  color  of  the  solution  at  the  same 
time  changes  from  orange  red  to  bright  green.) 

2.  H2O2  or  Ba02  if  added  to  a  cold  acidified  sol.  of  a  chromate 
produces  an  intense  blue  coloration,  which  becomes  fixed  if 
ether  is  first  added  and  the  liquid  well  shaken  after  adding  the 
peroxide.  The  ether  assumes  and  retains  the  blue  color. 
A  few  drops  of  HNO3  are  useful.  This  is  an  extremely  delicate 
and  characteristic  test. 

3.  BaCl2  gives  a  light  yellow  pp.  of  BaCr04,  sol.  in  HCl 
and  HNO3. 

4.  AgNOa  gives  a  dark  purple-red  pp.  of  Ag2Cr04,  sol.  in 
KNO3  and  NH4OH. 

5.  Pb(C2H302)2  gives  a  yellow  pp.  of  PbCr04,  sol.  in  KOH, 
but  insol.  in  C2H4O2.  This  precipitate,  "chrome  yellow,"  is 
very  characteristic. 

6.  If  insoluble  chromates  are  fused  with  Na2C03  and  KNO3, 
alkaline  chromates  will  be  formed,  which  are  soluble  in  water. 

Hydrofluoric  Acid 

The  ordinary  tests  for  a  fluoride  depend  on  the  liberation 
of  HF,  which  is  allowed  to  etch  glass. 

1.  If  strong  H2SO4  is  warmed  with  a  little  finely  powdered 
CaF2  in  a  test-tube,  HF  is  liberated. 

2.  Cover  the  convex  side  of  a  watch-glass  with  melted  paraffin 
or  wax.  Trace  lines  near  the  middle  of  the  glass  with  the  point 
of  a  penknife  so  as  to  remove  the  wax  from  these  parts,  but  not 
to  scratch  the  glass.  Place  the  prepared  glass  on  the  top  of  a 
platinum  crucible  containing  a  little  finely  powdered  CaF2 
and  some  strong  H2SO4.  Pour  a  few  drops  of  water  into  the 
watch-glass  to  keep  it  cool,  and  gently  heat  the  bottom  of  the 
crucible.  Allow  to  stand  for  20  minutes.  Melt  off  wax,  and  on 
the  clean  surface  the  etched  lines  will  be  visible.     If  small 


288     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

traces  of  a  fluoride  were  present,  the  tracing  will  become  visible 
by  breathing  on  the  cold  surface  of  the  glass. 

This  reaction  fails  when  there  is  too  nuicli  SiOs  present,  as 
the  H-iSOj  tiien  liberates  SiF4  instead  of  IIF. 

SiF4  does  not  etch  glass,  but  produces  wliite  fumes  in  moist 
air;  when  these  fumes  are  conducted  into  water  a  colorless 
flocculent  pp.  of  gelatinous  silica  is  separated. 

H^SiOi  =  SiOa  +  2H2O 

3.  CaClj  when  added  to  the  solution  of  a  fluoride  gives  an 
almost  transparent  gelatinous  pp.  of  CaP'j,  which  becomes  more 
visible  when  the  liquid  is  heated  or  when  ammonia  is  added. 

Phosphoric  Acid 

Wet  Reaclions. — 1.  MgSO*  solution  (to  which  ammonium 
chloride  has  been  added  and  then  a  little  ammonia)  gives  with 
the  solution  of  a  phosphate  a  white  crystalline  pp.  of  magnesium 
ammonium  phosphate  (MgNH4P0i  +  CH2O)  which  rapidly 
settles.  This  pp.  is  insol.  in  NH4OH,  but  is  readily  sol.  in 
acids,  even  C2H4O2.  If  very  little  phosphate  is  present,  the 
pp.  often  appears  only  after  the  solution  has  been  warmed  and 
allowed  to  stand. 

2.  Silver  nitrate  throws  down  from  neutral  solutions  a  light 
yellow  pp.  of  Ag3P04,  readily  soluble  in  nitric  acid  and  ammonia. 

3.  The  solution  of  ammonium  molybdate  in  nitric  acid  gives 
in  the  coUl  a  finely  divided  yellow  pp.  which  settles  rapidly. 
With  small  quantities  of  a  phosphate,  a  few  hours  must  be 
allowed  for  the  reaction,  and  the  liquid  may  be  warmed  gently, 
but  not  above  40°C.  (104°F.).  Not  more  than  an  equal 
volume  of  the  fluid  to  be  tested  should  be  added  to  the  molyb- 
date.    Large  quantities  of  HCl  interfere  with  the  precipitation. 

The  pp.  after  subsiding  maj'  be  separated  by  filtering, 
washed  with  ammonium  molybdate  solution,  then  dissolved  in 
ammonia,  and,  by  adding  NH4CI  and  MgS04  as  in  (1),  the  pp. 
of  MgXH4P04  +  6H2O  may  be  obtained. 

The  solution  to  be  tested  must  not  be  alkaline  to  test  paper, 
but  should  be  made  distinctly  acid  with  HNO3.  It  should 
then  be  added  in  small  qunnlities  only  to  some  NH4HM0O4 
sol.  in  a  test-tube,  more  being  added  if  no  yellow  pp.  forms  after 
a  few  minutes,  when  the  liquid  may  be  gently  warmed. 

Arsenates 

The  pps.  found  in  (1)  and  (3)  with  a  phosphate  are  precisely 
the  same  as  those  formed  when  an  arsenate  is  present.  AgNOs 
gives  with  an  arsenate  a  brown  pp.;  with  a  phosphate  a  yellow 
pp.;  and  ammonium  molybdate  solution  gives  a  pp.  with  an 
arsenate  only  after  boiling  instead  of  gently  heating  as  with  a 
phosphate.  It  is  also  possible  to  remove  the  arsenic  with  H2S 
in  HCl  solution  before  making  confirmatory  tests  for  phosphates. 


CHEMICAL  DATA  289 

Silicic  Acid 

Dry  Reaction. — 1.  If  a  fragment  of  silica  or  a  silicate  is 
licated  in  a  bead  of  microcosmic  salt,  it  remains  undissolved 
;uid  floats  about  in  the  bead  as  a  more  or  less  transparent  mass, 
wliich  retains  its  original  shape.  In  the  case  of  a  silicate  the 
liases  dissolve  out. 

Wet  Reactions. — 2.  NH4CI  produces  in  not  too  dilute  solutions 
of  alkaline  silicates  a  pp.  of  hydrated  Si02. 

3.  The  solutions  of  alkaline  silicates  are  decomposed  by  all 
acids,  the  Si02  separating  as  the  gelatinous  hydrate.  The  acid 
should  be  added  drop  by  drop  and  the  solution  stirred. 

Sulphate  Group 

Remarks. — Sulphates  are  the  only  commonly  occurring  salts 
which  give  with  BaCh  a  pp.  insoluble  in  boiling  HCl.  (Sele- 
nates  also  give  a  pp.  of  BaSe04  with  BaClj,  but  it  dissolves  on 
boiling  with  strong  HCl  for  some  time.) 

Tests  for  Sulphates  (SO3,  and  a  Base) 

Wet  Reactions. — 1.  All  solutions  of  the  sulphates  give  with 
BaCU  a  white  pp.  of  BaS04  which  is  insoluble  in  all  acids. 

2.  If  a  sulphate  or  any  solid  substance  containing  sulphur 
is  mixed  with  pure  solid  Na2C03  and  fused  on  charcoal  in  the 
inner  reducing  blowpipe  flame,  it  will  yield  Na2S. 

Detach  the  cold  fused  mass  with  the  point  of  a  knife,  place 
a  portion  on  a  bright  silver  coin,  and  moisten  with  H2O.  Allow 
to  remain  a  short  time,  and  then  rinse  off;  a  black  stain  of 
Ag2S  will  be  seen  upon  the  coin,  if  sulphur  is  present. 

3.  Lead  acetate  produces  a  heavy  white  pp.  of  PbS04,  which 
dissolves  readily  in  hot  strong  HCl,  or  alkaline  acetates. 

4.  Sulphuric  acid  gives,  with  sugar,  a  black  mass. 

5.  To  detect  free  sulphuric  acid,  mix  the  fluid  with  a  very 
little  cane-sugar  and  evaporate  to  dryness  at  212°F.  (100°C.). 
If  any  is  present,  a  black  residue  will  remain;  or  with  small 
traces  a  blackish-green  residue.  No  other  free  acid  decomposes 
cane-sugar  in  this  way. 

Cyanides  and  Acetates 

Cyanides. — These  give  a  blue  color  with  a  mixture  of  ferrous 
and  ferric  salts. 

Some  additional  tests  for  other  acids  are : 

A  concentrated  solution  in  hydrochloric  acid  will,  when 
H2S  is  passed  in,  give  a  precipitate  of  sulphur  if  it  contains 
nitrates,  nitrites,  chlorates,  sulphites,  thiosulphates,  arsenates, 
chromates,  manganates  or  permanganates. 

Acetates  evolve  a  characteristic  odor  when  present  in  large 
quantity  in  strong  sulphuric-acid  solution.  They  give  a 
blood-red  solution  with  ferric  salts.  If  the  solution  be  neutral 
the  iron  is  precipitated  on  boiling. 


290  METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
SOME    PROPERTIES    OF    RADIOACTIVE    SUBSTANCES 

Tho  table  below  is  based  on  tables  in  Le  Radium,  Jan.,  1909, 
.Ian.,  1910  and  .Jan.,  1911,  and  in  Zeit.  fur  Angew.  Chemie.  July 
0,  1915.     See  also  pages  239-253. 

Substance  Properties 

U  Sol.  in  exce.ss  of  am.  carb.     Nitrate  soluble  in  ether 

and  acetone.     Atomic  weight,  238.2.     Half-de- 
cay period,  5  X  10"  years.     Gives  off  oc  particles. 
UX         Carried  down  by  BaS04.     Soluble  in  HCl.     Less 
A'olatile  than  U.     Volatile  in  electric  arc.     In- 
soluble in  excess  of  am.  carb.     Soluble  in  water 
and     ether.     Half-decay     period,     24.6     days. 
UY         Carried   down   by   barium   sulphate,    with   moist 
ferric  hydrate,  and  by  animal  charcoal.     Half- 
decay  period,  1.5  days, 
lo  Soluble  in  excess  of  am.  oxalate.     Carried  down  by 

H2O2  in  presence  of  U  salts.     Half-decay  period, 
over  2  X  10^  years  (?).      Gives  off  oc  particles. 
Ha         Characteristic    spectrum.     Spontaneously     lumi- 
nous.    Analogous  to  Ba.     RaClo  and  RaBro  are 
less   soluble   than    BaClo    and    BaBr:.     Atomic 
weight,  226.4.     Half-decay  period,  2000  years. 
RaEm       One  of  group  of  inert  gases.     Characteristic  spec- 
(Xiton)  trum.     Mol.     wt.  =218.     Half-decay     period, 

3.85  days,      oc  particles. 
RaA      ^  Behaves  as  a  solid.     Deposited  on  cathode  in  an 
.     electric  field.     Volatile  at  800-900°C.     Soluble 
in  strong  acids.     Half-decav  period,  3  min. 
RaB        Like  RaA.     Volatile  at  400-600°C.     Precipitated 

by  BaSO^.     Half-decav  period,  26.8  min. 
RaC        Physically    like    RaA.     Volatile    at    800-1300°C. 
Chemically  like  RaB.     Deposited  on  Cu  and  Ni. 
Perhaps  mixture  of  two  products.     19.5  min. 
RaD        Volatile  below   1000°C.     Soluble  in  strong  acids. 
Reactions  of  RaD  and  RaEi  analogous  to  those 
of  Pb.     Sometimes  known  as  radiolead. 
RaE,        Volatile  at  red  heat.     Soluble  in  cold  acetic  acid. 
RaE2       Not  volatile  at  red  heat.     Reactions  similar  to  Bi. 
RaF         Volatile  toward  1000°C.     Deposited  from  its  solu- 
(Polonium.)      tions  on  Bi,  Cu,  Sb,  Ag,  Pt.     Carried  down  by 
PbCOa,  and  by  SnCl,  witii  Hg  and  Te.     RaD, 
El,  E2,  and  F  can  be  .separated  by  electrolysis. 
136  days,  breaks  down  to  lead,      oc  particles. 
Ac  Produces  helium.     Precipitated  by  oxalic  acid  in 

acid  solutions.  Oxalate  insoluble  in  HF;  accom- 
panies thorium  and  rare  earths.  Unknown 
period,  oc  particles.  Same  as  emanium. 
Rad.  Ac  Shghtly  volatile  at  high  temps.  Insoluble  in 
NH4OH.  Separated  from  Ac  by  electrolysis,  by 
fractional  precipitation,  by  ammonia,   and  by 


CHEMICAL  DATA 


291 


animal  charcoal.     Half-decay  period,  19.5  days, 
oc .     Discovered  by  Hahn. 

AcX        Deposited    by    electrolysis    in    alkaline    solution. 

Not  precipitated  by  XH4OH.     10.5  days. 
AcEm       Behaves  as  inert  gas.     Coef .  of  diffusion  in  air  0.11. 
Condenses  at  -120=C.     Half-decav,  3.9  sec. 

AcA  Volatile  below  400°C.  Soluble  in  NH4OH  and 
strong  acids.     Half-decav,  36  min.     Ravless. 

AcB  Volatile  below  700°C.  Soluble  in  XH46H  and 
strong  acids.  Deposited  by  electrolysis  of  active 
deposits  on  cathode  in  HCl.  Half-decay,  2  min. 
Th  Volatile  in  electric  arc.  Colorless  salts  not  spon- 
taneously phosphorescent.  Salts  ppd.  by  XH4- 
OH  and  oxalic  acid.  Atomic  weight,  232.4. 
Half -decay  period  2.4  X  10^  years,  oc  particles. 
Had.  Th  Carried  down  by  hydrates,  precipitated  by  XH4- 
OH.  Separated  by  Hahn  and  much  more  active 
than  thorium,  and  it  may  be  a  small  contamina- 
tion of  this  element  gives  out  the  rays  in  the 
thorium  transformation  and  that  the  thorium 
transformation  is  in  reahty  raj'less.     a  rays. 

ThX        Soluble  in  XH4OH.     Carried  down  by  iron.     De- 
posited by  electrolysis  in  alkalis.     4  days. 
ThEm      Inert  gas.     Condenses  just  above  —  120°C.     Half- 
decay  period,  54.5  sec.      oc  particles. 

ThA  Volatile  under  630°C.  Soluble  in  strong  acids. 
11  hrs. 

ThB  Volatile  below  730°C.  Like  ThA.  Deposited  on 
Ni.  Separated  from  ThA  by  electrolysis.  55 
min.      oc ,  /3,  7  particles. 

ThC        Like  ThB.     Probably  two  products. 
One  gram  of  radium  gives  off  0.0328  cal.  per  sec,  and  produces 
5.17  X  10-'  cc.  of  helium  (0°,  76  cm.  pressure)  per  gram  per  sec. 

Heats  of  Formation 

Heats  of  formation  are  expre.ssed  in  calories,  i.e.,  the  amount 
of  heat  necessary  to  raise  1  gram  of  water  from  10°C.  to  11°C. 
When  it  is  said  that  the  heat  of  formation  of  any  compound  is  a 
certain  number  of  units,  it  is  meant  that  this  number  of  calories 
is  developed  in  the  production  of  a  mass  in  grams  of  the  sub- 
stance equal  to  its  molecular  weight,  i.e.,  when  we  say  that 

C  -t-  O2  =  CO2  97,200  cal. 
we  mean  that  12  grams  of  carbon  and  32  of  oxvgen  develop 
97,200  cal. 

The  heat  of  formation  and  the  heat  of  decomposition  of  any 
substance  are  the  same;  i.e.,  in  order  to  effect  the  deromposition 
of  a  substance  an  amount  of  heat  must  be  suppUed  equal  to 
the  amount  evolved  in  the  formation. 

The  heat  of  combination  of  the  elements,  like  many  others 
of  their  properties,  follows  the  periodic  law,  the  relation  being 
thus  stated  bj'  W.  G.  Mexter  (Am.  Journ.  Sci.,  June.  1914): 
The  heat  equivalents  of  the  elements  of  a  subgroup  in  the  series 


292     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


111  to  VIU  are  either  linear  functions  of  the  atomic  weights,  or 
the  heat  of  fi)rniatiou  of  the  oxide  of  the  niidcUe  member  falls 
below  the  linear  value  by  a  constant  amount  for  each  atom  of 
oxygen  combined. 

IIk.\t  of  Formation  op  Silicates 


Grani- 

Gram- 

Gram- 

cal.  per 

Gram- 

cal.  per 

Starting  from 

cal.  per 

gram  of 

Starting  from 

cal.  per 

gram  of 

molecule 

silicate 
formed 

molecule 

silicate 
formed 

FeO.  SiOi 

10,600 

80 

Fe,  Si.  Os 

254,000 

1,929 

MnO,  SiOi 

5.400 

41 

Mn.  Si,  Oj 

270.300 

2,109 

BaO,  SiOj 

14.700 

09 

Ba,  Si,  O3 

328.100 

1,540 

CaO,  SiOi 

17.850 

154 

Ca,  Si,  O3 

329,350 

2,839 

2CaO,  SiOj 

28.300 

105 

Cas,  Si,  O4 

471,300 

2,740 

3CaO,  SiOj 

28,550 

125 

Cm,  Si.  Os 

603,050 

2,645 

SrO,  SiOj 

17,900 

110 

Sr.  Si,  O3 

329,100 

2,019 

AhOi,  2SiOj 

14.900 

67 

AI2,  Sis,  O7 

767.500 

3,457 

3CaO,AljOa,2SiOj 

33.500 

86 

Ca3.  AI2,  Si2.  Oio.. 

1,195,550 

3,065 

3HjO,Al203,2Si02 

43.800 

170 

Hz,  AI2,  Si2,  O9..  . 

927,420 

3.595 

Li.O.  SiOj 

65,100 

720 

Li2,  Si2,  O3 

347,100 

3,856 

NajO,  Si02 

45,200 

370 

Na2,  Si,  Os     

326,100 

2,673 

CaO,  AljOa 

450 

3 

Ca,  AI2,  O4 

524,550 

3,220 

2CaO,  AhOi 

3,300 

15 

Cai.  Al2,  Os 

658,900 

3.079 

3CaO.  AUOj 

2,950 

11 

Caa.  AI2,  Os 

789,050 

2,922 

SiCh    35.5,    FeO, 

1 

39.7,   MnO.   1.0, 

1 

CaO  11.4,  MgO 

I 

133 

2.7,     AhOa     9.2, 

Cu  0.42,  S  0.42 

1 

per  cent. 

J 

2FeO,  SiOi 

22,236 

109 

Fe2.  Si,  O4 

333,636 

1,637 

FeO    70.80.    SiOj 

29.20    per   cent. 

FeO    57.58,    CaO 

12.00.  SiOi  30.42 

140 

FeO   40.30.    CaO 

28.00.  SiOz  31.70 

193 

Hkats  of  Formation  op  Mixtures  op  Si02,  CaO,  and  An- 
hydrous Kaolin 
The  kaolin  used  in  these  experiments  was:  Si02,  53.58  per 
cent.,  AlsOa,  43.40,  Fe203,  1.25.     The  difference  between  the 
sum  of  the  AI2O3  and  CaO  and  100%  is  the  Si02. 


Al'O'  per  cent. 
CaO  per  cent. 

2 

10 

20 

30 

10 

+   19.2 
+  47.9 
+  82.3 
+  106.5 
+  137.8 

+  1.7 

20 

+  42.8 
+  69.7 
+  109.0 
+  135.8 
+  180.4 

+49.9 

30 
40 
50 

+  76.1 
+  103.2 
+  150.6 
+  154.0 

+73.0 

60 

'  Revue  de  Metallurgie,  1913,  p.  073. 


CHEMICAL  DATA 


293 


Heat  of  Formation  of  Oxides 


Formula 


Molecular 
weights 


Molecular 
heat  of  formation 


In  dilute 
solution 


Mg,  O.. 
Ba,  O... 
Ca,  O... 
Sr.  O.... 
AI2.  O3.  . 
Ti,  Oj... 
Na2,  O.. 
Kt.O... 
Si,  O2.  .  . 
Mn.  O.. 
B2.  O3... 
Zn,  O... 
Mn3,  O4. 
Pj,  Oi... 
Sn,  O.  .  . 
Sn.  O2. . . 
CO,  O.. 

H2.  O. . . 


H2  O2' 

Fea,  O4 

Cd,  O 

Fe,  O 

Fei,  O3 

Co,  O 

Mn,  O2 

Ni,  O 

Sb2,  O3 

Aaj,  O3 

Pb,  O 

C.  O2 

Bi2,  O3 

Sbi,  Os 

Asi,  0« 

CU2,  O 

TI2,  O 

Cu.  O 

Ba,  O2 

S,  Oj 

Pb,  O2 

8,0. 

TI2,  Oa 

CO 

Hg2,  O 

Hg,  O 

Te.  O2 

Pd,  O 

Pt,  O 

Agi,  O 

AU2,   O3 

Ni,  O 

N,  O 

Ni,  O3 

N,  O2  (at  22°).. 
N,  O2  (at  150°). 

N20$ 

CatO 

LiiO 

Rb20 

W.  Oj 

V2.  Ob 

Cr2,  O3 


24  +  16  = 
137  +  16  = 
40  +  16  = 
87  +  16  = 
54+48  = 
48  +  32  = 
46  +  16  = 
78  +  16  = 
28  +  32  = 

55  +  16  = 
22  +  48  = 
65  +  16  = 

165  +  64  = 

62  +  80  = 

118  +  16  = 

118  +  32  = 

28  +  16  = 

r         2  +  16  = 

I         2  +  16  = 

[         2  +  16  = 

2  +  32  = 

168  +  64  = 

112  +  16  = 

56  +  16  = 
112+48  = 

59  +  16  = 
55  +  32  = 

58.5  +  16  = 
240  +  48  = 
150  +  48  = 
207  +  16  = 

12  +  32  = 
416  +  48  = 
240  +  80  = 
150  +  80  = 
127.2  +  16  = 
408  +  16  = 

63.6  +  16  = 
137  +  32  = 

32  +  32  = 

207  +  32  = 

32+48  = 

408  +  48  = 

12  +  16  = 

400  +  16  = 

200  +  16  = 

125.-5  +  32  = 

106  +  16  = 

195+16  = 

216  +  16  = 

394+48  = 

28  +  16  = 

14  +  16  = 

28  +  48  = 

14  +  32  = 

14  +  28  = 

28  +  70  = 

266  +  16  = 

14  +  16  = 

171  +  16  = 

184+48  = 

102  +  80  = 

104+48  = 


=  40 
=  153 
=  56 
=  103 
=  102 
=  80 
=  62 
=  94 
=  60 
=  71 
=  70 
=  81 
=  229 
=  142 
=  134 
=  150 
=  44 
=  18 
=  18 
=  18 

34 

232 
a28 
=  72 
=  160 

75 
=  87 

74.5 
=  288 
=  198 
=  223 
=  44 
=  464 

320 
=  230 
=143.2 
=  424 
=  79.6 

169 

64 

239 

80 

456 

28 

416 

216 

157.5 

122 

211 

232 

442 

44 

30 

76 

46 

42 

98 

:282 

30 

=  187 
232 
=  182 
=  152 


143,400 
133,4001 
131,500 
131,200 
392,600 
218,500 
100,900 

98,200 
180,000 

90,900 
272,600 

84,8002 
328,000 
365,300 

70,700 
141,300 
•68,040 
70,400  solid 
69,000  liquid 
58,060  gas 


270,800 

66,300 

65,700 
195,600 

64,100 
125,300 

61,500 
166,900 
156,400 

50,800 

97,200  gas 
139,2004 
231,200 
219,400 

43,800 

42,800 

37,700 
145,500 

69,260  gas 

63,400 

91,9005 

87,600 

29,160  gas 

22,200 

21,500 


21,000 

17,000 

7,00a 

-11,500 

-19,000« 

-21,600« 

-21,400« 

-1,700« 

-7,6006 


100,000 
140.000 
94,900 
243,000 
441,000 
266.000^ 


148,800 
161,500 
149,600 
158,400 


155,900 
165,200 
180,000« 


279,900 
82,680 


405,0000 
'  73,946' 

47,300' 


148,900 
103,166' 


225,400 
"39,766' 


77,600 
'l'4'l',666' 


78,300 


3,600« 


>  Thomsem,  126,000.  2  42,740  at  1125°C.  '  "Annuaire  des  Bureau  des 
Longitudes,"  1914.  »  Kate  and  Laby,  20,000.  '  Kayb  and  Laby,  103,000. 
•Thomsen',  "  Thermochemistry." 

'  This  is  the  heat  evolved  by  a  stable  amorphous  oxide.  There  is  an 
unstable  form  evolving  only  243,000  cal. 


294      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Heat  of  Formation  of  Hydroxides 


Formula 

Molecular 
weights 

Molecular  heat 
of  formation 

In  dilute 
solution 

Li,  0,  H 

7  +  16  +  1=24 
24  +  32  +  2  =  58 
87  +  32  +  2  =  121 
40  +  32+2  =  74 
39  +  16  +  1=56 
23  +  16  +  1=40 
18  +  16+1=35 
27  +  48  +  3  =  78 

1  +  16  +  1  =  18 

204  +  16  +  1=221 
208  +  48  +  3  =  259 

65  +  32  +  2  =  99 

127  +  32  +  2=161 

127  +  48  +  3  =  178 

79  +  32+2  =  113 

79  +  48  +  3  =  130 

204+48+3  =  255 

137  +  32  +  2  =  171 

112  +  32  +  2  =  146 

133  +  16  +  1  =  1.50 

85.5  +  16  +  1  =  102.5 

112,300 
217,800 
217,300 
215,600' 
104,600 
102,700 

88,800 

301,300 

r         70,400  solid 

\         69,000  liquid 

[        58,060  gas 

57,400 
171.700 

83,. 500 

78,300 

99,500 

52,400 

79,300 

43,800 
217,0002 

66,0002 
101, .300 
102,000 

118,110 

Mg,  O:,  Hi 

Sr,  Oj,  Hj 

227,400 
219,500 
117,100 
112  500 

Ca,  Oj,  Hj 

K,  0,  H 

Na,  0,  H 

N,  0.  Hs 

90,000 

Al,  03,  H. 

H,  0,  H 

Tl,  0.  H 

Bi,  Oj,  H3 

64,300 

Zn,  O2,  Hj 

Te,  O2,  H2 

Te,  Oi.  Hi 

Se,  O2.  Hi 

Se,  Oj,  H3 

51.500 

Tl.  O3,  Hs 

Ba,  02.  Hj 

Cd,  02,  H2 

Cs,  0,  H 

Rb,  0,  H 

'  Kaye  .ind  I,AnT,  229.000. 

"  THOM8EN,  "  Thermochcnii.stry. 


Heat  of  Formation  of  Cyanides 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In   dilute 
solution 


Ca,  Cj,  Ni.... 

K,  C.  N 

Na,  C,  N 

K,  Ag,  C2,  N, 
Fe7,  C18,  Nu.. 
Zn,  C2,  N2.  ... 
Cd,  C2,  N2.... 

Cu.  C,  N 

Pd,  C2.  N2.... 

H,  C,  N 

Hg,  C2,  N2.... 


40+   24+   28  = 

39+    12+    14  = 

23+    12+   14  = 

39  +  108+   24+   28  = 

392+216  +  252  = 

65+   24+   28  = 

112+   24+   28  = 

63.0+    12+   14  = 

106+   24+  28  = 

1+    12+    14  = 

200+   24+   28  = 


:  92 
=  65 
.  49 
=  199 
860 
117 
164 
89.6 
158 
27 
252 


33.450 

25,9.50 

13,700 

-256,700 

-  24, .550 

-  31,850 
■  20.375 

-  49,250 

•  27.150 

•  59.1.50 


41.650  . 

30,250 

25,450 

5,350 


-21,050 


Heat  of  Formation  of  Cyanates 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In  dilute 
eolution 


K,  C.  N.  0 39  +  12  +  14  +  16=81!  105,850 

Na,  C,  N,  0 23  +  12  +  14  +  16=65,  105,050 

Ag,  C,  N,  0 108  +  12  +  14  +  16  =  150'  20,450 


100,050 
100,250 


CHEMIC.AX  DATA  295 

Heat  of  Formation  of  Ferrocyanides 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In  dilute 
solution 


K4,  Fe,  Ce,  Xe.. 
H4,  Fe,  C«,  Xe.. 
Kj,  Fe,  Co,  Xe.. 
H3.  Fe,  C«.  Xs.. 


156  +  56  +  72+84  =  368'  157.300 
4  +  56  +  72  +  84  =  216    -102,000 

117  +  56  +  72  +  84  =  329  129,000 
3  +  56-72-1-84  =  215 


145,300 
-101,500 

100,800 
-127,400 


Heat  of  Formation  of  Selexides 


Formula 


Molecular   weights 


Molecular    heat 
of  formation 


In  dilute 
solution 


Lii,  Se 

Ki.  Se.... 
Ba,  Se... 

Sr,  Se 

Ca,  Se... 
Nai,  Se.. 

Zn,  Se 

Cd,  Se... 
Mn,  Se... 
N,  Hs,  Se. 
Cu,  Se.... 
Pb,  Se... 
Fe,  Se.... 
Ni,  Se.... 
Co,  Se.... 
Tlj,  Se... 
Cui,  Se. . . 
Hg.  Se... 
Agj,  Se... 
Hj,  Se.... 
N,  Se 


14+79  = 
78+79  = 

137  +  79  = 
87  +  79  = 
40  +  79  = 
46  +  79  = 
65  +  79  = 

112  +  79  = 

55  +  79  = 
14  +  5  +  79  = 

63.6  +  79  = 
207  +  79  = 

56  +  79  = 
58.5  +  79  = 

59+79  = 

408  +  79  = 

127.2+79  = 

200  +  79  = 

216  +  79  = 

2  +  79  = 

11+79  = 


•93 
157 
•216 

:166 
:119 

•125 

•144 

•191 

•134 

•98 

•142.6 

•286 

=  135 

•137.5 

•138 

•487 

=  206 . 2 

•279 

=  295 

=  81 

•93 


93,700 
87,900 


78,600 


12,800 


83,000 
79,600 
69,900 
67,600 
58,000 
60,900 
30,300 
23,700 
22,400 
17,800 
17,300 
17,000 
15,200 
14,700 

13.900  I 

13,400  

8,000  I 

6,300  1 

2,000  

-25,100  (gas)        -15,800 
- 12,.300  


He.\t  of  Formation  of  Tellurides 


Formula 


Molecular   weights  j 


Molecular   heat 
of   formation 


In  dilute 
solution 


Zn,  Te. 
Cd,  Te. 
Co,  Te. 
Fe.  Te. 
Ni,  Te. 
Th,  Te. 
Cuj,  Te 
Pb,  Te. 
Hj.  Te. 


65  +  126  =  191 

112  +  126  =  238 

59  +  126=185 

56  +  126  =  182 

58.5  +  126=184. 

408 +  126  =  .534 

127.2  +  126  =  253. 

207  +  126  =  333 

2  +  126  =  128 


31,000 
16,600 
13,000 
12,000 
11,6(XJ 
10,600 

8,200 

6,200 
-34,900  fgasl 


296     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Heat  of  Formation  of  Sulphides 


Formula 


Molecular  weights 


Molecular   heat 
of    forniatioa 


In  dilute 
solution 


Li.,  S. . . 
K..  S. . . 
Ba.  S... 
Sr,  S.... 
Ca.  8... 
Nai.  S.. 
Mg,  S... 
K.  Si... 
Na.  Si.. 
Mn,  S... 
Zn.  S... 
All.  Si.. 
N.  H..  S 
Cd.  S... 
B,.  Si.  . . 
Fe.  S.... 
Co.  S. . . 
Th.  S. .  . 
Cuj.  S.. 
Pb.  S... 
Si.  St... 
Ni.  S... 
Sbt,  Si.  . 
Hg,  S. .  . 
Cu.  S... 
Hi.  S... 
Agi.  S.. 

C.St... 

I,S 


14+32  = 
78  +  32  = 
137  +  32  = 
87  +  32  = 
40  +  32  = 
46  +  32  = 
24+32  = 
39  +  64  = 
23  +  64  = 

55  +  32  = 
65  +  32  = 
54+96  = 

14  +  5  +  32  = 

112+32  = 

22+96  = 

56  +  32  = 
59  +  32  = 

204  +  32  = 

127.2  +  32  = 

207  +  32  = 

28  +  64  = 

58.5  +  32: 
240  +  96: 
200  +  32  = 

63.6  +  32  = 
2  +  32  = 

216  +  32  = 


46 

110 

169 

119 

72 

78 

56 

103 

87 

87 

97 

150 

51 

:144 

118 

88 

:91 

=  236 
=159.2 
=  239 
=  92 
=  90.5 
=  336 
=  232 
=  95.6 
=  34 
=  248 


12  +  64  =  76 
127  +  32  =  159 


103,500 
102,900 
99,300 
94,300 
89,300 
79,400 
59,300 
49.500 
45,600 
43,000 
126,400 
40,000 
34,400 
75,800 
24,000 
21,900 
21,600 
20,300 
20,200 
40,000 
19,500 
34.400 
10,600 
10.100 

4.800  gas 

3.000 
-  25,400  gas 
-19,0001iquid 

9,000 


115,400 
113,500 
109,800 
106.700 
100,600 
104.300 


59.700 
54,400 


36.700 


9,500 


>  Molecular  heat  of  combustion  of  HjS  =  122.500  cal. 
bustion  of  1  cu.  meter  HiS  =  5513  cal. 


and  heat  of  com- 


Heat  of  Formation  of  Nitrides 

Formula 

Molecular   weights 

Molecular    heat 
of   formation 

In  dilute 
solution 

Ci.  Nj 

24+28  =  52 

3  +  14  =  17 

411+28  =  439 
21  +  14  =  35 
39+3  +  14  =  56 
120  +  28=148 

-73,900  gas 
/        12.200  gas  I 
\        16,600  liquid 
149,400 
49,500 
30.700 
111.200 

-68.300 

H,,  N 

21.000 

Baj  Nj 

Lis   N 

K   Hi   N       

Caj    \j 

1  F 


Haber  gives  10,975.     Chem.  Tr.  Journ.,  Aug.  14,  1915. 

Heat  of  Formation  op  Metallic  Hydrides 


Formula           I   Molecular    weights       "^'^'fof^^lT 

In  dilute 
solution 

Sr   Hi 

87+2  =  89 

137+2  =  139 

1950  +  1  =  1951 

1590  +  1  =  1591 

28  +  4  =  32 

3  +  14  =  17 

38,400 
37,500 
14,200 
4,600 
-6.700>  gas 

Ba   Hi 

Ptio   H 

Pdis   H 

Si    H« 

N,  Hi     

12.200  gas' 

21.000 

F.  Haber.  10,975.     Chem.  Tr.  Journ,"  Aug.  14,  1915. 


CHEMICAL  DATA  297 

Heat  of  Formation  of  Phosphides 


Formula 


Molecular    weights 


Molecular    heat 
of   formation 


In  dilute 
solution 


Mnj,  Pi 165  +  62  =  227 

H3,  P 3  +  31  =  34 

Fe,  P 56  +  39  =  95 


70.900 

4,900 

nearly  0 


Arsenides,  Antimonides,  Borates 


Formula 


Molecular   weights 


Molecular   heat  In  dilute 

of  formation      '         solution 


Hi,  As 

Hi.  Sb 

Nai,  Bj.  O7 


3+  73  =  78 
3  +  120  =  123 
46  +  44  +  112  =  202 


—  44,200  gas 
-86,800  gas 
748,100 


-36,700 
"758,366' 


Heat  of  Formation  of  Fluorides 


Fornmla 


Molecular    weights      ^ifZ^^^^^' 


In  dilute 
solution 


Br,  Fj.  . . , 
Ba.  Fi... 

Li.  F 

K,  F 

Ca.  Fi. . . 
Mg.  Fj.  . . 
Na.  F. . . 
N,  H«.  F. 
Al.  Fi. . . . 
B.  Fi.  . . . 
Mn.  Fi.  . 
Zn.  Fj.  . . 

Si,  F« 

Fe.  Fj... 
Cd.  Fi.  . . 
Co,  Fj.  . . 
Ni.  Fj.  . . 
Fe.  Fi. . . 
Tl,  F. . . . 
Pb.  Fj... 

H.  F 

Sb.  Fj.  . . 
Cu,  Fj.  . . 
Ag.  F. . .  . 


87  +  38  = 

137+38  = 

7  +  19  = 

39  +  19  = 

40  +  38  = 
24  +  38  = 
23  +  19  = 

14  +  4  +  19  = 

27  +  57  = 
11+57  = 

55  +  38  = 
65  +  38  = 

28  +  76  = 
56+38  = 

112+38  = 

59+38  = 

58.5+38  = 

56  +  57  = 
204+19  = 
207+38  = 

1  +  19  = 

120  +  57  = 

63.6  +  38  = 

108  +  19  = 


=  125 

=  175 
=  26 
=  58 
=  78 
=  62 
=  42 
=  37 
=  84 

:68 

^93 
=  103 
=  104 
•94 
=  150 
=  97 
=  96.5 
=  113 
=  223 
=  245 
=  20 
=  177 
=  101. 
127 


224,020 
224,000 


110,000 
216.450 
209,500 
109,720 
101.250 


275.920  gas 


101,600 
38,500  gas 


22,070 


221,500 
116,880 
113,600 


109,120 
99,750 
275,220 
219,345 
153,310 
138,220 


125,220 
121,720 
120,340 
118,980 
164,940 
54,405 


50,3001 

136,680 

88,160 

25,470 


1  Other  authorities,  69,000. 

Heat  of  Formation  of  Silicides 


Formula 


Molecular    weights 


Molecular   heat 
of   formation 


In   dilute 
solution 


Mn:,  Sii. 
H«.  Si... 


385  +  56  =  441 

4  +  28  =  32 


47,400 
-6,700  gas 


298     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Heat  of  Formation  of  Carbides 


Formula 


Molecular   weights 


Molecular    heat 
of  formation 


In  ililiilo 
solution 


AI4.  Cs. 
Mn,  Cj 
Mn,  Ca 
Fes,  C. 
Ca,  Ci. 
Na.  C. 
Li,  C... 
Nj,  Ci 
Ag.  C. . 
Mn3,  C 


108+36  =  144 
55  +  24  =  79 
55  +  36=91 

168  +  12  =  180 

40  +  24  =  64 

23  +  12  =  35 

7  +  12  =  19 

28  +  24  =  52 

108  +  12  =  120 

165  +  12  =  177 


232,000 

114,400 

9,900 

8,460 

-6,250 

-4,400 

-5,750 

-73,000  gas 

-43.575 

10.400 


131,500 


-67,100 


Heat  of  Formation  of  Bromides 


Formula 


Molecular 
weights 


Molecular  heat  of 
formation 


In     dilute 
solution 


Xa.Br 

K.Br 

A\,Bt3 

Zn,Br2 

Cd.Bri 

Pb.Brj 

Sn,  Bra 

Cu.  Brj 

Sn,  Br4 

Hg.  Br 

Ag,  Br  (cryst.) 

Sb,  Br3 

Cu,  Bri 

Pt,  Bt* 

Au.  Brj 

Au,  Br; 

H,  Br 


23+   80  = 

46+   80  = 

27  +  240  = 

65  +  160  = 

112  +  160  = 

207  +  160  = 

118  +  160  = 

63+   80  = 

118  +  320  = 

200+  80  = 
108+  80  = 
120  +  240  = 
63  +  160  = 
195  +  320  = 
197  +  240  = 
197  +  160  = 
1+80  = 


=  103 
=  126 

=  267 
225 

:272 

=  367 
^278 
=  143 

438 

280 

:188 

=  360 
=  223 
=  515 

=  437 
357 

=  81 


Liquid  bromine 

79,450 

99,050 
120,600 

78,200 

76,200 

69,000 

63,000 

26,000 
/  101,400  (solid) 
\   98.400(liiiuid) 
24,500 
23,700 
64,900 
34,800 
42.400 
12,1001 

1,000 

8,400 


207,500 
93,200 
77,200 
59,000 


118,000 


53,000 

52,200 

8,400 


28,600 


'  8800  Berthelot. 

Heat  of  Formation  of  Iodides 


t;.           ,              1            Molecular 
Formula           j              ^.^i^j^jg 

Molecular  heat  of 
formation 

In   dilute 
solution 

Zn.  Ii       

65  +  254  =  319 

49,200 
45,000 
42,000 
16,500 
14,200 
14,300 
24,. 300 
29,200 
-55,000 
-   6,400 
87,500 

60,600 

Cd.  Is 

112  +  254  =  366 

207  +  254=461 

63.5  +  254  =  317.5 

200  +  254=454 

108  +  127  =  235 

200  +  254  =  454 

120  +  381  =  501 

197  +  127  =  324 

1  +  127=128 

46+127  =  173 

23  -4- 1 27  -  1 .30 

44.000 

Pb    I2 

Cu    1 2 

Hg',  I2 

Ag,  I  (cryst.) 

Hg,  Ii  (red) 

Sb   I3 

Ku    I 

H,  I 

K   I 

13,200 

Na    i 

76,. 500 

CHEMICAL  DATA 


299 


Heat  of  Formation  of  Carbonates 


Formula 


Molecular  weights 


Molecular  beat 
of  formation 


In  dilute 
solution 


Ba.  C,  O3. . . . 
Kj,  C,  Oa.... 

Sr,  C.  Oj 

Ca.  C,  Oi.... 
Nas,  C,  O3... 
Mg,  C,  Oj... 
Mn,  C,  O3... 

Zn,  C,  Oj 

Fe,  C,  Oj.... 
Cd.  C.  O3.... 
Pb.  C,  Oj.... 
Cu,  C.  Oj... 
Agj,  C,  O3... 
N,  H<  H,  CO3 


137  +  12  +  48=197 
78  +  12  +  48  =  138 
87  +  12  +  48  =  147 
40  +  12  +  48  =  100 
46  +  12  +  48  =  106 
24  +  12  +  48=  84 

55  +  12  +  48  =  115 
65  +  12  +  48=125 

56  +  12  +  48  =  116 
112  +  12  +  48  =  172 
207  +  12  +  48  =  267 

63.6  +  12  +  48=123.6 

216  +  12  +  48  =  276 
14  +  4  +  1  +  12+48  =  79 


286,300 
282,100 
281,400 
273,850 
273,700 
269,900 
210,300 
197,500 
187,800 
183,200 
170,000 
146,100 
123,800 
205,300 


288,600 
'279,300 


199,000 


He.\t  of  Formation  of  Bic.\rbon.\tes 


Formula 


Molecular 
weights 


Molecular  heat 
of  formation 


In    dilute 
solution 


K,  H.  C,  Oj 39  +  11-12+48  =  100! 

Na,  H,  C,  O3 23  +  1  +  12  +  48=    841 


233,300 
227,000 


228,000 
222,700 


Heat  of  Form.ation  of  Sulphates 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In  dilute 
solution 


Ki,  S,  O4.... 
Ba.  S,  O4.... 

Lis,  S,  O4 

Sr,  S.  O* 

Nai,  S,  O4... 
Ca,  S,  O4.... 
Mg,  S.  O4... 
All,  Sj,  On.. 
Ni.  Hj,  S,  O4 
Mn,  S,  O4 .  .  . 

Zn,  S,  O4 

Fe,  S,  O4.... 
Co,  S,  O4. 


78+32+  64 
137+32+  64 
14  +  32+  64 
87  +  32+  64 
46  +  32+  64 
40  +  32+  64 
24  +  32+   64 

54  +  96  +  192 
28  +  8  +  32+   64 

55  +  32+   64 
65  +  32+   64 

56  +  32+   64 
59+32+   64 

Ni,  S,  O4 i   58.5  +  32+   64  = 


Fej,  Sj,  O12. 

Th,  S,  O4 

Cd,  S,  O4 

Pb,  S,  O4 

Hj,  S,  O4 

Cu,  S,  O4 

Hg2,  S,  O4 

Agj,  S,  O4 

Hg,  S,  O4 

Co,  S,  04-7H20. 
Nj,  Hj,  S,  O4  . . 

Rbi,  S.  O4 

C82,  S,04 


112+96  +  192 

408  +  32+   64 

112+32+   64 

207  +  32+   64 

2  +  32+   64 

63.6  +  32+   64  = 

400  +  32+   64 

216  +  32+   64 

200  +  32+   64 

'59  +  32  +  64  +  126 

,28+  8  +  32+   64 

171+32+   64 

I        266  +  32+   64 


=  174 
=  233 
=  110 
=  183 
=  142 
=  136 
=  120 
=  342 
=  132 
=  151 
=  161 
=  152 
=  155 
154.5 
=  400 
=  504 
=  208 
=  303 


159.  G 
=  496 
=  312 
=  296 
=  281 
=  132 
=  267 
=  362 


344,300 
339,400 
333,500 
330,200 
328,100 
317,400 
300,900 

'283,500' 
249,400 
229,600 


221,800 
219,900 
215,700 
192,200 
181,700 
175,000 
167,100 
165,100 
234,000 
283, .500 
344,700 
349,700 


337,700 


339,600 


328,500 
321,800 
321,100 
879,700 
281,100 
263,200 
248,000 
234,9001 
228,900 
228,700 
650,500 
213,500 
231,600 

'216,266' 
197,500 

i62,'60O  " 


281,100 


J  240,000  for  FeS04  7H2O. 


300     METALLURGISTS  AND  CHEMLSTS'  HANDBOOK 


Heat  of  Formation'  of  Chlorides 


Formula 


Molecular 
weights 


Molecular  heat 
of  formation 


In     dilute 
solution 


K.  CT 39-1-   35.5  = 

Ba,  CU ,  137-)-   71      = 

Be,  Cli 9-1-71      ■ 

Na.  CI 234-   35.5  = 

Li.  CI 7+  35.5  = 

Sr,  Clj 87-1-   71      = 

Ca.  Cli 40-f   71      = 

N.  Hi.  CI 14-h4-|-35.5  = 

Mg,  Ch ;  24-1-71      « 

S.  Cli I  28-f-142      = 

Al.  CIi 27-1-106.5  = 

Mn.  Clj I  55-f-   71      = 

Zn.  Clt !  65-f-   71      = 

Tl,  CI I  204 -f-   35 

Cd.  Cli 112-1-   71      = 

Pb.  Cli 207 -f-   71      = 

Fe.  Cli I  56-1-   71      = 

Sn.  Clj 118-(-  71      = 

Co.  Cli I  59-f-   71      = 

Ni,  Cli 58.5-1-   71      = 

Cu.  CI 63.5-1-  35.5  = 


5  = 


Sn,  Cl« 1184-142 

Fe,  Cli 564-106.5  = 

Hg.  CI 2004-   35.5  = 

Sb,  Cli 120  4-106.5  = 

Hi.  Ch ;  2084-106.5  = 

B,  CU 114-106.5  = 

Ag.  CI 1  1084-  35.5  = 

Hg,  Cli ,  2004-  71      = 

Cu,  Cli ,63.64-   71      = 

As,  CU I  754-106.5  = 

H,  CI '  14-  35.5  = 

Sb,  CU I  1204-177.5  = 

Pd,  CU !  1064-  71      = 

Pt.  CU I  1954-142      = 

Au,  CU i  1974-106.5  = 

Au,   CI 1  1974-   35.5  = 

P,  CU 314-106.5  = 

Rb,  CI 85.54-  35.4  = 

Ca,  CI I  1334-   35.4  = 

Zr,  Oi I  914-32      = 

Ce,  Oi 1  1404-   32      = 

Si.  CU i'S.4-141    7  = 


74.5 

208 
80 
58.5 
42.5, 

158 

111  I 
53.5' 
95     I 

170 

133.5' 

126  I 
136     ! 
239.5 
183 
278 

127  I 
189 
130 
129.5 

99  i 
260 
162.5 
235.5 
226.5 
314.5 
117.5 
143.5! 
271  i 
134.61 
18J.5 

36.5 
297.5 
177  I 
337 
303.5! 
232.5 
137.5 
120.9, 
168.4 
123 
172  I 
lf.9.7. 


105,700 

197,100 

155.000 

97,900 

93.900 

134,700 

169,900 

76,800 

151,200 

128,800 

161,800 

112,000 

97,400 

48,600 

93,700 

83,900 

82,200 

80,900 

76,700 

74.700 

35.400 

129.800 

96.150 

31.320 

91.400 

90.800 

89,100 

29.000 

53.300 

51.400 

71,500 

22,000 

104.500 

40,500 

60,200 

22,800 

5,800 

69,700 

105,900 

109.900 

177,500 

224,600 

121,800 


liquid 


liquid 


101,200 
198,300 
199,500 

96,600 
102,300 
195,850 
187,400 

72.800 
187,100 


238.100 
128.000 
113.000 
38.400 
96.400 
77.900 
100.100 


127,850 


93.400 


I  50.300 

I  62,500 


39,400 


79,800 
27.200 


Heat  of  Formation  of  Pho.sphates  and  Miscellaneous 
Acids 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In  dilute 
solution 


Cai.  Pi,  0» 
Mgi,  Pi.  Oi 
Na»,  P,  0«. 
Hi,  P,  0«'. 
H,  Br.  Oi'. 
H,  CI,  Oi«  . 
H,  CI,  OaK 
H,  I,  Oi>.. 
Hi,  P,  Oi'. 


1204-  624-128  =  310 
724-  624-128  =  262 
694-  314-  64  =  164 
3  4-31  4-  64=  98 
14-  804-  48  =  129 
14-35.54-  48=  84.5 
14-35.54-  64  =  100.5 
14-  127  4-  48  =  176 
34-      314-   48=    82 


919,200 
910,600 
452.400 


302,000 
12,500 
22.000 
39,100 
57.700 

228,800 


>  These  results  from  "  Annuaire  du  Bureau  des  Longitudes,"  1914. 


CHEMICAL  DATA  301 

Heat  of  Formation  of  Bi-sulphates 


■c.          ,              1            Molecular 
Formula           j             ^.^-^^^^ 

Molecular  heat 
of  formation 

In    dilute 
solution 

K.  H,  S,  O4 39  +  1+32  +  64  =  136 

Na,  H,  S,  O4 123  +  1+32  +  64  =  120 

N,  Hs,  S,  O4 14  +  5  +  32  +  64  =  115 

H,  H,  S,  O4 1  +  1+32  +  64=98 

276,100 
269,100 
244,600 
192,200 

272,900 
268,300 
245,100 
210,200 

Heat  of  Formation  of  Sulphites 


Formula 

Molecular 
weights 

Molecular  heat 
of  formation 

In    dilute 
solution 

S,  O3,  K2 

32+48  +  78  =  158 
32+48  +  46  =  126 

272,600 

S,  O3,  Naj 

261,000 

Heat  of  Formation  of  Nitrates 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In  dilute 
solution 


K,  N,  O3 

Na,  N,  Oi 

Zn,  N2,  Oe 

Pb,  N2,  Oe 

Cu,  No,  Oe 

H,  N,  Oj 

Ag,  N.  Os 

Ca,  N2,  Oei 

Co,  N2,  Os  6H20' 

LiNOsi 

N,  H4,  N,  Oi>... 


39  +  14+  48  =  101 
23  +  14+  48=  85 
65  +  28+   96  =  187 

207  +  28+  96  =  331 

63.5  +  28+   96  =  187. 

1  +  14+  48=    63 

108  +  14+   48  =  170 

40  +  28+   96  =  164 
59  +  28  +  96  +  108  =  283 

7  +  14+  48=  69 
14+  4  +  14+  48=  80 


119,000 
110,700 


105,400 


34,400  gas 

28,700 
202,000 


112,000 
88,600 


110,700 
106,000 
131,700 
98,200 
81,300 
48,800 
23,000 


119,000 

'  82, 406 


Heat  of  Formation 

OF  Alxjminates 

Formula 

Molecular  weights 

Molecular  heat 
of  formation 

In  dilute 
solution 

Ca,  AU,  O4 

40  +  54  +  64  =  158 

80  +  54+80  =  214 

120  +  54+96  =  270 

524,550 
658,900 
789,050 

Caj,  AI2,  Os     

Ca3,  AI2,  Os 

Heat  of  Formation  of  Amalgams 


Formula 


Molecular  weights 


Molecular  heat 
of  formation 


In  dilute 
solution 


Hgi2,  K '  2,400  +   39  =  2,4.39 

Hg»,  K 800+39=839 

Hge,  Na 1,200+   23  =  1,223 

Hg,,  Au z  +  197  =  197+j-] 

Hgx,  Ag 1         i  +  108  =  108  +  x 


34,600 
29,700 
21,900 


25,600 

25,600 

19,000 

2,580 

2,470 


302     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
IIf.at  of  For.m.\tiOiV  of  Alloys 


FormuUi 


Molecular  weights 


Molecular  hoat 
of  formation 


In  dilute 
solution 


Cu,  Zni 

Cu,  Zn. 
Cu3,  Al. 
Cu2,  Al. 
Cu3.  Alj 
Cu,  Al.. 
Cui,  Ah 
Cu,  Al2 


63.6  +  130=193.6 

63.6+  65  =  128.6 

190.8+  27  =  217.8 

127.2+  27  =  154.2 

190.8+  54  =  244.8 

63.6+  27  =  90.6 

127.2+  81=208.2 

63.6+  54  =  117.6 


10,143 
5,783 
26,910 
21,278 
17,395 
1,887 
10,196 
-  r.,738 


Dehydhatiox  of 

Metallic  Sulphates 

Temperature  of 
beginning 
dehydration, 
deg.  C. 

Product  formed 

Remarks 

FeS04  +  7H2O 

FeS04  +  4H2O 

FeS04  +  H2O   

21 

80 

406 

51 

82 

97 

109 

180 

316 

27 

93 

155 

25 

60 

,K 

25 

28 

115 

225 

40 

106 

279 

19 

58 

276 

30 

41 

170 

19 

38 

112 

203 

38 

80 

119 

FeS04  +  4HiO 

FeS04  +  H2O 

Fe20i  +  2SOi 

Al2(S04)i  +  13H20... 
Al2(S04>.  -r  IOH2O.    . 
Al2(S04)i  +  7H2O..  .. 
Al2(S04)«  +  4H2O...  . 

Al2(S04)l   +   H20 

Al2(S04)t        

Slight  apple  green. 
White. 
Yellowish   brown. 

Al2vS04)l+  I6H1O 

Al2(S04)i  +  I3H2O.... 
Al2(S04)«  +   IOH2O...  . 

Al2(S04)i  +  7H;0 

Ah(S04)i  +  41120 

Al:(S04)i  +  H2O 

CuS04  +  5H2O 

CuS04  +  3H2O 

CuS04  +  H2O 

White. 
White. 
White. 
White. 
White. 
White. 

CuS04  +  3H2O 

CuS04  +  H2O 

CuS04 

Sky  blue. 
Pale  blue. 
White. 

MnS04  +  5HiO 

MnS04  +  2H2O 

MnS04  +  H2O 

ZnS04  +  7H2O 

ZnS04  +  6H2O 

ZnS04  +  2H20 

ZnS04  +  H2O 

MnS04  +  2H2O 

MnS04  +  HiO 

MnS04 

ZnS04  +  6H1O 

ZnS04  +  2H2O 

ZnSO»  +  H2O 

ZnS04 

Pale  peach 
blossom. 

Paler    than    pre- 
ceding. 

Paler    than    pre- 
ceding. 

White. 

White,  granular. 

White. 

White. 

NiS04  +  7H20 

NiSOa  +  4H2O 

NiS04  +  H2O 

NiS04  +4H2O 

NiSO.  +  H2O 

NiS04     

Green. 

Yellow. 

Orange  colored,  . 

Rose. 

Lilac. 

Lilac. 

C0SO4  +  7HjO 

C0SO4  +  4H2O 

C0SO4  +  H2O 

C0SO4  +  4H2O 

C0SO4  +  H2O 

C0SO4 

CdS04  +  ^SHiO 

CdS04  +  2H2O 

CdS04  +  H20 

CdS04  +  2HiO 

CdS04  +  HjO 

CdS04       

White. 
White. 
White. 

MgS04  +  7H2O 

MgS04  +  6H2O 

MgS04  +  2H2O 

MgS04  +  H20 

CaS04  +2H2O 

2CaS04  +  2H20 

2CaS04  +  H2O 

MgS04  +  6H2O 

MgS04  +  2H2O 

MgS04  +  H2O 

MgS04 

White. 
White. 
White. 
White. 

CaS04  +  HiO 

2CaS04  +  HjO 

2CaS04 

White. 
White. 
Whit*. 

CHEMICAL  DATA 


303 


B 
0 

3 

CD        CO       l>t^iCi 

•  cn     -.-H 

o 

CD 

o 

Tf< 

o 

n 

«3        (N        t^C^  00 

•CD      -l^ 

o 

Tt< 

o 

"* 

■* 

^ 

OS      t^      '^coco 

•00      -(M 

04 

00 

t^ 

iO_ 

o 

3 

s 

O 

u 

-t^ 

.-H        <N.-H!M 

CO      •t^ 

CD 

^ 

i-T 

cf 

■3 

CO        t^        OOIM 

o  :»o 

CO 

t^ 

o 

Tt< 

CO 

03      CO      lo  CO  CO 

■*       .CS| 

r^ 

C^ 

IQ 

Tf< 

CD 

* 

^^ 

"3        CO        0^(N 

•*    .  t^ 

oi 

TJH 

o 

t^ 

1—1 

o> 

6 

00        "3        (M  Tt<  ,-1 

■*    ••* 

lO 

CD 

t^ 

CO 

X 

s 

^        (M^-M 

CO   :cD 

kO 

1—1 

1—1 

•2  g  S  fl 

3  "   O  o 

o      o      oooooooooooo      oooooo 

t-^      CO      ot^coc;rocoro^ocic;ot^      r^t^cococotc 

O        05        05  t^  00  O  ^  CO  O  CO  «?  M  i-i(M        (M  CD  CO  ■*  ri  lUD 

Jii  0  «  m 

^        ^        O  ^  ^  CD  OOIQOOOOCO  00O»O        C0CDiO»OCDC0 

a        T}H        OCC^t^O»OCDMCOC~5!MC2CD        -^lOOOOO 

T-H      CO      -*co-*oi>i>  '^^^■^^c^^c^i^cD^co      i-H  ,-1  c^  CO  CO  M< 

O'c 

■«d 

."2  ."2    rs    ci'^^c:      rs    ??   i? 

g  a 

ffi  «- 

^    ^    CC    -^    02  1^    ^1^                  '^    X    -^    CO    3    a; 

crCcjCrio^O               crrtCreJCTcJ 

<  (t 

C     Q 

•^  -^  b£;:3  bJD  tc  1:3  to          ;s  tc".is  ssc—  ti 

O   B 

^^ y y- ^-^.^         -^^' ^s,^^-^'' ^^^ 

2'? 

O        O        OCOOO O oooooo        OOOOOO 

Pi  b 

LO        O        LO  LO  i-O  lO  lO  lO  O  LO  iC  LO  lO  IQ        lO  lO  if5  »0  IQ  '.';. 

"o-- 

(M        CD        00(NOOt^Ci»CX'*'OOl>        OcD(Mi-hcD.-i 

k?H  o 

1«^ 

(N        CD        COi-iCCiO        t^t^T-HOiTfO-*        iOCDCOCOO!Ml 

C^        CS 

CO  >— 1                                       ^  05  CO  lO        CD  lO  l>- CD  CD  CD 

fa    01 

1      1            1      1            1      1      1      1      1 

O  c 

^  3 

CD        C 

^XC^INOO        CD        00        QOCD        (N        CD        00 

5^  « 

T-H          C^ 

•*C<1-*05I>        CO        (M        tXMCO        ''JH        i-O 

o  S 

I— 1        1— 1        1— 1 

^r 

^5 

II           II 

II     II     II     II     II           II           II           II     II           II           II           II 

;<^ 

5-« 

T}<            CC 

OOTt<CDOOCD        CD        00        0(N        CO        CD        CD 

S  a, 

c?.5? 

1—1                        1— 1                 r- 1          1— 1          i-H 

§3 

3^ 

+            +            +++++            +++++++             1 

<!; 

IM           Tf 

CD  Tt<  CD  Tt<  C<I        O        O        OOtJ*        Tf<        CD        CD 

^        (N 

COiMCOOOt^        M        C^        CD(N        _L        Jl.        -1_ 

(N        Tt<        CO 

r-H           (N           CO 

^          ^          ^ 

^-v          ^- 

Q 

^< 

_3 

"5 

y2 

P9^'»-^*D               O               ^               <**» 

O 

'^    ^ 

.     ii^^O^     O     9.     OO     O     J     ;;J 

:  >> 

(5J      .      . 

o 

"o 

^■^ 

-S   :  ^ 

o 

03 

>j    .  bC 

"o 

tc  a; 

a  .^ 

^ — 

CJ 

^g 

£   :S 

^^ 

oc-S 

rv        c3 

Q> 

-  b 

c?  :cc 

o 

H 

"4, 

2,i 

■-2 

<o       a       <o 

<L 

o 

1 

^           KflH 

L^ 

« 

H      Z 

-< 

<; 

.^ 

H 

< 

1 

304    METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Heat  of  Solution 

Salt  dissolved  Calories 

CUSO4.5H2O -2,750 

CdS04.f^HoO 2,660  . 

ZnS04.7H20 -4,260 

FeS04.7H20 -    400 

ZnCl.  in  water 15,630 

ZnS04  in  water 18,500 


Desulphatization  of  Anhydrous  Metallic  Sulphates* 


Metallic 

sulphates 

Tempera- 
ture of 
beginning 
of  decom- 
position, 
deg.  C. 

Tempera- 
ture of 
energetic 
decom- 
position, 
deg.  C. 

Products  of 
decomposition 

Remarks 

Fe,(S04)i 167 

Fe20i.2SOi 492 

480 
560 
639 
639 
705 
670 
790 
720 
736 
764 
770 
767 

846 
890 
890 
972 
925 

Fe20..2SOi.'. .  . 
FeiOi 

Yellow  brown. 
Red. 

BiHS04)i 

AhCSOiu 

570 
590 
637 
653 
699 
702 
702 
702 
720 
755 

827 
870 
878 
890 
917 
952 
1200 
1510 

5BijOi-4(SOi)«. 
A1jO« 

White. 
White. 

PbSOi 

CuSOt 

MnS04 

ZnS04 

2CuOSOi 

6PbO-5SOi.... 

2CuOSOi 

Mnj04 

3ZnO-2SOi.... 
CuO 

White. 

Orange  color. 
Dark  red  to  black. 
White,  cold  and  hot. 
Black. 

NiS04 

NiO 

Brownish  green. 

C0SO4 

CoO 

3ZnO-2SOi 

CdS04 

ZnO 

5CdO-SOi 

BiiOiC?^ 

CdO 

Hot     yellow,      cold 

white. 
White. 

5Bi50i-4(SOj)i.. 
SCdOSOi 

Yellow. 
Black. 

MgS04 

MgO 

White. 

Ag2S04 

Ag 

6PbOoSOi 

CaS04 

2PbOSO«(?) 
CaO. 

White  to  yellow. 
White. 

BaS04 

BaO 

White. 

Dissociation  Te.nsions  of  Sulphates  at  Various  Tempera- 
tures.    Expressed  in  Millimeters  of  Mercury 


Temp., 
deg.  C. 

Fe2(S04)i 

CuS04 

Ali(S04)i 

2CuOSOi 

ZnSOi 

550 

9.8 

22.8 

58.0 

94.0 

219.0 

25.5 
28.7 
37.7 
50.5 
71.0 
148.0 

9.8 
16.0 
25.8 
34.0 
50.0 
82.0 

600 

27.6 
33.0 

650 

675 

0.5 

700 
725 

36.0 
39.0 
46.0 

0.8 

750 

7.5 

775 

1 .  .  .  . '. 

14.5 

800 

85.0 

24.0 

■  Hofman,  "General  Metallurgy."    For  additional  data  on  decomposition  see 
pp.  305,  523  and  524. 


CHEMICAL  DATA  305 

Reduction  Temperatures  of  Metallic  Oxides 

Various  metallic  oxides  were  submitted  to  the  action  of 
hydrogen,  carbon  monoxide,  ammonia  and  methane,  at  various 
temperatures  for  a  period  of  6  hours,  and  the  investigators 
report  in  the  Journ.  Soc.  Chem.  hid.,  July  30,  1910,  the  lowest 
temperatures  at  which  the  oxides  begin  to  lose  oxygen.  The 
accompanying  tabulation  shows  the  results  obtained. 

Temperatures  at  Which  Oxides  of  the  Metals  Give  up 
Oxygen 


Oxide 

Carbon 

monoxide, 

deg.  C. 

Hydrogen, 
deg.  C. 

Ammonia, 
deg.  C. 

Methane, 
deg.  C. 

AU2O3 

0  and  below 

0 

0 

0  and  below 

90 

0  and  below 

•        80 

50 

115 

AgjO 

Hg20 

HgO  (yellow). 

67 

220 

HgO  (red).... 
PbzO 

157 
202 
198 
Above  300 
299 
225 
208 

200-210 
202 

Pb02 

Pb304 

PbO 

CuO 

110 

150 

160 

75 

150 
170 
190 
125 

45 

158 
210 
280 

CU2O 

230 

CoO 

140 

170 

60 

ZnO 

233 

152-159 

AS2O3 

Oxide 

Reduction 

and 

tempera- 

carbon 

ture 

BeO 

2400° 

MgO 

CaO 

1540° 

AI2O3 

1800° 

BjOa 

2400° 

MnO 

1100° 

UO2 

1600° 

Reduction   Temperatures   of   Some   Refractory    Oxides^ 

Remarks 

Forms  carbide. 

Oxide  dissociates  before  reduction. 

Carbide  dissociates  above  800°. 

Forms  carbide. 

Carbide  sublimes. 

Carbide  dissociates  at  1550°. 

Forms  carbide. 

Reduction  by  Hydrogen 
A  paper  on  "The  Reduction  of  Metallic  Oxides  with  Hydro- 
gen at  High  Pressures,"  by  E.  Newbery  and  J.  N.  Pring,  was 
read  at  a  meeting  of  the  Royal  Society,  January,  1916.  Metal- 
lic oxides  have  been  heated  to  temperatures  of  2500°C.  in  dry 
hydrogen  at  pressures  up  to  150  atmospheres,  water  vapour 
being  removed  by  metallic  sodium.  The  following  oxides  were 
reduced  to  metals:  CraOsto  Crand  Mn02to  Mn.  The  follow- 
ing oxides  were  reduced  to  lower  oxides:  V2O5  to  VO,  NbaOs 
to  NbO,  U3O8  to  UO2,  Ti02  to  TiO,  and  CeOa  to  Ce^Oa.  The 
following  oxides  were  unchanged:  ALjO.'i,  MgO,  ZrOa,  Y2O3, 
Th02.     The  metals  obtained,  chromium  and  manganese,  are 

»  Zeit.  fur  angew.  Chemie.,  p.  118,  Vol.  XXVIII,  1915. 
20 


300     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

probably  the  purest  samples  of  these  metals  that  have  been 
prepared  up  to  the  present.  This  supposition  is  supported  ])y 
the  sharp  nature  of  their  melting  points,  a  feature  which  hiis 
not  been  obser\^ed  with  samples  prepared  by  other  methods. 

Decomposition  of  Carbonates^ 

ZnC03    =  ZnO    +  CO. 300°C. 

MgCOa  =  MgO  +  COo 650°C. 

FeCOa    =  No  simple  product 800°C. 

CaCOa    =  CaO    +  CO2 812°C. 

SrCOs     =  SrO     +  CO, begins  1141  °C. 

BaCO,    =  BaO    +  CO2 begins  136 1°C. 

MgCOa  =  MgO  +  CO2 546°C. 

Decomposition  of  Sulphides- 

Pvrite  -  FeSo  =  FeS  +  S:* 565°C. 

Chalcopyrite 720°C. 

Oxidation    of    Metallic    Oxides    at    High    Temperatxires    and 
Pressures 

J.  MiLBAUER  has  experimented  on  the  reactions  of  metallic 
oxides  at  high  temperatures  and  pressures  {Journ.  Soc.  Chem. 
Ind.,  May  31,  1916).  When  heated  in  oxygen  for  an  hour  at 
480°C.,  and  12  atmospheric  pressure,  most  of  the  normal  metal- 
lic oxides  remained  unchanged.  The  following  exceptions  were 
noted:  Potassium  and  barium  oxides  were  converted  into  per- 
oxides, lead  oxide  into  red  lead,  antimony  oxide  into  the  tetrox- 
ide,  and  manganese  oxide  into  sesquioxide;  the  lower  oxides  of 
nickel  and  cobalt  j'ielded  traces  of  nickelic  and  cobaltic  oxides. 
Silver  was  converted  into  black  crusts  of,  apparently,  a  perox- 
ide, since  on  treatment  with  hydrochloric  acid  they  yielded 
chlorine.  Platinum  remained  unchanged.  Experiments  under 
similar  conditions  with  metallic  oxides  intimately  mixed  with 
chromium  sesquioxide,  showed  in  many  cases  a  more  or  less 
complete  conversion  into  metallic  chromate  with  absorption  of 
oxygen.  Thus,  for  example,  the  products  obtained  from  chro- 
mium oxide  and  the  following  oxides  (or  carbonates)  contained 
the  annexed  percentages  of  chromate  respectively:  Silver  oxide, 
100  per  cent,  of  chromate;  magnesium  oxide,  82.7  per  cent.; 
calcium  oxide,  56.9  per  cent.;  zinc  oxide,  72  per  cent.;  and  lead 
carbonate,  100  per  cent.  The  reaction  is  therefore  available 
for  the  preparation  of  certain  chromates,  notably  that  of  mag- 
nesium, which  in  many  cases  can  be  substituted  for  alkali 
chromates. 

1  Soe  pp.  52.3  antl  .524  for  additional  rlata. 


CHEMIC-\L   DATA 


307 


Molecular  Heat  of  DUution* 

The  heat  set  free  or  absorbed  on  diluting  a  gram  molecule  of 
liquid  with  water  is  the  molecular  heat  of  dilution,  thus  on 
diluting  HCl  to  (HCl,  .300  HoO)  17,300  cal.  per  36.5  grams  of 
HCl  are  set  free;  diluting  2XaCl,  nH.O  (n  =  20)  to  (2NaCl, 
100  H2O)  absorbs  1060  cal.  per  2  X  58.65  grams  of  XaCI. 


HCl 
n  =  0  H2O 

HXO3 
n  =  0  H2O 

H:SO, 
n  =  0  H:0 

NaOII 
n  =  3  H2O 

NHi! 
n 

1  5,370 

2  11,360 
5      14,960 

50      17,100 
300      17,300 

1      3,280 

5      6,600 

10      7,320 

20      7,460 

320      7,490 

.     1       6,380 

5     13,100 

49     16,700 

199     17,100 

1,600     17,900 

5      2,130 

7      2,900 

9      3,100 

25      3,260 

200      2,940 

1       1,260 

3          385 

5.8          210 

9.5            20 

110    

ZnCh         ,     ZnfX08^2 
n  =  5  H2O  n  =  10 


Standards  for  Work  with  the  Bomb  Calorimeter' 


Berthelot 


Atwater 


Fischer  & 
Wrede 


U.  S.  Bureau 
of  Standards 


Naphthalene 

Benzoic  acid 

Cane  sugar  (sucrose) . 


9692 
6322 
3961 


9628 
6322 

3957 


9640 
63.33 
3957 


9610 
6320 


'From  K.\TE  and  L.\bt.  Physical  and  Chemical  Constants." 

'Heat  developed  on  diluting  NHs  nHsO  to  NHs  200H2O  (Berthelot). 

'From  Somermeier's  "  Coal." 


308      METALLURGISTS  AND  CHEMISTS'  HANDBOC)l\ 

Thermoelectric  Constants 

The  electromotive  forces'  given  by  various  thermo-couples 
in  general  use,  and  at  a  temperature  of  500°C.,  with  the  cold 
junction  temperature  O'C,  are  as  follows: 

Approximate   cloctro- 
Xame  of  thermo-couple  motive  force  in  milli- 

volts at  500°C. 

Platjnum-platinum  10  per  cent,  rhodium 4.4 

Platinum-platinum  10  per  cent,  iridium 7.4 

Nickel-nickel  10  per  cent,  chromium   (The  Hoskin's 

couple) 10.0 

Iron-nickel 12.0 

Iron-constantan 26.7 

Silver-constantan 27.6 

Coppcr-constantan 27 .  8 

The  relation  between  temperature  and  the  electromotive 
force  produced  by  a  thermo-couple  when  the  cold  junction  is 
maintained  at  0°C.  is  usually  given  in  an  equation  of  the  form 

log  c  =  A  log  t  +  B, 
where 

e  =  c.m.f.  of  the  thermo-couple  in  millivolts, 
t  =  the   temperature  of  the   thermo-couple   in   degrees 
Centigrade, 

and  A  and  B  are  constants  depending  on  the  wire  employed. 

For  the  chief  thermo-couples  in  general  use  at  the  present 
time  this  equation  is  as  follows: 

Platinum-platinum  rhodium  approximately log  e  =  1.19  log  t  +  0.52 

Platinum-platinum  iridium  approximately log  e  =  1.10  log  t  +  0.89 

Silver-constantan  approximately log  e  =  1.14  log  (  -j-  1 .  34 

(See  also  p.  171) 

J  Engineering,  Aug.  1,  1913. 


CHEMICAL  DATA 


309 


Thebmochemical  Constants  Per  Chemical  Equhalent 
WITH  Corresponding  Voltages 

In  the  table  of  therrao-chemical  constants  per  chemical 
equivalents  (bj'  J.  W.  Richards,  Journ.  Franklin  hist.,  1906) 
the  column  headed  "  per  chemical  equivalents  "  gives  the  addi- 
tional energy  in  case  of  the  plus  figures,  or  the  smaller  amount, 
in  case  of  the  negative,  required  to  set  free  a  chemical  equiva- 
lent (molecular  weight  divided  by  valence)  of  the  given  sub- 
stance as  compared  with  the  energy  required  to  decompose  the 
corresponding  hj^drogen  compound. 

In  the  formation  of  CuClj  the  data  in  the  table  are  —  7900 
Cu,  +  39,400  CI2  =  31,500  gram-cal.  required  for  the  decom- 
position of  one  chemical  equivalent  of  CuCh,  the  corresponding 
drop  in  voltage  is  -  0.34  Cu,  +  1.71  CI2  =  1.37  volts  for  the 
decomposition  voltage  of  CuCl2.  The  order  in  which  the 
elements  are  placed  gives  also  the  order  in  which  they  will  be 
deposited  one  after  another  by  decreasing  voltages. 


Basic  elements 

Element 

Acid  elements 

Salt 

1  Per  chemical 

Corre- 

ZZ         Corre- 

Element 

equivalents, 

sponding 

cnem. 

sponding! 

gram-cals. 

voltage 

equiv., 
gram-cal. 

voltage 

Li' 

+62.900 

+  2.73 

F:"  (gas).... 

r 
+  52,900     +2.30 

Fluoride. 

Rb'.... 

+62,000 

+  2.69 

Ch"  (gas)... 

+  39,400     +1.71 

Chloride. 

K' 

+  61,900 

+  2.69 

Brj"  (gas)..  . 

+  32,300     +1.40 

Bromide. 

Ba". .  .  . 

+  59,950 

+  2.60 

Br'  aiquid)  . 

+  28,600     +1.20 

Bromide. 

Sr" 

+  58,700 

+  2.55 

Br'  (solid)..  . 

+  27,300     +1.1S 

Bromide. 

Na'.... 

+  57,200 

+2.48 

I2"  (gas) 

+  20,000 

+0.87 

Iodide. 

Ca". .  .  . 

+  54,400 

+  2.36 

r  (liquid)... 

+  14,600 

+0.63 

Iodide. 

Mg"... 

+  54,300 

+  2.36 

r  (solid) .... 

+  13,200 

+  0.57 

Iodide. 

Al'".... 

+  40,100 

+  1.74 

S"  (solid) .  .  . 

-    5,100 

-0.22 

Sulphide. 

NH«'... 

+  33,400 

+  1.45 

Se"  (met.)  .  . 

-17,900 

-0.78 

Selenide. 

Mn"... 

+24,900 

+  1.08 

Zn".... 

+  17,200 

+0.75 

Fe".... 

+  19,900 

+0.47 

Cd".... 

+  9,000 

+0.39 

Co".... 

+   8,200 

+0.36 

Ni".... 

+   7,700 

+0.33 

Fe'".... 

+   3,230 

+  0.14 

Sn". . .  . 

+   1,900 

+  0.08 

Pb". .  . . 

+      400 

+0.02 

H'   

0 

0 

Tl"..  .. 

-       900 

-0.04 

Cu".... 

-   7,900 

-0.34 

Hg".... 

-14,250 

-0.62 

Pt""... 

-19,450 

-0.84 

Ag' 

-25,200 

-1.10 

Au"'... 

-30,300 

-1.32 

Calculation  of  Electromotive  Force  (Thomson's  R,ule) 

One  coulomb  liberates  0.000010392  grams  of  H.  In  order 
to  set  free  1  gram  of  H,  or  1  gram  equivalent  of  anv  other  ele- 
ment, an  e.xpenditure  of  1  -^  0.000010392  =  96,600  coulombs 
is  required.  This  is  known  as  a  Faraday  and  is  usually  denoted 
by  the  letter  F. 


810     METALLURGISTS  AND  CHEMLSTS'  HANDBOOK 

If  Q  is  the  heat  energy  of  formation  of  one  molecular  weight, 
71  the  valence  of  the  compound,  then 

nEF  =  Q  X  4.19 
or  since  F  =  96,600 

^  =  oo  r..r>    (Thomson's  rule). 
23,040« 

The  rule  is  not  quite  correct.     The  true  relation  between  heat 
and  electrical  energy  is  given  by  the  Gibbs-Helmholz  equation 

dE 
nEF  =  Q  +  t'~ 

dE  . 
in  which  T  =  absolute  temperature,  and  -p^  is  the  temperature 

coefficient  of  the  e.m.f.     As  this  coefficient  is  usually  not  large, 
Thomson's  rule  is  sometimes  used   to   give  an   approximate 
value. 
Example : 

Cu  +  CI2  +  aq  =  62,500;  n  =  2  valences 
„  62,500  ,  „-      - 

^  =  23,040X2  =  ^-^^^^^^^^ 
CuSO*  4-  H2O  =  Cu  +  HjSO*  +  O 
197,500  +  69,000  -  210,000  =  56,300 
„  56,300  ,  -^      ,^ 

^  =  2X23,040   =^-22  volts 

Electroplating  Baths' 
Brass  Bath  (Roselecr'sj. — Per  liter  of  water: 

Sodium  carbonate,  dry  (NaoCOsj 10  g. 

Cupric  acetate,  pulverized 14  g. 

Sodium  bisulphite  (HNaSOs) 14  g. 

Zinc  chloride,  fused  (ZnCU) 14  g. 

Potassium  cyanide  (lOO  per  cent.  KCN) 40  g. 

Ammonium  chloride  (NH4CI) 2  g. 

Current  density-,  0.3  amp.  per  sq.  dm.;  e.m.f.,  2.7  volts;  sp.  gr., 
1.0545;  deposit  per  hour,  0.0041  mm. 

Di-ssolve  the  sodium  salts  in  400  cc.  warm  water,  stir  the 
copper  and  zinc  salts  with  400  cc.  of  warm  water,  and  stir 
slowly  into  the  first  solution.  Dissolve  the  cyanide  in  the 
remainder  of  the  water  and  stir  into  the  other  portion  of  the 
bath,  where  the  precipitate  should  di.ssolve.  Add  the  ammo- 
nium chloride  and  boil  for  an  hour,  replacing  the  water  evap- 
orated. 

Copper  Bath — Acid. — Per  liter  of  water: 

Copper  .sulphate  (Cu80v5H20) 200  g. 

Sulphuric  acid  (cone.  H2SO4) 30  g. 

Current  density,  1  to  3  amp.  per  sq.  dm.;  sp.  gr.  1.1417. 

'  "A  Laboratory  Course  in  Electrochemistry,"  Watts. 


CHEMICAL  DATA  311 

Copper  Bath — Alkaline. — Per  liter  of  water: 

Sodium  sulphite  (Na2S03) 20  g. 

Sodium  carbonate  (Na2CO3-10H2O) 20  g. 

Sodium  bisulphite  (HNaSOs) 20  g. 

Cupric  acetate  (Cu-2C2H302-H20) 20  g. 

Potassium  cyanide  (100  per  cent.  KCN) 20  g. 

Current  density,  0.3  amp.;  e.m.f.,  2.9  volts;  sp.  gr.,  1.0507; 
deposit  in  1  hour,  0.0056  mm.;  temp.,  20°C.;  make-up  as 
under  brass  bath. 

Cobalt  Bath  I. — Cobalt-ammonium  sulphate,  CoS04-(NH4)2- 
S04-6H20,  200  grams  per  liter  of  water  (or  145  grams  of  the 
anhydrous  salt).     Sp.  gr.,  1.053  at  15°C. 

Cobalt  Bath  II. — Cobalt  sulphate,  C0SO4,  312  grams,  sodium 
chloride,  NaCl,  19.6  grams,  boric  acid,  nearly  to  saturation, 
water,  1000  cc.     Sp.  gr.,  1.25  at  15°C. 

•  Use  cobalt  anodes,  and  current  even  up  to  100  amp.  per 
square  foot  where  possible  (H.  T.  Kalmus  et  al.,  Electrical 
Review,  May  8,  1915). 

Gold  Bath. — Per  liter  of  water: 

Sodium  carbonate,  dry  (Na2C03) 10  g. 

Gold-ammonium  chloride  (NH4)2AuCl« 2  g. 

Potassium  cyanide 7  g. 

Current  density,  0.1  amp.  per  sq.  dm.;   e.m.f.,  2.8  volts;  sp. 
gr.,    1.0175;  deposit    per    hour,    0.00184    mm.;    temperature, 
20°C.;  anode  area  one-third  cathode. 
Iron  Bath. — Per  liter  of  water: 

Ferrous  sulphate  (FeS04-7H90) 150  g. 

Ferrous  chloride  (FeCl24H20) 75  g. 

Ammonium  sulphate  (NH4)2S04 100  g. 

Current  density,  1.0  amp.     This  bath  can  be  used  for  refining 
iron.     At  20°C.  the  deposit  is  hard  and  brittle,  but  electrolysis 
at  80'*  to  90°  yields  a  soft  metal.     See  also  p.  593. 
Lead  Bath. — Per  liter  of  water : 

Lead  (as  PbSiFe) 50  to    80  g. 

Hydrofluosilicic  acid  (HaSiFe) 100  to  150  g. 

Gelatin 0.5  g. 

Current  density,  1.2  to  1.6  amp.  per  sq.  dm.  This  bath  is 
used  for  refining.  For  plating  reduce  the  free  acid  to  2  or  3  per 
cent. 

Nickeling  on  Iron  or  Steel. — Per  liter  of  water: 

Nickel-ammonium  sulphate 75  g. 

Current  density,  0.3  amp.;  e.m.f.,  3.5  volts;  sp.  gr.,  1.0479; 
deposit  per  hour,  0.0034  mm.;  cast  anodes  should  be  half  the 
area  of  cathode. 

Nickeling  on  Brass  or  Copper. — Per  liter  of  water: 

Nickel  sulphate  (NiS04-7H20) 50  g. 

Ammonium  chloride  (NH4CI) 25  g. 

Current  density,  0.5  amp.  per  sq.  dm.;  e.m.f.,  2.3  volts;  sp.  gr. 
1.0357;  deposit  in  1  hour,  0.0059  mm.;  cast  anodes  should  be 
one-half  area  of  cathode. 


312     METALLURGISTS  AND  CHEMISTS' HANDBOOK 

Nickeling  on  Zinc. — Per  liter  of  water: 

Nickel  sulphate 40  g. 

Sodium  citrate 35  g. 

Current  density,  0.27  amp.  per  sq.  dm.;  e.m.f.,  3.6  volts;  sp. 
gr.,  1.0394;  deposit  per  hour,  0.00301  mm.;  rolled  anodes 
should  have  two  and  one-half  times  area  of  cathodes. 

Nickel  Solution — Thick  Deposits. — Per  liter  of  water: 

Nickel  sulphate,  XiSO^-TH.O 50  g. 

Ammonium  tartrate,  neutral 36  g. 

Tannin 0.25  g. 

Current  density,  0.3  amp.  per  sq.  dm. 
Black  Nickel. — Per  liter  of  water: 

Nickel-ammonium  sulphate 60  g. 

Ammonium  sulphocyanide 15  g. 

Zinc  sulphate,  cryst 7  g. 

Use  nickel  anodes  three  to  four  times  the  surface  of  the 
cathodes.  Current  density,  0.05  amp.  per  sq.  dm.  Deposit 
takes  best  on  white  nickel.  Solution  must  be  kept  neutral 
by  nickel  carbonate. 

Platiniun  Bath — (Roseleur's). — Per  liter  of  water: 

Thin  Thick 

deposita         deposits 

Ammonium  phosphate 20.0  g.      100.0  g. 

Sodium  phosphate 100. Og.      100.0  g. 

Platinum  as  Pt CI 4 2.3  g.        10.0  g. 

Current  density,  1  to  2  amp.  per  sq.  dm.;  e.m.f.,  3  to  4  volts. 

Dissolve  the  platinic  chloride  in  100  cc.  of  water.  Dissolve 
the  ammonium  phosphate  in  200  cc.  of  wat€r  and  stir  into  the 
platinum  solution,  when  the  precipitate  previously  formed  will 
dissolve.  Boil  until  odor  of  ammonia  has  disappeared  and  add 
water  to  make  up  for  evaporation.  Bath  should  have  acid 
reaction  and  should  be  used  hot.  Potential  difference,  6-8 
volts. 

Silver  Bath — Heavy  Plating. — Per  liter  of  water: 

Silver  as  silver  cyanide 25  g. 

Potassium  cyanide 27  g. 

Current  density,  0.3  amp.;  e.m.f.,  1.3  volts;  sp.  gr.,  1.0338; 
deposit  per  hour,  0.0114  mm.;  area  of  anodes  equals  area  of 
cathode. 

Silver  Bath — Ordinary  Plating. — 

Silver  as  silver  cyanide 10  g. 

Potassium  cyanide 20  g. 

Current  density,  0.3  amp.  per  sq.  dm.;  e.m.f.,  1.5  volts;  sp.  gr., 
1.0175;  deposit  per  hour,  0.0115  mm. 
Tin  Bath  (Roseleur's). — Per  liter  of  water: 

Sodium  pyropho-sphate  (Na4P207) 40  g. 

Tin  chloride,  fused  (SnCU) 16  g. 

Tin  chloride,  cr>'st.  (SnCU^HaO) 4  g. 


CHEMICAL  DATA 


313 


Current  density,  0.3  amp.  per  sq.  dm.;  e.m.f.,  2  volts;  sp.  gr., 
1.0357;  deposit  per  hour,  0.0059  mm.;  anode  area  equal  to  cath- 
ode, solution  gives  deposit  on  copper,  brass,  bronze  or  zinc ;  but 
iron  or  steel  must  be  coppered  first  or  given  a  preliminary  coat 
of  tin  by  an  immersion  bath.  The  tin  anodes  do  not  corrode 
evenly  and  tin  salts  must  be  added  to  maintain  sufficient 
amount  of  tin  in  solution. 

Tin  Baths. — Per  liter  of  water: 


Caustic  soda (NaOH) 

Tin  chloride,  cryst (SnCh  ^HoO) 

Sodium  hyposulphite..  .  .  (Na2S203 -51120) 

Sodium  chloride (NaCl) 


90  g.  120  g. 

30  g.  30  g. 

15  g.  60  g. 

15  g.. 


125  g. 
50  g. 
75  g. 


Tin  Bath,  by  Immersion. — Per  liter  of  water: 

Ammonium  alum  (NH4A1(S04)2-12H20) 25  g. 

Tin  chloride,  fused  (SnCl2) 2  g. 

A  bright  coating  is  produced  on  clean  iron  by  30  to  60  seconds 
immersion  in  the  boiling  solution. 
Zinc  Bath. — Per  liter  of  water : 

Zinc  sulphate  (ZnSOi^HaO) 100  g. 

Ammonium  chloride  (NH4CI) 25  g. 

Ammonium  citrate 40  g. 

Current  density,   0.5  to   1.0  amp.   per  sq.  dm.;  e.m.f.,  1.1  to 
2.2;  sp.  gr.,  1.0781;  deposit  per  ampere-hour,.  0.0173  mm. 
Zinc  Bath. — Per  liter  of  water: 

Zinc  chloride 60  g. 

Ammonium  chloride 30  g. 

Hydrochloric  acid 4  g. 

Glycerine 4  g. 

Use  anodes  of  zinc  and  of  antimonial  lead  in  equal  numbers. 

Electrolytic  Oxidation  and  Reduction 

Overvoltage  of  Hydrogen  and  Oxygen. 

(Quoted  from  Watts  "A  Laboratory  Course  in  Electrochem- 
istry.") 

"Electrolysis  lends  itself  well  to  oxidation  and  reduction  proc- 
esses, since  it  is  possible  to  vary  not  only  the  speed,  but  also  the 
intensity  of  the  action  with  great  nicety.  Factors  affecting  the 
intensity  of  the  reducing  action  are  the  material  of  the  electrode, 
the  nature  of  its  surface,  and  the  current  density.  In  comparing 
the  effects  of  different  cathodes,  an  attempt  is  frequently  made 
to  resolve  the  reducing  action  of  the  cathodes  into  the  catalytic 
action  of  the  electrode  material,  and  the  'overvoltage'  of  the 


314      ME'r\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


OVERVOLTAGE    OF    HyDROGEN 


Cathode 


By 
Cas- 
pari' 

SO4 


By  Foerster  and    2N  Hi 
Pignet-  N'  UjS04      "sO«  By 

) 1 1  0.125     TafeP 

I  Least       Current     1  amp.  lO.l   amp. 
poten-  I  0.04  arap.   per  sq.    sq 
I    tial     per  sq.  cm.i    cm. 


Discharge  poten- 
tials, N.H1SO4 


.Mercury  ...    0 .  78 

Zinc I  0,70 

Lead 0.64 

Tin 1  0.53 

0,48 
0.46 
0.23 
0.21 
0.15 
0,09 


0.43 


Cadmium 
Palladium 
Copper..  . 
Nickel.  .  . 
Silver. .  .  . 
Platinum. 

Gold 0.02 

Platinized-    1 
platinum.  ,0,0 


0.35 
0.43 
0.48 


1.25 


1.32 


1.30 


1.26 
1.08 
1.18 


0.10 
0.10 


0.67 
0.64 


0.07 
0.055 


0.005 


1.35 
1.16 
1.23 


1.30 
1.15 
1.22 


0.79 
0.74 


0.79 
0.74 
0.93(?) 


0.86 

0.05 


0.96 

0,07 


0,95 

0.07 


+  .5476 
-I-.4676 
-I-.4076 
-t-.2976 
+  .2476 
+  .2276 
-.0024 
-.0224 
-.0824 
-.1424 
-.2124 


+ . 1976 


1176 
1676 
1976 


.1324 
.1324 


.1624 
.1874 


-.2324  -.2274 


Note. — "  X  "  in  the  above  table  stands  for  normal. 
'  Zeit.  phys.  Chem.,  1899,  p.  89. 
s  Zeit.  /.  EUktrochfm.,  1904.  p.  715. 
»  Zeit.  /.  Chem..  1904,  p.  712. 

hydrogen.  The  variation  in  the  potential  required  by  elec- 
trodes of  different  metals  for  visible  evolution  of  hydrogen  is 
usually  expres,sed  as  the  "overvoltage"  of  hydrogen  on  the  par- 
ticular metal,  the  least  potential  of  platinized  platinum  being 
taken  as  zero.  The  di.scharge  potentials  referred  to  the  calomel 
electrode  (value,  —  O.06  volt)  have  been  calculated  for  the  differ- 
ence between  the  calomel  electrode  and  the  hydrogen  electrode 
in  normal  sulphuric  acid.  The  increase  of  overvoltage  with 
time  and  its  diminution  with  rise  of  temperature  varies  for 
different  metals. 


Anode  Potextials  and  Overvoltage 

OF  Oxygen 

Anode 

FJy  Coehn.      Least 
anode       potential 
for  evolution  of  ( )3 
vs.   hvd.  electrode 
in  NKOH 

Overvoltage      AU- 
niand,  p.   131 

Discharge     poten- 
tial    vs.     calomel 
electrode       calcu- 
lated by  Watts 

By     K  0  e  r  »  t  e  r. 
Least  potential  for 
evolution  hyd.  vs. 
hyd.         electrode 
2N  KOH 

a> 
0 

X 
0 

01 

d 

K 
Z 

Nickel,  sponge, . 

1.28 
1.35 
1.36 
1.47 

1.47 
1.48 
1.53 
1.63 
1.65 
1.65 
1.67 
1   75 

0.05 
0.12 
0.13 
0.24 

0.24 
0.25 
0.30 

-0.9524 
-1.0224 
-1.0324 
-1.1424 

-1.1424 
-1.1524 
- 1   2024 

Nickel,  smooth.. 
Cobalt 

1.35 

2.00 

1.77 

Iron 

Platinized- 

plaiinum 

Copper 

1.47 
1.47 

2.02 
2.30 

1.89 

Silver 

0.40     -1   3024 

Cadmium 

0.42    1-1.3224 
0.42    1-1.3224 
0.44    1-1.3424 
0  52    1  —  1   4924 

1.65 
1.67 

2.45 
2.92 

Platinum 

Gold 

2.50 

2.17 

CHEMICAL  DATA 


315 


Electrochemical  Order  of  the  Elements* 

In  the  following  series  each  metal  is  electropositive  to  all  that 
follow  it.  Two  metals  in  contact  in  the  presence  of  an  electro- 
lyte form  a  galvanic  couple  which  causes  the  more  electro- 
positive to  be  decomposed  by  electrolysis. 

Cs-I-,  Rb,  K,  Na,  Li,  Ba,  Sr,  Ca,  Mg.  Al,  Cr,  Mn,  Zn,  Ga,  Fe, 
Co,  Ni,  Tl,  In,  Pb,  Cd,  Sn,  Bi,  Cu,  H,  Hg,  Ag,  Sb,  Te,  Pd,  Au, 
Ir,  Rh,  Pt,  Os,  Si,  C,  B,  N,  As,  Se,  P,  S,  I,  Br,  CI,  O,  F. 

Some  authors  put  Cd  just  before  Fe,  Sn  before  Pb,  and  Sb  and 
As  before  Cu.  That  the  last  two  should  precede  copper  ordi- 
narily seems  probable.  The  order  changes  with  the  specific 
electrolyte,  and  the  position  of  selenium  varies  with  the  amount 
of  illumination. 


Potentials  of  Metals  ix  their  Normal  Salts 

(Neumann) 


Sulphate 

Chloride 

Nitrate 

Acetate 

Magnesium 

+  1.239 
+  1.040 
+  0.815 
+0.524 
+0.162 
+0.093 
-0.019 
-0.022 

+  1.231 
+  1.015 
+  0.824 
+  0.503 
+0.174 
+0.087 
-0.015 
-0.020 
-0.085 
-0.095 
-0.249 
-0.315 
-0.376 
-0.550 

+  1.060 
+0.775 
+  0.560 
+  0.473 
+0.122 

+  1.240 

Zinc     

+  0   522 

Cadmium 

Cobalt 

-0.078 
-0.060 

—  0   004 

Nickel 

Tin 

-0.115 

—  0  079 

-0.238 
-0.490 

—  0   150 

-0.500 

-0.515 
-0.980 
-0.974 

-0.615 
-1.028 
-1.055 

—  0  580 

Silver 

—  0  991 

-1.066 
-1.140 
-1.356 

Platinum 

Gold 



1 

Decomposition  Voltages 

(Le  Blanc) 


HjSO*.  . 
HNO.... 
HtPOi.. 
HCl.... 
NaOH.. 
KOH..  . 
NH4OH. 
Na2S04 . 
NaNOa.. 
NaCl. .  . 
NaBr. . . 


1.67 
1.69 
1.70 
1.31 
1.67 
1.69 
1.74 
2.21 
2.15 
1.98 
1.58 


NaT 

1.12 

XaCjHjOz 

2.10 

K2SO4.... 

2.20 

KNOa.... 

2.17 

KCl 

1.96 

(NH4)2S04 

2.11 

CaCh 

1.89 

SrClj 

2.01 

BaCh 

1.95 

ZnS04  . . . 

2.35 

ZnBr 

1.80 

XiS04... 
NiCh.... 
AgXOs... 
CdS04 . . . 
C0SO4 . . . 
HgCl2... 
Fe2CS04)3 
FeS04 . . . 

AuCb I   0 

FeCb 2 


2.09 

1.84 

0.70 

2.03 

SnCh..  . 

1.92 

MnS04. 

1.30 

MnCh.. 

1.64 

CuCh... 

2.02 

0.39 

2.16 

1.76 
2.60 
2.77 
1.36 


'  Gore,  "The  Art  of  Electrolytic  Separation  of  Metals." 


316     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


Electromotive  Force  of  Metals  and  Minerals  in  KCN 
Solution' 
M 

-- KCN' =  6.5  per  cent. 


Volts 

Volts 

+  0.99 
+  0.93 
+  0.81 
+  0.61 
+  0.45 
+0.45 
+0.39(?) 
+0.37 
+  0.33 
+  0.29{?) 
+  0.13 
-0.09 

—  0  17 

Zinc,  amalgamated 

Chalcopyrite 

—  0  20 

Pyrite 

-0  28 

—  0  28 

Tin 

—  0  28 

-0  30 

Copr>er,  amalgamated. .  . . 

-0.40 

—0  40 

Silver 

-0  43 

Copper  glance 

Electric-light  carbon.. . . 
Blende 

-0.46 
-0.48 

Bournonite 

-0.50 

Coke 

-0  52 

Antimony 

+  0.06 
+  0.04 

Ruby  silver  ore 

Stephanite 

-0.54 
-0.54 

-0.56 

Niccolite 1    -0.11 

Decompositiox  Voltages  of  Molten  Alkali  Halides  and 
Alkaline-earth  Chlorides^ 


Compound 


Decompound  voltage 

Temp,  coeff. 

630°  C. 

=  2.62  V. 

1.35    X  10-» 

835°  C. 

=  2.6    V. 

1.46    X  10-' 

810°  C. 

=  2.8    V. 

1.51    X  10-' 

690°  C. 

=  2.45  V. 

1.465  X  10-' 

690°  C. 

=  2.6    V. 

1.465  X  10-' 

630°  C. 

=  2.05  V. 

1.48    X  10-' 

630°  C. 

=  2.2    V. 

1.48    X  10-' 

890°  C. 

=  2.5    V. 

2.00    X  10-' 

890°  C. 

=  2.6    V. 

2.00    X  10-' 

770°  C. 
585°  C. 

=  1.3    V. 
=  2.85  V. 

0.685  X  10-' 

615°  C. 

=  3.0    V. 

0.715  X  10-' 

650°  C. 

=  3.05  V. 

Li  CI... 
NaCl... 
KCl... 
NaBr.. 
KBr. . . 
Nal .  . . 

KI 

NajSOi 
K2SO4 . 
NajCOa 
CaClj. . 
SrCU  .  . 
BaCl.. . 


•  Pkof.  S.  B.  Chhlsty,  Tran.f.  A.  I.  M.  E.,  Sept..  1899. 

'  B.  Nelma.sn  a.nd  E.  Bergvk.  Z.  Ekktroclum.  21,  152-60  (1915).— It 
these  experiments  a  C  crucible  covered  with  a  mixture  of  water-glass  and  as- 
Lestos  was  found  to  be  the  only  one  practicable.  Graphite  electrodes  were 
used  covered,  where  exposed,  with  the  same  mixture. 


CHEMICAL  DATA  317 

Deposition  by  Immersion ^ 

Solution  Deposits  on  Does  not  deposit  on 

SbCla. . , Bi,  Brass,  German  Ag,  Sb,  Cu,  Fe,  Ni,  Au,  Pt, 

Pb,  Sn,  Zn Ag. 

BiCls Fe,  Pb,  Sn,  Zn Sb,  Bi,  Brass,  Cu,  Au, 

Pt,  Ag. 
CUSO4,  Cu-         Fe,  Pb,  Sn,  Zn Sb,  Bi,  Cu,  Au,  Ni,  Pt. 

(N03)2 

CuCh Bi,  Fe,  Pb,  Sn,  Zn.  .  .  .   Sb,  Cu,  Au,  Ni,  Pt,  Ag. 

CuCls  (am- 

moniacal).       Zn Sb,    Cu,    Au,    Bi,    Fe, 

Pb,  Ni,  Pt,  Ag. 

HgNOs As,  Bi,  Cd,  Cu,  Sb,  Fe, 

brass,  Pb,  Zn 

AgNoj Pb,  Sn,  Cd,  Zn,  Cu,  Bi, 

Sb,  Fe,  Ni Ag,  Au,  Pt. 

AgNo2  As,  Sb,  Bi,  Zn,  Sn,  Cu,  Fe. 

(alcoholic). 
AgCNKCN  . .   Zn,  Pb,  Cu,  brass,  f  Sb,  Bi,  Sn,  Fe,  Ni, 

CrprTTi  Jiri  As*  iA0"An    T^t 

Au(CN)3KCN    Zn,  Cu,  brass,  German    /Sb,  Bi,  Sn,  Pb,  Fe, 
Ag.  1    Ni,  Ag,  Au,  Pt. 

Cleaning  Metals  by  Electrolysis. — In  cleaning  adhesions  of 
dirt,  rust,  etc.,  from  metals,  the  following  method  is  recom- 
mended: The  articles  are  connected  to  the  poles  of  an  alter- 
nating circuit  and  immersed  in  a  salt  solution.  The  liberation 
of  gases  on  the  surface  of  the  metals  very  quickly  removes  or 
loosens  everything  of  a  non-metallic  character,  while  the  alter- 
nating current  prevents  any  permanent  action  on  the  metal 
itself,  and  it  is  said  the  finish  of  the  surface  is  not  interfered 
with.  The  voltage  should  be  sufficient  to  cause  evolution  of 
gas  at  the  poles,  and  currents  up  to  110  volts  have  been  used. 
{Mining  Review,  Melbourne,  Aust.) 

Other  authorities  recommend  a  10  per  cent,  solution  of 
H3P04.  A  carbon  electrode  is  used  if  both  electrodes  cannot 
be  composed  of  metals  to  be  cleaned. 

A  mixture  of  freshly  moistened  crushed  sodium  bisulphate 
and  common  salt  can  also  be  used.  This  is  applied  and  allowed 
to  remain  in  contact  with  the  plate  to  be  cleaned  for  some  time. 
After  the  plate  is  clean  the  mixture  should  be  scraped  oflf  and 
the  plate  washed  with  an  alkaline  solution. 

'Gore,  "  Art  of  Electrolptic  Separation  of  the  Metals." 


SECTION  V 
SAMPLING,  ASSAYING  AND  ANALYSIS ^ 


STANDARD  SOLUTIONS 

Ammonium-nitrate  solution — for  washing  ammonium  phos- 
phoinolybdate — 5  to  10  per  cent.  Dissolve  50  to  100  grains 
XH4N(33  in  water  and  acidifj-  with  HNO3,  using  1  cc.  per  liter 
excess.  Or  add  ammonia  to  strong  HXC)3  (sp.  gr.  1.42)  until 
alkaline  to  litmus,  and  bring  back  to  acidity  with  HNO3,  using 
1  cc.  per  liter  excess. 

Ammonium-oxalate  solution — used  chiefly  as  a  precipitant 
for  calcium.  1  gram  of  salt  per  10  cc.  of  water.  1  cc.  will 
then  ])rccipitate  0.0145  gram  of  CaO. 

Barium  chloride — used  as  precipitant  for  SOs.  1  gram 
of  crystals  per  10  cc.  of  water.  1  cc.  will  precipitate  0.0327 
gram  .SO3. 

Bichromate  solution — for  iron  determination — 8.79  grams 
pure  K-Cr-jO?  in  two  liters  of  water.     1.0  cc.  =  0.005  mg.  Fe. 

Cochineal — Grind  1  gram  of  the  bugs  in  a  mortar  and 
digest  with  100  to  150  cc.  of  cold  dilute  alcohol  (1vol.  alcohol, 
3  vol.  water)  for  20  or  30  min.  Filter  and  the  solution  is  ready 
for  use.  See  note  under  phenolphthalein  concerning  acidity 
of  alcohol.  Useful  with  titrations  with  ammonia.  Salts  of 
copper,  iron  and  aluminum  must  be  removed.  Color  changes 
from  yellowish  red  in  acids  to  purple  in  alkalis. 

Cuprous-chloride  solution  (ammoniacal) — for  gas  analj'sis. 
Weigh  out  16  grams  of  fresh  CU2CI2,  or  about  25  if  it  is  old. 
Place  in  large  Plorence  flask  and  add  250  cc.  water.  By  means 
of  delivery  tube  immersed  in  water,  pass  the  gas  from  200  cc. 
concentrated  ammonia  water  into  the  CU2CI2  flask  using  a  two- 
hole  stopper  in  this  flask  with  a  check  valve.  Pass  until  practi- 
cally all  ammonia  has  passed  over.  100  cc.  of  this  Cu^Cli 
solution  will  absorb  24  cc.  of  CO  but  should  not  be  used  in  sec- 
ond pipette  after  it  has  absorbed  6. 

Cyanide  solution — for  copper  determination.  Use  about  23 
grams  commercial  potassium  cyanide  per  liter  of  water.  The 
theoretical  amount  is  20.63.     1.0  cc.  =  0.005  gram  Cu. 

Ferrocyanide — for  zinc  determination — 45  grams  of  pure 
K^FeCve  per  liter  of  water.     1.0  cc.  =  0.010  gram  Zn. 

Hydrodisodium  phosphate — HXaaPO* — used  as  precipitant 
for  magnesia.  1  gram  to  10  cc.  of  water.  1  cc.  of  solution 
precipitates  0.0112  gram  of  MgO. 

Hyposulphite  solution — for  use  in  iodide  copper  determination 
— 19.59  grams  c.p.  sodium  hyposulphite  per  liter  of  water. 
1.0  cc.  =  0.005  g.  Cu. 

Litmus — Dissolve  1  gram  of  litmus  in  100  cc.  of  hot  water 

>  For  data  on  qualitative  analysis  see  the  previous  section,  pp.  270-289  inc. 
318 


SAiMPLING,  ASSAYING  AND  ANALYSIS        819 

and  add,  drop  bj'  drop,  dilute  sulphuric  acid  until  the  liquid 
acquires  a  red  color.  Boil  for  10  min.  to  expel  the  carbon 
dioxide.  Should  the  red  color  pass  into  blue  during  the  boiling, 
restore  the  color  by  adding  a  few  drops  of  dilute  sulphuric 
acid.  Then  add  bar.yta  water,  drop  by  drop,  until  a  violet  color 
develops,  set  aside  to  deposit,  and  falter.  Preserve  the  litmus 
tincture  in  bottles  not  completely  filled,  and  preferably  covered 
only  with  a  loose  cover. 

Magnesia  mixture — -Dissolve  3  grams  calcined  MgO  in 
least  necessary  quantity  HCl.  Add  excess  of  magnesia  and 
heat.  Filter  off  any  precipitated  iron,  alumina  or  phosphates 
and  add  35  grams  ammonium  chloride  and  25  cc.  of  strong 
ammonia,  and  dilute  to  250  cc.  1  cc.  =  0.016  gram  PsOj 
approximately. 

Magnesium-nitrate  solution — Dissolve  16  grams  calcined 
magnesia  in  least  necessary  nitric  acid.  Add  an  excess  of 
magnesia,  heat  for  a  few  minutes,  filter  and  make  up  100  cc. 

Manganese  sulphate  solution — for  use  in  iron  titrations,  to 
render  end-point  more  distinct.  160  grams  of  manganous 
sulphate  are  dissolved  and  diluted  to  1750  cc.  To  this  are 
added  330  cc.  of  phosphoric  acid  (syrup  1.7  sp.  gr.)  and  320  cc. 
of  sulphuric  acid.     About  6  or  8  cc.  are  used  in  a  titration. 

Mercuric-chloride  solution — for  tin  precipitation  in  iron 
analysis — 7  grams  HgCU  in  150  cc.  water. 

Methyl  orange — Dissolve  the  dry  substance  in  water,  about 
0.3  gram  per  liter.  It  must  be  used  in  cold  solutions.  It 
cannot,  as  a  rule,  be  vised  with  organic  acids  or  with  nitrites. 
Yellow  with  alkalis,  pink  with  acids. 

Molybdate  solution — Dissolve  25  grams  molybdic  acid 
(M0O3)  in  about  100  cc.  ammonia  water.  If  action  is  too  slow, 
warm  and  add  a  little  more  strong  ammonia  water.  Cool  and 
pour  solution,  a  little  at  a  time,  into  about  300  cc.  of  HNO3 
(sp.  gr.  1.20).  Cool  mixture  during  this  process.  Dilute  to 
500  cc.     1  cc.  will  precipitate  about  0.001  gram  of  phosphorus. 

For  lead  determination  dissolve  9  grams  of  the  salt  in  1000 
cc.  water.     1.0  cc.  =  0.01  gram  Pb. 

Nessler's  solution — for  estimation  of  ammonia  in  water 
analysis.  Dissolve  50  grams  potassium  iodide  in  a  small 
quantity  of  hot  water,  cool,  and  add  with  frequent  agitation 
a  strong  solution  of  mercuric  chloride  (40  grams  of  HgCh 
to  300  cc.  of  water  until  the  red  precipitate  just  redissolves. 
Filter.  Add  to  the  filtrate  a  strong  solution  of  potassium  hy- 
drate containing  200  grams  of  the  salt.  Filter.  Dilute  to 
1000  cc.  and  add  5  cc.  of  a  saturated  solution  of  mercuric  chloride. 
Allow  the  precipitate  to  settle,  decant  the  clear  liquid  and 
keep  for  use  in  a  tightly  stoppered  bottle. 

Normal  acid  or  alkaline  solutions — contain  1.008  grams  of 
acid  hydrogen  or  17.008  grams  of  hydroxyl  per  liter. 

Permanganate  solution — for  iron,  lime,  etc. — 12  grams 
KMriOi  to  2030  cc.  water.  Ice.  =10mg.  Fe.  The  same 
solution  may  be  used  for  lime,  1  cc.  =5  mg.  CaO;  and  for 
Mn,  1  cc.  =  0.002946  gram  Mn. 


320     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Phenolphthalein — The  dry  material  is  dissolved  in  alcohol, 
5  grams  per  liter.  The  alcohol  may  have  some  acidity  which 
can  be  removed  by  boiling,  or  by  redistilhition  with  Hme. 
Cannot  be  used  with  ammonia  or  ammonium  salts.  Can  be 
used  for' weak  organic  acids.  Red  with  alkalis,  colorless  with 
acids. 

Platinic  chloride — Dissolve  1  gram  of  metal  in  aqua  regia, 
evaporate  to  dryness,  and  dissolve  in  1  cc.  HCl  and  9  cc.  H2O. 
1  gram  of  this  solution  precipitates  0.048  gram  of  K2O. 

Salt  solution — 5.4189  grams  per  liter.  1.0  cc.  =  0.01  mg. 
of  silver.     The  salt  should  be  dried  at  about  125°C. 

Silver  nitrate — 1  gram  per  20  cc.  of  water.  1  cc.  precipitates 
0.0104  gram  of  CI. 

Sodium  chloride — See  salt  solution. 

Stannous  chloride  solution — Heat  15  grams  SnClj  and  1 
gram  pure  Sn  with  40  cc.  water  and  10  cc.  cone.  HCl.  Keep 
tightly  stoppered  as  it  readily  absorbs  o.xygen. 

Starch  paste — Rub  2  or  3  grams  of  starch  with  cold  water  to 
a  smooth  paste  which  is  then  added  a  little  at  a  time  to  400  or 
500  cc.  of  boiling  water  into  which  it  should  be  thoroughly 
stirred.  After  several  minutes  remove  from  heat  and  dilute 
(if  necessary)  to  600  cc.  and  add  5  grams  of  crystalhzed  zinc 
chloride.  Stir  until  the  zinc  salt  dissolves,  then  allow  to  cool 
and  settle.     Decant  and  bottle  the  clear  liquid  for  use. 

Tannin — for  use  as  indicator  in  lead  assay  by  titration  with 
ammonium  molybdate.  Dissolve  1  gram  of  tannin  in  300  cc. 
water. 

COMMON  NAMES  AND  THEIR  CHEMICAL 
EQUIVALENTS 

Alum — usually  the  potassium-aluminum  sulphate  KAl(SO«)a 
I2H2O  is  meant. 

Argols — potassium  bitartrate. 

Bilking  soda — sodium  bicarbonate. 

Bleaching  powder — CaOClj. 

Bluestone — copper  sulphate,  CuS04-5H20. 

Calomel — mercurous  chloride,  Hg2Cl5. 

Copperas — ferrous  sulphate,  FeSOi-SHjO. 

Corrosive  sublimate — mercuric  chloride,  HgCU. 

Epsom  salts — magnesium  sulphate. 

Eschka's  mixture — magnesium  o.xide  and  sodium  carbonate. 

Glauber's  salts — sodium  sulphate. 

Green  vitriol — ferrous  sulphate. 

Marignac's  salt — potassium  stannosulphate,  KjSn(S04)j. 

Microcosmic  salt — sodium-ammonium-hydrogen  phosphate, 
HXaXH^POi^H.O. 

Minium — red  lead,  Pb304. 

Mohr'ssalt— FeS04(XH4)2S04-6H20. 

Muriatic  acid — hydrochloric  acid. 

Oil  of  vitriol — sulphuric  acid. 

Orpiment — yellow  arsenic  glass. 

Plaster  of  Paris — dehydrated  gypsum,  CaS04. 


SAMPLING,  ASSAYING  AND  ANALYSIS        321 

Realgar — red  arsenic  glass. 

Rochelle    salts — potassium-sodium    tartrate,     KNaC4H406- 

4H:0. 

Salt  of  Amber — succinic  acid. 

Sal  am.moniac — ammonium  chloride,  NH4CI. 

Salts  of  lemon — acid  potassium  oxalate,  HKC2O4. 

Salt  cake — the  residue  from  nitric-acid  making,  impure 
HNaS04. 

Sal  soda — sodium  bicarbonate. 

Scluff's  reagent — ammonium  thioacetate  solution,  CH3- 
COSNH4. 

Seidlitz  powders — 35  grains  of  tartaric  acid  and  a  mixture 
of  40  grains  of  sodium  bicarbonate  with  120  grains  of  potassium 
and  sodium  tartrate. 

Soluble  water-glass — sodium  silicate,  NaoSiOs. 

Sorensen's  oxalate — sodium  oxalate. 

Sugar  of  lead — lead  acetate. 

Washing  soda — sodium  carbonate. 

White  vitriol — zinc  sulphate,  ZnS04-5H20. 

The  Preparation  of  Proof  Gold^ 

The  purest  gold  which  can  be  obtained  (usually  assay 
cornets)  is  dissolved  in  aqua  regia  and  the  excess  of  nitric 
acid  expelled  by  repeated  evaporation  with  additional  hydro- 
chloric acid  on  a  water  bath.  The  final  solution  is  then  poured 
in  a  thin  stream  into  a  large  beaker  full  of  distilled  water,  pro- 
ducing a  solution  of  about  1  oz.  of  gold  per  pint  of  water.  Stir 
vigorously  and  leave  the  solution  to  settle.  At  the  end  of 
about  a  week  the  chloride  of  silver  will  have  subsided  to  the  bot- 
tom. Remove  the  clear  supernatant  liquor  with  a  glass  siphon 
and  dilute  to  about  1  oz.  of  gold  per  gallon  of  water.  If  the 
gold  originally  used  was  free  from  platinum,  precipitate  with 
sulphurous  acid;  if  platinum  was  present,  precipitate  with  oxalic 
acid.  Sulphurous  acid  acts  almost  immediatelj^  but  if  oxalic 
acid  is  used  the  solution  should  be  warmed  and  allowed  to 
stand  for  3  or  4  days. 

After  the  precipitated  gold  has  settled  the  acid  solution  is 
siphoned  off  and  the  gold  transferred  to  a  large  flask  and  re- 
peatedly shaken  with  cold  distilled  water,  closing  the  mouth  of 
the  flask  with  a  watch-glass.  The  gold  is  then  washed  thor- 
oughly with  hot  water  and  turned  out  into  a  porcelain  basin, 
dried  and  melted  in  a  clay  crucible  and  poured  into  an  iron 
mould,  which  should  be  neither  smoked  nor  oiled,  but  rubbed 
with  powdered  graphite  and  then  brushed  clean  with  a  stiff 
brush.  The  ingot  is  cleaned  by  brushing  and  heating  in  hydro- 
chloric acid.  It  is  then  dried  and  rolled  out.  The  rolls  must 
be  clean  and  bright  and  free  from  grease.  The  surface  of  the 
rolled  gold  plate  is  then  cleaned  by  scrubbing  with  fine  sand  and 
ammonia,  and  also  with  hydrochloric  acid,  and  is  scraped  with 
a  clean  knife  before  being  used  for  proof  in  the  bullion  assay. 

>T.  K.  Rose,  "Metallurgy  of  Gold,"  fifth  edition,  p.  488. 
21 


322     MET.^LLURGISTS  AND  CHEMISTS' HANDBOOK 

Another  method  is  given  in  the  Memorandum  by  the  Assayers 
of  the  Melbourne  Mint,  in  the  "Annual  Report  of  the  Mint," 
19i;i,  p.  138.  Cornets  of  gold,  derived  from  the  metal  obtained 
by  reduction  with  sulphurous  acid,  and  containing  0.1  per  cent, 
of  impurity  (cliiefly  Ag),  were  treated  with  cold  aqua  regia 
(4:1),  the  solution  largely  diluted  and  allowed  to  stand  for  a 
week  to  efifect  separation  of  silver  chloride.  Three  successive 
quantities  of  a  dilute  solution  of  silver  nitrate  (containing 
Ag  0.5  grain)  were  then  added  at  intervals  of  3  days,  the  surface 
of  the  hquid  being  gently  stirred  after  each  addition,  and  the 
whole  was  allowed  to  stand  for  14  days.  Any  iridium  or  other 
impurity  suspended  in  the  liquid  was  entangled  in  the  pre- 
cipitated silver  chloride;  the  clear  solution  was  siphoned  off, 
evaporated  to  dryness  and  ignited  in  porcelain;  the  sponge  gold 
fused  in  a  clay  crucible  with  potassium  bisulphate  and  nitrate, 
borax  added,  the  melt  allowed  to  cool,  the  cone  of  gcjld  treated 
with  boiling  hydrochloric  acid  to  remove  adhering  slag,  placed 
by  hand  upon  borax-glass  contained  in  a  clay  crucible  within  a 
large,  covered  guard-pot,  and  melted  under  conditions  preclud- 
ing contamination  of  the  metal  by  furnace  dust.  A  slow 
current  of  chlorine  was  then  passed  through  the  molten  metal 
for  1  hour,  the  gas  being  conducted  through  a  clay  tube  (3>^-in. 
bore)  by  which  the  gold  was  continuously  stirred.  The  charge 
was  allowed  to  cool  in  the  crucible,  the  cone  of  gold  treated 
with  boiling  hydrochloric  acid  and  finally  rolled  (with  special 
precautions  against  contamination)  into  a  fillet  \yhich  was  also 
treated  with  boiling  acid.  The  original  gold  weighed  21.5  oz., 
the  finished  fillet  21.28  oz.,  and  0.204  oz.  was  subsequently 
recovered  from  the  slag. 

The  Preparation  of  Proof  Silver 

Dissolve  commercial  fine  silver  in  dilute  nitric  acid  (1  :1), 
and  allow  the  liquid  to  stand  until  any  fine  gold  has  settled. 
Siphon  off  from  the  gold,  dilute  with  hot  water,  precipitate  the 
silver  with  hydrochloric  acid,  stir  well,  allow  to  settle,  and  wash 
thoroughly  by  decantation.  When  the  decanted  liquid  no 
longer  shows  hj'drochloric  acid,  which  can  be  ascertained  by 
testing  it  with  a  little  silver  nitrate,  it  may  be  considered  clean. 
Allow  the  silver  chloride  to  settle  and  decant  off  the  solution. 
Transfer  the  silver  chloride  to  a  porous  cup  which  has  been 
soaked  in  hydrochloric  acid  and  thoroughly  washed  afterward 
by  standing  in  frequently  changed  distilled  water.  A  cathode 
of  pure  silver  or  platinum  is  placed  in  the  silver  chloride  and  the 
porous  cup  immersed  in  a  deeper  one,  in  which  a  carbon  anode 
is  placed.  Then  a  current  is  started,  and  silver  chloride  begins 
to  reduce  at  the  cathode.  The  outer  liquid  will  become  satu- 
rated with  chlorine  and  should  be  renewed  from  time  to  time. 
The  silver  may  then  be  melted  down  and  rolled  as  given  above 
under  the  head  of  gold.  Another  method  is  to  use  the  best 
obtainable  fine  silver  melted  into  the  form  of  a  cathode  about 
6  or  8  in.  long,  about  2  in.  wide  and  ^i  to  H  in.  thick.  Wrap 
this  in  filter  paper  so  that  no  gold  can  be  detached  under 


SAMPLING,  ASSAYING  AND  ANALYSIS       323 

electrolysis.  The  electrolyte  is  about  a  4  per  cent,  solution  of 
silver  nitrate  slightly  acidulated,  and  the  cathode  is  pure  silver. 
The  current  density  should  be  such  that  the  silver  is  deposited 
in  the  form  of  crystals,  which  should  be  later  removed,  melted 
and  cast,  although  these  crystals  may  be  used  themselves  in 
the  bullion  proof.  Still  another  method  of  preparing  fine  silver, 
due  1  believe,  to  A.  E.  Knorr,  is  to  prepare  a  solution  of  silver 
nitrate  from  the  best  commercial  fine  silver  obtainable  (mat  erial 
which  is  already  999  fine)  evaporate  to  remove  the  excess  of 
nitric  acid,  and  to  the  neutral  solution  add  enough  sodium 
carbonate  to  precipitate  about  one-tenth  of  the  silver  present. 
Boil  the  precipitate  and  solution  thus  produced  for  some  time. 
The  silver  carbonate  first  formed  precipitates  all  other  im- 
purities.    Allow  to  settle,  decant  carefully  (or  filter). 

The  remainder  of  the  silver  is  then  precipitated  by  chemically 
pure  sodium  carbonate.  This  precipitate  carries  down  a 
considerable  amount  of  sodium  carbonate,  but  when  the 
material  is  melted  down  all  of  the  sodium  carbonate  comes  to 
the  surface  as  a  slag,  and  can  be  dissolved  ofT  with  hydrochloric 
acid  later.  The  silver  carbonate  will  decompose  without  the 
addition  of  any  other  reagent  if  heated  sufficiently.  The  bar 
produced  in  this  way  should  be,  as  said  above,  cleaned  with 
hydrochloric  acid  and  then  rolled,  as  given  above  under  the 
head  of  the  preparation  of  proof  gold. 

Assay  Fluxes 

Basic. — Sodium  carbonate  (Na2C03) — ^best  used  in  the  anhy- 
drous form. 

Sodium  bicarbonate  (HNaCOs) — less  convenient  than  the 
above  as  it  carries  much  less  soda  for  the  same  bulk. 

Potassium  carbonate  (K2CO3) — a  mixture  of  sodium  and 
potassium  carbonates  fuses  at  a  much  lower  temperature  than 
does  either  one  alone. 

Litharge  (PbO) — forms  exceedingly  fusible  silicates.  Gives 
metallic  lead  with  reducing  agents,  C,  S,  etc. 

Red  lead  (Pb304) — same  as  above,  but  is  more  of  an  oxidizing 
agent.     Carries  silver  into  slag  unless  completely  decomposed. 

Lead  peroxide  (Pb02) — still  more  energetic  oxidizer. 

Hematite  (Fe203) — extremely  infusible  and  must  be  reduced 
with  carbon  in  presence  of  silica  in  order  to  work  as  a  flux. 

Lime  (CaO) — when  used  with  silica  and  some  other  base  it 
forms  fusible  slags. 

Sodium  hydrate  (NaOH) — used  chiefly  to  decompose 
sulphides  and  sulphates,  certain  silicates  and  oxides,  and  organic 
compounds. 

Acid. — Borax  (Na2B407) — should  be  fused  before  use  to 
render  it  anhydrous.  Has  the  property  of  holding  almost  all 
oxides  in  suspension. 

Silica  (Si02) — occasionally  used  with  basic  ores  to  lessen 
corrosion  of  crucibles.  Better  to  use  glass  which  carries  about 
80  per  cent.  Si02. 

Glass — see  silica. 


324     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

Neutral. — Fluorspar  (CaFj) — is  extremely  fusible,  and 
readily  carries  phosphates,  etc.,  in  suspension. 

Common  salt — also  very  fusible  but  does  not  dissolve 
infusible  substances  readily.  Is  mainly  used  as  a  cover  to 
prevent  oxidation  of  the  charge  underneath. 

Metallic. — Iron — often  used  in  the  form  of  nails  to  take 
care  of  sulphur. 

Lead — used  in  scorification  assay  both  as  a  collector  of  the 
precious  metals  and,  as  it  oxidizes,  to  take  care  of  the  gangue. 
in  the  crucible  assay  it  is  reduced  from  some  oxide  as  a  collector. 

Oxidizing. — Niter  (KNO3  or  NaNOa) — at  about  red  heat 
niter  decomposes  into  potassium  nitrite  and  oxygen,  KNO3  = 
O  +  KNO;,  at  a  higher  temperature  the  nitrite  also  decom- 
poses, 2KNO2  =  K2O  +  2N0  +  O. 

Lead  peroxide  (see  under  basic  fluxes). 

Manganese  dioxide — must  be  used  with  some  other  base,  and  if 
any  remains  undecomposed  it  appears  to  carry  silver  into  the 

slag- 
Sodium  peroxide — extremely  energetic  and  forms  very  fusible 
slags.     Especially  good  in  decomposing  tin  ores,  and  sulphides, 
antimonites,  etc. 

Approximate  Reducing  Effect  of  Various  Reducing  Agents* 

Quantity  of  lead  in  grama 
Reducing  agent  reduced  from  litharge^  by 

1  gram  of  reagent 

Wood  charcoal 22-30 

Powdered  hard  coal 25 

Powdered  soft  coal 22 

Powdered  coke 24 

Argol  (crude  tartar) 5     -9.5 

Cream  of  tartar 4.5-6.5 

Wheat  flour 10.0-12.0 

Starch 11.5-13.0 

Sugar 12.0-14.5 

Potassium  cyanide 6 

Antimonite 6 

Blende 7-8 

Copper  pyrites 7-8 

Fahlerz 7-8 

Galena 3 

Iron  pyrites 11 

Mispickel 7-8 

In  Assay  Ton  Charges 

6  per  cent.  FeS        reduces  a  lo-gram  button. 
8  per  cent.  ZnS        reduces  a  15-gram  button. 

7  per  cent.  CuFeSz  reduces  a  15-gram  button. 
13  per  cent.  CU2S  reduces  a  15-gram  button. 
20  per  cent.  PbS        reduces  a  15-gram  button. 

>  For  amount  of  lead  reduced  from  red  lead  multiply  the  factors  given 
by  0.55.  ,    „ 

»  E.  A.  Smith's,  "Sampling  and  Assay  of  the  Precious  Metals. 


SAMPLING,  ASSAYING  AND  ANALYSIS       325 


Oxidizing  Agents  (Wet) 

Ammonium  Nitrate. — Readily  decomposes  on  heating. 

Bichromates. — Usually  used  as  the  potassium  salt. 

Bromine. — Usually  used  as  liquid. 

Chlorine. — Generated  from  bleaching  powder  and  sulphuric 
acid. 

Chromates. — Usually  used  as  the  potassium  salt. 

Chlorates. — The  sodium  or  potassium  salt  is  used  both  in 
fusion  and  solution. 

Hydrogen  Peroxide. — A  powerful  oxidizer  both  in  alkaline 
and  acid  solution. 

Nitrates. — The  sodium,  potassium  and  ammonium  salts  are 
used. 

Nitric  Acid. — An  extremely  powerful  reagent.  The  fuming 
acid  is  still  more  so  and  should  be  kept  in  a  cool,  dark  place  and 
handled  carefullj-. 

Permanganate. — The  alkali-metal  permanganates  are  ener- 
getic oxidizers  both  in  acid  and  alkaline  solution. 

Peroxides  (See  also  Hydrogen  Peroxide). — Sodium  and  potas- 
sium peroxide  are  energetic  agents  in  alkaline  solution.  The 
barium,  manganese,  lead  and  sodium  peroxides  are  often  used 
advantageously  in  fusion. 

Reducing  Agents 

The  chief  reduction  agents  in  fusions  have  been  spoken  of  on 
p.  308.     In  solution  we  may  use: 

Alkaline. — Sodium  amalgam,  zinc  dust,  sodium  sulphite, 
sugar,  arsenious  acid,  sodium  stannite. 

Acid. — Zinc,  iron,  tin,  aluminum,  lead,  stannous  chloride, 
sulphur  dioxide,  sulphuretted  hydrogen,  hypophosphorous  acid, 
oxalic  acid,  ferrous  sulphate. 

Niter  Required  to  Oxidize  1  Part  of  Metallic  Sulphide 


Sulphide 

Iron  pyrites 

Mispickel,  copper  pyrites,  fahlerz,  blende. 

Antimonite 

Galena 

Stock  Fluxes 


Parts    niter    to    1    of 
sulphide 
2     -2\i 

iM-2 


Sulphide 
ores 

Tellurides 

Blende 

Tin  ores 

I 

II          ' 

Litharge 

Niter 

8 

10 

30 

50 
20 

60       * 

7 
6 

Sodium  carb. . . 
Borax  glass. . . . 
Sand 

3 

3 
6 

20 

15 

5 

40 
10 

Charcoal 

0.11 

1.5 

Flour 

1 
Litharge 

75  grams 

Cover 

Amount  for    \'i 
a.t.  charge..  .  . 

Salt 
8  a.t. 

Litharge 
150  grams 

Borax 
75  grams 

Soda 
125  grams 

326      METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


O 


-  C   3  ■^     •  = 

—.-3  S—  i—  2  <  «> 

"ii  On  S        O        OJl'rJ; 

g|0  ^2  Kt— 0-— aacs, 

■5  i  a"^  ''••S^iii  c  a  a 

«;  -J  c  =  -  =  s^^^ 

X  t.   5  ^^  K  w   c;  c  y   o  t, 

>*H  <— '  ^-*        f*          Oct) 


jaA03 


z«Joq  suits  J  Q 


uoji  JO  docj 


]03jC  StPBJQ 


tQtS  sniBJO 


•ONH  Bni«-iO 


SOIBjr) 


«00«\'H 


xng 

p83J      BtnBJQ 


9JO  -jy 


o   X  o  o ; 


ii       «    TO 


o  ^;5  a^_CH  2 
—  S  £  s  s  3!  2  — ■■  t 
S  §  2  -   .=^  S  2       a 

t  o  c  3  2  g;:s  000 


J  J  <« 

s  s  t 


•S     .  " 


3  3 

O  O 


>.  I.     =     s 


i-CO 


-    £  o  -    - 


?5      S-  -rrs 


•a 

O       o 


So- 

o 

*'  Ooo 

.a 

cr 
bo 


5^- 


S  " 

08  "J 

■£'33 


o  a  S5S5 

•w    OD      ■<    ■< 

3    p  o 
OS  -  " 


SAMPLING,  ASSAYING  AND  ANALYSIS       327 


Cupel  Absorption 

A  safe  table  for  cupel  absorption  of  lead  buttons  is  given  in 
Ernest  A.  Smith's  "Sampling  and  Assay  of  the  Precious 
Metals, ' '  if  there  is  no  great  departure  from  a  ratio  of  height  to 
diameter  of  3  :  4. 

Diameter  of  cupel,  in H     H     1        l^i    Wi  \^i    U^    \% 

Absorption  in  grams 3     5       8        10     16     20     28     40 

As  to  the  cupel  absorption  of  silver  and  gold,  it  seems  unsafe 
to  give  any  tables,  as  this  varies  with  the  nature  of  the  material 
cupelled,  the  temperature,  whether  induced  draft  is  used  or 
not,  and  many  other  factors.  It  seems  fairly  safe  to  say  that  a 
small  silver  button  will  lose  about  2  per  cent.,  that  at  100  mg. 
the  loss  will  be  about  1.5  per  cent,  and  less  for  larger  buttons, 
and  that  the  gold  loss  will  probably  not  run  over  0.5  per  cent., 
but  these  figures  must  be  taken  as  approximations  only.  It 
must  also  be  remembered  that  not  all  of  the  button  remaining 
in  the  cupel  is  gold  and  silver.  1  have  usually  found  about  0.3 
per  cent,  of  Pb  and  Bi  as  impurity  in  the  silver  button;  with 
cement  cupels  I  have  found  as  much  as  0.8  per  cent.  Pb  and  Bi. 
The  factor  is  usually  neglected  in  working  on  comparative  tests 
on  different  cupels,  although  both  Dewey  and  1  have  repeatedly 
pointed  it  out. 

W.  J.  Sharwood  states  {Trans.  A.  I.  M.  E.,  1915,  page  1484) 
that  "when  a  given  amount  of  silver  (or  of  gold)  is  cupeled 
with  a  given  amount  of  lead,  under  a  fixed  set  of  conditions  as 
to  temperature,  etc.,  the  apparent  loss  of  weight  sustained  by 
the  precious  metal  is  directly  proportional  to  the  surface  of  the 
button  of  fine  metal  remaining."  From  this  he  deduces  that 
■'the  loss  of  weight  varies  as  the  %  power  of  the  weight,  or  as 
the  square  of  the  diameter  of  the  button.  The  percentage  loss 
varies  inversely  as  the  diameter  of  the  button,  or  inversely  as 
the  cube  root  of  the  weight."  This  means  that,  if  we  run  proof 
assays  of  any  weight  whatever,  we  can  deduce  the  loss  of  a 
button  of  any  other  weight. 

Lead  Retained  in  the  Cupellation  of  Platinum  Allots^ 


Composition  of  alloy 

Lead 

retained, 

mg. 

Character  of  button 

Pt,  mg. 

Ag,  mg. 

Au,  mg. 

100 

37.5 
31.0 
26.2 
25.0 
24.0 
22.0 
10.0 
10.0 
5.0 
2.0 

Hard  silvery. 

100 
100 
100 
100 
100 
100 
100 
100 
100 

25 
50 
100 
101 
206 
206 
310 
427 
470 

'48.0" 
48.0 

6.0 

19.4" 

Hard  silvery.                |2'^ 
Dull  gray.                      B~° 
Dull  gray.                    ^5  t; 
Dull  gray.                     "He 
Smooth  silvery.           "^1^  c 
Smooth  silvery.           Ji  g  °'^ 
Slightly  crystallized,    ogt'o- 
Smooth  and  silvery,    h^  a'o 
Smooth  and  silvery. 

W.  J.  Sharwood,  "Journ.  Soc.  Chem.  Ind.,"  Apr.  30,  1901,  p.  413. 


328     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 


Parting    of   Gold-Silver  Alloys  in    Nitric    Acid'    after 
h.  c.\rmicuael^ 


Weight 
mj 

of  metals  used, 
lligrams 

Ratio  of  metals 

Weight  of 
cornet,' 
Au  +  Pt 

Weight  of 
Pt   in 
cornet* 

Pt 

Au 

Ag 

Pt 

• 

Au      !     Ag 

20 

100 

300 

1 

5 

15 

102.7 

2.7 

15 

100 

400 

1 

6.6 

26.6 

/  101.2 
\100.2 

1.2 
0.2 

10 

100 

300 

1 

10 

30 

/  100.8 
\100.4 

0.8 
0.4 

10 

100 

500 

1 

10 

50 

100.2 

0.2 

10 

200 

600 

1 

20 

60 

100.0 

0.0 

14 

200 

800 

1 

14.3 

57.1 

200.3 

0.3 

14 

300 

900 

1 

21.4 

64.3 

300 

0.0 

7 

100 

400 

1 

14.3 

57.1 

100.2 

0.2 

5 

100 

500 

1        ' 

20 

100 

100 

0.0 

'  The  first  acid  was  of  I.IG  sp.  gr.,  the  second  of  1.26. 

»  Taken  from  S.mith's  "Sampling  and  Assay  of  the  Precious  Metals" 
as  were  also  the  next  two  tables. 

•  The  author  seems  to  assume  a  100  per  cent,  gold  recovery.  This  is 
by  no  means  a  sure  matter,  and  all  the  errors  of  work  are  thrown  on  the 
results  for  platinum,  which  are  therefore  open  to  suspicion. 

Solx:bility    of    Platinum-Silver  Allots    in    Nitric    Acid 


Composition   of   alloy 


Parted   in    HNOi    of 
I  1.10  sp.  gr. 


Parted   in    HNOj  of 
1.40    sp.    gr. 


Pt,  per  cent. 


Ag,  per 
cent. 


Platinifei^ 
ous  resi- 
due,'  per 
cent. 


Pt  dis- 
solved,' 
per  cent. 


Platinifer- 
ous  resi- 
due,' per 
cent. 


Pt  dis- 
solved,' 
per  cent. 


0.5 

1.0 

2.0 

3.0 

4.0 

5.0 

10.0 

13.0 

14.0 

15.0 

16.0 

18.0 

20.0 

25.0 

30.0 

31.5 


99.5 
99.0 
98.0 
97.0 
96.0 
95.0 
90.0 
87.0 
86.0 
85.0 
84.0 
82.0 
80.0 
75.0 
70.0 
68.5 


0.42 
0.85 
1.74 
2.19 
2.98 
3.56 


0.08 
0.15 
0.26 
0.81 
1.02 
1.44 


3.33 
4.26 
4.32 
4.55 
4.53 


9.67 

9.74 

10.68 

11.45 

13.46 


16.62 
33.58 


8.38 


0.22 

0.42 

1.09 

1.81 

2.42 

2.62 

4.53 

5.79 

4.97 

7.93 

11.. 54 

11.65 

13.94 

20.66 

29.29 


0.28 
0.58 
0.91 
1.19 
1.58 
2.38 
5.47 
7.21 
9.03 
7.07 
4.46 
6.35 
6.06 
4.34 
0.71 


'  Contains  Pt  and  Ag. 

'  Apparently  these   figures   were  arrived  at  by  difference  and  they  are 
probably  unreliable  for  large  weights  of  residue.     See  the  table  following. 


SAMPLING,  ASSAYING  AND  ANALYSIS       329 

Solubility  of  Platinum-Silver  Alloys  in  Nitric  Acid  of 
1.10  Sp.  Gr.  (Thompson  and  Miller's  Table)i 


Composition  of  alloy 

Total 

residue, 

per  cent. 

Silver  in 
residue, 
per  cent. 

Platinum 
in  residue, 
per   cent. 

Platinum 

Pt,  per  cent. 

Ag,  per 
cent. 

dissolved, 
per  cent.t 

10.39 
20.59 

31.46 
37.89 
57.05 

89.61 
79.41 
68.54 
62.11 
42.95 

3.86 

8.58 

36.59 

49.13 

65.16 

0.27 

1.81 

12.09 

13.64 

12.19 

3.59 

6.77 

24.50 

35.49 

52.79 

6.80 
13.82 
6.96 
2.40 
4.08 

Highly  Refractory  Crucibles 

According  to  Deville  a  particularly  refractory  crucible  can 
be  made  by  heating  alumina  and  strongly  ignited  marble  in 
equal  proportions  to  the  highest  temperature  of  the  wind 
furnace,  and  then  using  equal  proportions  of  the  substance  thus 
obtained  with  powdered  ignited  alumina  and  gelatinous 
alumina. 

Lime  crucibles  are  made  by  taking  a  piece  of  well-burned 
slightly  hydrated  lime,  cutting  it  by  means  of  a  saw  into  a  rec- 
tangular prism  3  or  4  in.  on  the  side  and  5  or  6  in.  high.  The 
edges  are  rounded  off,  and  a  hole  is  bored  in  the  center. ^ 

Magnesia  Crucibles. — George  Weintraub^  of  the  General 
Electric  Company,  of  Schenectady,  N.  Y.,  makes  refractory 
articles  of  magnesia,  alumina,  thoria,  etc.,  without  the  use  of  a 
binder.  The  magnesium  oxide  is  first  heated  in  an  electric 
furnace  to  a  high  temperature  in  order  to  let  it  assume  a  stable 
condition.  This  firing  causes  the  magnesia  to  cake  together  so 
that  regrinding  is  necessary.  It  is  ground  to  the  fineness  of 
flour  in  a  tube  mill.  A  mould  is  then  made  for  the  article  to  be 
produced,  say,  a  crucible.  This  mould  is  made  of  carbon  or 
graphite  and  a  layer  of  the  powdered  magnesia  is  placed  on  the 
bottom.  A  carbon  or  graphite  plug  is  now  placed  centrally  in 
the  crucible  upon  this  magnesia  layer.  It  is  surrounded  by  a 
layer  of  paper  which  permits  the  magnesia  to  shrink  when 
heated.  When  moulding  a  crucible  of  23^  in.  inside  diameter,  a 
paper  of  from  ^e  to  3'^  in.  thickness  is  suitable.  The  space 
between  the  walls  of  the  mould  and  the  paper-covered  core  is 
then  filled  with  magnesia  powder  and  packed  to  a  certain  degree 
by  shaking  and  bumping.  The  mould  is  now  placed  in  an 
electric  furnace  and  heated  to  about  1500°C.  When  finished 
and  the  mould  is  cooled,  the  walls  of  the  magnesia  crucible 
contract  upon  the  layer  of  loose  paper  carbon,  so  that  cracking  is 

>  The  solubility  of  these  platinum-silver  alloys  seems  to  depend  upon  the 
strength  of  acid  used,  how  the  alloy  has  been  annealed,  and  the  amount  of 
gold  present,  if  any. 
-Sexton,  "Fuel  and  Refractory  Materials." 
•  Metallurgical  and  Chemical  Engineering,  Vol.  10,  p.  308. 


330     MET.\LLURGISTS  AND  CHEMISTS'  HANDBOOK 

avoided.  The  finished  crucibles  are  smooth,  homogeneous  and 
strong  and  may  be  safely  handled  and  may  even  be  worked  on 
the  lathe.     Tubes  may  be  made  in  the  same  way.' 


Analyses  of   Graphite   Crucibles* 


1 

1         1 

3      1     4 

5 

1 

6 

7 

8 

SiO. 

AliOi 

FeiOj 

Ca.Mg.O... 
Graphite  .  . 
Water 

. .  25.91 
..  11.26 
.  .     0.48 

tr 
.  .  58.24 
.  .     2.77 

27.22 

/7.031 

10.51/ 

tr 

62.54 

2.42 

33.44  34.03      32.67 
15.70  12.95    ("fg) 

37.09 
14.58 

31.40 
/  19.571 
1.78/ 
1.10 

42.08 
1.20 

31.31 
17.30 

48.15  50.18 
0.77     1.63 

48.68 
1.50 

44.40 
2.92 

47.40 
3.42 

98.66 

99.72 

98.06  98.79!     97.16 

98.99 

97.13 

99.43 

Weights  to  be  Taken  in  Sampling  Ore* 


Weight-s 

Diameters  of  largest  particle 

Pounds 

Very  low 
grade  of 
uniform 

ores,  mm. 

Low 
grade 
ores, 
mm. 

Medium   ores 

Rich 
ores, 
mm. 

Riah 

Grams 

Mm. 

Mm. 

spotty 
ores,  mm. 

20,000.0 

207.0 

114.0 

76.2 

50.8 

31.6 

5.4 

10,000.0 

147.0 

80.3 

53.9 

35.9 

22.4 

3.8 

5,000.0 

104.0 

56.8 

38.1 

25.4 

15.8 

2.7 

2,000,0 

Co. 6 

35.9 

24.1 

16.1 

10.0 

1.7 

1,000.0 

46.4 

25.4 

17.0 

11.4 

7.1 

1.2 

500.0 

32.8 

18.0 

12.0 

8.0 

5.0 

0.85 

200.0 

20.7 

11.4 

7.6 

5.1 

3.2 

0.54 

100.0 

14.7 

8.0 

5.4 

3.6 

2.2 

0.38 

50.0 

10.4 

5.7 

3.8 

2.5 

1.6 

0.27 

20.0 

6.6 

3.6 

2.4 

1.6 

1.0 

0.17 

10,0 

4.6 

2.5 

1.7 

1.1 

0.71 

0.12 

5.0 

3.3 

1.8 

1.2 

0.80 

0.50 

2.0 

2.1 

1.1 

0.76 

0.51 

0.32 

1.0 

1.5 

0.80 

0.54 

0.36 

0.22 

0,5 

1.0 

0.57 

0.38 

0.25 

0.16 

90.0 

0.2 

0.66 

0.36 

0.24 

0.16 

0.10 

45  0 

0.1 

O.Oo 

0.02 

0.46 
0.33 
0.21 

0.25 
0.18 
0.11 

0.17 
0.12 

0.11 

22  5 

9.0 

4.5 

0.01 

0.15 

2  25 

0.005 

0.10 

1  - 

1  U.  S.  Patent,  1,022,011,  April  2,  1912. 

'  Kebl,    "Handbuch   dcr  gesammten   Thonwaaren   Industrie." 
1,  2,   Hesse;  3,    Rhenish;  4,  DtJsseldobf;  5,  German  crucible  after  18 
beats;  6,  London  (Morgan);  7,  English;  8,  American. 
»  Richards,  "Ore  Dressing,"  Vol.  IL    , 


SAMPLING,  ASSAYING  AND  ANALYSIS        331 
Size-Weight  Ratio  in  Sampling^ 


largest 

particle, 

Minimum  weight  of  sample,  pounds 

nches 

Colorado  practice 

0.04 

0.0625 

0.08 

0.50 

0.16 

4.00 

0.32 

32.00 

0.64 

256 . 00 

1.25 

2,048.00 

2.50 

16,348.00 

Smallest  Permissible  Weight  for  Samples  of  a  Given  Size^ 


Effect  on  value 

Size,   inches 
cube  or  mesh 

Weight   of 
sample,  lb. 

Ratio  of  weight   of 
largest  cube  to 
weight  of  sample 

created  by  one 

cube    assaying 

$100,000  per  ton, 

of  sp.  gr.  5 

2 

10,000 

1 :        7,000 

$14.42 

IM 

5,000 

8,300 

12.17 

1 

2,000 

11,000 

9.00 

% 

1,000 

13,000 

7.50 

M 

400 

18,000 

5.62 

% 

300 

31,000 

3.17 

H 

200 

71,000 

1.40 

Kg 

100 

83,000 

1.20 

M 

75 

220,000 

0.44 

6  mesh 

50 

.430,000 

0.23 

10  mesh 

25 

930,000 

0.107 

18  mesh 

10 

1,900,000 

0.051 

30  mesh 

4 

4,200,000 

0.023 

50  me.sh 

1 

5,500,000 

0.018 

Scheme  for  Sampling  Rich  Ores  with  Vezin  Samplers' 


Inches 

Sample, 
per  cent. 

Lb.    in    100 
tons 

Maximum  size  of  cubes. 

Maximum  size  of  cubes. 

8  mesh 

1.00 
0.25 
0.0625 
0.0171 

20.0000 
1.25 
0.0785 
0.005 

40,000 

2,500 

157 

30  mesh 

10 

'E.  A.  Smith,  "Sampling  and  Assay  of  the  Precious  Metals." 
2  R.  H.  Richards,  "Ore  Dressing,"  Vol.  III. 
'  R.  H.  Richards,  "Ore  Dressing,"  Vol.  III. 


332     METALLURC.ISTS  AND  CHEMISTS'  HANDBOOK 


Coal  Sampling! 

Size  of  Slate  Contained  in  Coal,  and  Size  of  Griginai- 

Sample  Required  to  iNsrui:  tiie  Euuou  of  Sampling 

Being  Less  Than  1  Per  Cent. 


Size  of  slate,  inches 

Weight  of  largest  piece 
of  slate,  lb. 

Original  sample  should 
weigh,  lb. 

4 

6.7 

39,000 

3 

2.5 

12,500 

2 

0.75 

3,800 

IH 

0.38 

1,900 

m 

0.24 

1,200 

1 

0.12 

600 

H 

0.046 

230 

M 

0.018 

90 

Size  to  Which  Slate  and  Coal  Should  be  Broken  before 
Quartering   Samples   of   Various   Weights 


Weight  of  sam- 
ple to  be 
divided,  lb. 

Should  be  broken 
to,  inches 

Weight  of  sample 

to  be 

divided,  lb. 

Should  be  broken 
to,  inches 

7500 

3800 

1200 

460 

180 

2 

1 

H 

H 

• 

40 
5 

H 

2  mesh 

4  mesh 

8  mesh 

10  mesh 

Coke  Sampling^ 

A  point  that  is  of  utmost  importance  in  the  sampling  of  coke 
for  blast-furnace  use  is  the  ash  determination,  since  every  pound 
of  ash  in  a  ton  of  coke  means  more  expensive  fluxing,  increased 
co.st  of  smelting,  useless  cinder  and  less  furnace  capacity  avail- 
able for  the  production  of  metal.  For  this  reason  differences  of  jl 
opinion  as  to  the  ash  content  of  coke  for  blast-furnace  use  often" 
cause  bitter  controversies. 

In  an  investigation  of  this  subject  several  years  ago,  1  was 
surprised  to  find  how  much  of  the  apparent  ash  content  of  coke 
was  due  to  foreign  material  introduced  in  the  process  of  grinding 
the  sample.  For  instance,  the  analysis  of  a  sample  reported  as' 
containing  17  per  cent,  of  ash  showed  that  one-seventeenth  of 
this  ash,  or  1  per  cent,  of  the  weight  of  the  sample,  was  iron 
abraded  from  a  Braun  pulverizer,  while  the  ordinary  cast-iron 
bucking-board  and  muUer  much  used  in  grinding  samples  to  be 
tested  introduces  iron  into  the  sample  to  the  extent  of  from  ^ 
to  3  per  cent. 

yJourn.  Ind.  and  Eng.  Chem.,  p.  161,  1909. 

*  Excerpts  from  an  original  article  in  "Coal  Age,"  July  24,  1915.  r 


SAMPLING,  ASSAYING  AND  ANALYSIS       333 

Whether  the  grinding  be  done  by  machinery  or  by  hand,  this 
introduction  of  foreign  matter  in  grinding  can  be  cut  down 
greatly  by  the  use  of  manganese-  or  chrome-steel  grinding 
plates. 

It  is  impossible  to  determine  the  amount  of  this  contamina- 
tion with  a  magnet,  for  the  reason  that  too  much  coke  dust  will 
adhere  to  the  iron  filings.  It  is  necessary  to  treat  the  sample  with 
a  neutral  copper-sulphate  solution,  agitate  thoroughly,  filter 
and  wash  the  residue  with  hot  water  until  entirely  free  from 
soluble  copper  salts.  This  residue  is  now  dried  and  ignited  and 
the  ash  tested  for  copper  or  the  coke  treated  directly  with  nitric 
acid  to  dissolve  the  copper.  The  weight  of  copper  precipitated 
by  the  iron  in  this  process  is  then  calculated  from  the  ratio  of 
their  respective  atomic  weights. 

This  method  will  not  answer  for  the  determination  of  any 
foreign  material  introduced  by  pebble  mills,  but  is  very  effectual 
where  the  grinding  surfaces  are  of  iron.  It  may  be  objected 
that  the  original  ash  of  the  coke  may  have  contained  some  iron 
which  has  been  reduced  to  the  metallic  state  by  the  red-hot 
carbon  of  the  coke  during  the  coking  process.  In  answer  to  this 
argument,  any  iron  in  the  coke  is  probably  present  as  ferrous 
oxide  and  combined  with  silica  to  form  ferrous  silicate  (FeSiOs). 
But  in  any  event  the  objection  is  not  valid,  because  if  the  coke 
sample  is  crushed  in  a  silica-pebble  mill  or  in  an  agate  mortar, 
the  iron  in  the  coke  does  not  react  with  neutral  copper-sulphate 
solution. 

Limit  beyond  Which  Samples  Should  not  be  Divided 
WHEN  Crushed  to  Different  Sizes  in  Laboratory 


Size  of  coal  mesh 


Should  not  be  divided  to  less  than, 
grama 


2 

4 

8 

10 

20 


8300 
1100 

J.-  I  Should  be  pulverized 
Q  I  to  at  least  60  mesh. 
•J   J 


ETCHING  REAGENTS  AND  THEIR  APPLICATIONS^ 

Etching  Reagents  for  Iron  and  Steel 
Copper-Ammonium  Chloride. — Usually  consists  of  a  10  per 
cent,  solution  of  the  salt  in  water,  and  is  suitable  for  wrought 
iron  and  mild  steel.  The  specimen  is  immersed  in  the  solution 
for  about  1  minute,  then  washed,  and  the  copper  deposit,  which 
is  readily  detached,  wiped  off  under  running  water.  This 
reagent  is  used  for  deep  etching  effects,  and  also  to  darken  parts 
rich  in  phosphorus. 

Copper    Chloride. — Dilute    acidulated    copper    chloride    in 

'  O.  F.  Hudson,  "Iron  and  Steel  Institute,"  March,  1915. 


334     MET.VLLUIIGISTS  AND  CHEMISTS'  HANDBOOK 

alcohol  is  used  b)-  Stead  to  detect  phosphorus  in  steels.     The 
reagent  is  made  up  as  follows: 

Copper  chloride 10  grains. 

Magnesium  chloride 40  grams. 

Hydrochloric  acid 20  cc. 

The  salts  are  dissolved  in  the  least  possible  quantity  of  water, 
and  the  solution  made  up  to  1000  cc.  with  alcohol.  The  purer 
portions  of  the  steel  become  coated  with  copper  before  the 
phosphoric  portions. 

Hydrochloric  Acid. — A  dilute  solution  (1  per  cent.)  in  ethyl 
alcohol  is  generally  used.  Hoyt  (c)  writes  that  a  solution  of  1 
cc.  hydrochloric  acid  (sp.  gr.  1.19)  in  100  cc.  absolute  alcohol 
"  is  recommended  for  all  the  iron-carbon  alloys  whether  in 
a  hardened  or  annealed  state,"  while  the  action  can  be  ac- 
celerated (for  special  steels)  by  the  addition  of  a  few  cubic  centi- 
meters of  a  5  per  cent,  solution  of  picric  acid  in  alcohol. 

Iodine. — The  ordinary  tincture  should  be  used.  A  simple 
solution  in  absolute  alcohol  is  not  so  suitable.  The  specimen 
may  be  immersed  in  the  solution,  or  a  drop  or  two  placed  on  the 
surface  to  be  etched,  and  allowed  to  remain  until  decolorized. 

Nitric  Acid. — Until  the  introduction  of  picric  acid,  a  dilute 
solution  of  nitric  acid  was  the  principal  etching  agent  for  iron 
and  steel,  and  it  is  still  often  used.  Solutions  (up  to  about  5  per 
cent.)  inwater,  or,  preferably,  alcohol,  are  generally  used.  When 
alcohol  is  the  solvent,  absolute  alcoliol  should  be  used  for  wash- 
ing the  specimen,  and  not  water.  Lantsberry  (c),  who  always 
uses  nitric  acid  for  steels,  points  out  that  the  success  of  the 
method  depends  on  thoroughly  washing  the  specimen  with 
alcohol  and  drying  at  once,  and  that  the  surface  should  never  be 
moistened  with  water. 

Saitveur  (c)  writes  that  for  all  grades  of  steel,  wrought  iron, 
and  pig  iron,  regardless  of  treatment,  he  uses  solutions  of  con- 
centrated nitric  acid  in  absolute  alcoliol,  in  proportions  varying 
between  1  and  10  per  cent,  of  acid,  according  to  requirements. 
He  prefers  it  to  picric  acid.  The  .samples  are  washed  in  ab- 
solute alcohol  and  dried  by  means  of  an  air-blast.  For  man- 
ganese steel  he  uses  10  per  cent,  nitric  acid  in  absolute  alcohol, 
leaving  the  specimen  in  the  bath  until  it  is  covered  with  a  black 
deposit.  It  is  then  washed  in  alcohol,  without  any  attempt  at 
removing  the  deposit  by  rubbing. 

Howe  (c)  uses  a  solution  of  2  per  cent,  of  concentrated  nitric 
acid  in  water  for  hardened  steels,  manganese  steels,  etc.,  and 
also  occasionally  to  develop  grain  boundaries  quickly  in  low- 
carbon  material,  although  he  notes  that  it  roughens  up  the 
ferrite  much  more  than  picric  acid.  He  recommends  a  pre- 
liminary treatment  for  the  removal  of  grease,  using  "alcohol, 
hydrochloric  acid  in  alcohol,  or,  best,  picric  acid  in  al(;ohol." 

A  4  per  cent,  solution  of  nitric  acid  in  iso-amyl  alcohol  (as 
suggested  by  Kourbatoff)  is  also  used,  and  gives  a  slow  and 
delicate  etching. 

(c)  Information  tpecially  communicated  for  this  paper. 


SAMPLING,  ASSAYING  AND  ANALYSIS       335 

Picric  Acid. — This  reagent,  introduced  by  Ischewsky,  is  the 
one  most  commonly  used,  generally  as  a  saturated  or  nearly 
saturated  solution  in  alcohol.  The  specimen  is  immersed  for 
times  varying  with  the  kind  of  steel  and  the  effect  desired,  from 
a  few  seconds  for  light  etching  of  ordinary  rolled  or  annealed 
steels  and  cast  irons,  to  several  minutes  for  hardened  steels  and 
wrought  irons.  Picric  acid  is  sometimes  used  in  conjunction 
with  nitric  acid.  Thus  Desch  (c)  recommends  for  all  ordinary 
(unhardened)  steels  alcoholic  picric  acid  to  which  a  few  drops  of 
nitric  acid  have  been  added.  A  solution  of  picric  acid  in  amyl 
alcohol  is  also  used  for  a  slow  etching.  L.  Archbutt  (c)  also 
finds  it  "an  advantage  to  add  a  small  quantity  of  nitric  acid, 
which  gives  greater  certainty  of  etching,  especially  in  cold 
weather."  The  solution  he  uses  contains  80  vols,  of  picric  acid 
in  alcohol  and  20  vols,  of  2  per  cent,  nitric  acid  in  alcohol. 

RosEXH.\ix's  and  Hatjghton's  Reagent  consists  of: 

Ferric  chloride 30  grams 

Hydrochloric  acid  (cone.) 100  cc. 

Cupric  chloride 10  grams 

Stannous  chloride 0.5  grams 

Water 1000  cc. 

It  is  used  for  determination  of  the  distribution  of  phosphorus 
in  steel,  the  purer  portions  of  the  steel  being  stained  by  deposi- 
tion of  copper,  leaving  the  phosphorus-rich  portions  white. 

Of  the  numerous  other  reagents  some  are  used  for  special 
purposes,  such  as  sodium  picrate,  for  the  detection  of  cementite; 
while  others  are  more  or  less  complicated  solutions,  such  as 
Kourb.\toff's  reagent,  consisting  of  3  vols,  of  a  saturated 
solution  of  o-nitrophenol  in  alcohol  and  1  vol.  of  a  4  per  cent, 
solution  of  nitric  acid  in  alcohol,  used  for  the  determination  of 
troostite  and  sorbite  in  hardened  steels. 

Electrolytic  Etching 

This  method  is  of  great  value  in  special  cases.  Generally  a 
solution  of  a  neutral  salt  is  used  as  the  electrolyte;  the  specimen 
is  made  the  anode  and  a  piece  of  platinum  foil  the  cathode.  A 
feeble  current  of  a  small  fraction  of  an  ampere  is  used.  Desch 
(c)  finds  that  etched  figures  in  brasses,  etc.,  are  most  perfectly 
developed  by  electrolytic  etching,  using  a  5  per  cent,  sodium- 
chloride  solution  and  a  platinum  cathode  with  two  dry  cells. 
Other  electrolytes  used  are  ammonium  nitrate,  sodium  thio- 
sulphate  (used  by  Le  Ch.a.telier  for  copper-tin  alloys), 
ammonia,  and  sometimes  verj-  dilute  acid  solutions. 

For  Monel  metal,  L.  Archbutt  (c)  "obtained  very  good 
results  by  electrolytic  etching  in  a  solution  containing  4.5  cc. 
dilute  sulphuric  acid  (1:3)  and  5  cc.  hydrogen  peroxide  solution, 
using  a  current  of  0.1  amp.  and  0.5  volt,  etching  for  about  50 
seconds.  A  slight  staining  of  the  specimen  was  subsequently 
removed  by  light  rubbing  with  a  dilute  solution  of  bromine  in 
hydrochloric  acid."  Constantan  was  etched  in  a  similar  way, 
"but  stains  were  removed  by  using  a  mixture  of  dilute  sulphuric 


336     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 

acid  and  hydrogen  peroxide  and  rubbing  with  the  finger." 
RosENHAix  (,c)  has  also  found  that  electrolytic  etching  is  useful 
for  nickel-copper  alloys. 

Polish  Attack. — Used  with  such  success  by  Osmond  and  it 
is  one  which,  if  not  always  applicable,  is  not  adopted  as  widely 
as  it  should  be.  The  objections  which  appear  to  be  urged 
against  the  method  are  (a)  the  difficulty  of  getting  uniformly 
good  results,  and  (6)  the  danger  of  obscuring  the  structure  by 
the  flowing  action  of  polishing.  Neither  of  these  objections 
need,  however,  be  serious;  the  former  is  overcome  by  experience, 
while  the  latter  is  probably  largely  imaginary,  unless  altogether 
unnecessarj'  pressure  is  used.  The  procedure  which  has  been 
found  suitable  for  copper  and  its  alloys  has  already  been  de- 
scribed in  dealing  with  ammonia  as  an  etching  agent.  For  steels 
Osmond  used  a  very  gentle  etching  reagent,  such  as  a  2  per  cent, 
solution  of  ammonium  nitrate  with  precipitated  calcium 
sulphate  in  parchment,  but  this  method  is  not  now  so  often  used. 
The  author,  however,  for  iron  and  steel,  makes  use  of  parchment 
thoroughly  soaked  in  water  on  which  a  paste  of  precipitated 
calcium  sulphate  is  spread.  The  specimen  is  then  alternately 
lightly  etched  with  picric  acid,  and  rubbed  gently  for  a  few 
seconds  on  the  parchment.  Frequently  also  it  is  found  to  be  an 
advantage  to  etch  the  specimen  lightly,  then  polish  very  gently 
with  alumina  and  re-etch,  repeating  if  necessary. 

GwvER  (c)  finds  that  polish  attack  is  sometimes  very  effective 
for  light  aluminum  alloj-s,  "for  example,  in  bringing  out  the 
structure  of  the  iron-aluminum  eutectic.  For  this  washed  and 
ignited  magnesia  is  required,  the  polishing  being  done  on  parch- 
ment kept  moistened  with  very  dilute  caustic  soda  solution." 

GuLLrvER  (c)  notes  that  sometimes  a  good  polish  attack  may 
be  obtained  with  water  alone,  although  not  if  the  pad  is  new. 
He  found,  for  example,  that  polish  attack  with  water  alone  was 
defective  in  the  case  of  bismuth-tin  alloys. 

Heat-tinting. — .\lthough  not  perhaps,  strictly  speaking,  an 
etching  process,  heat-tinting  is  a  valuable  and  widely  used 
method  of  revealing  the  structure  of  alloys,  and  especially  for 
the  detection  of  small  differences  in  concentration  of  solid 
solutions.  It  consists  in  heating  the  specimen  until  a  tliin  film 
of  oxide  is  formed  on  the  surface,  differences  in  composition 
giving  rise  to  variations  in  thickness,  and  hence  variations  in 
color  of  the  film.  Stead  used  it  with  great  advantage  in  study- 
ing phosphoric  cast  irons  and  alloys  of  iron  and  phosphorus, 
and  showed  that  by  its  use  phosphide  and  carbide  of  iron  could 
readily  be  distinguished,  while  Heycock  and  Neville  proved 
its  value  in  their  work  on  the  copper-tin  alloys.  Stead  has 
also  applied  the  method  to  the  determination  of  the  distribution 
of  phosphorus  in  steel.  In  a  paper  on  "Metallographic  Methods 
for  the  Detection  of  Phosphorus  in  Steel,"  read  before  the 
Cleveland  Society  of  Engineers  in  December  last,  Stead  gives 
details  of  the  heat-tinting  method  suitable  for  this  purpose. 
The  specimen  is  floated  on  a  bath  of  molten  tin  at  a  temperature 
of  about  300°C.,  and  allowed  to  remain  until  the  whole  surface 


SAMPLING,  ASSAYING  AND  ANALYSIS        337 

has  a  reddish-brown  color.  On  examining  the  specimen,  the 
portions  richest  in  phosphorus  will  be  detected  bj'  their  blue 
color,  since  the  parts  which  are  richer  in  phosphorus  than  the 
surrounding  metal  become  colored  more  quickly.  The  pre- 
liminary treatment  of  the  specimen  before  it  is  raised  to  the 
tinting  temperature  is  important.  Washing  with  a  1  per  cent, 
solution  of  picric  acid  in  alcohol  is  recommended,  and  the  surface 
should  always  be  "cleaned  by  rubbing  with  a  clean  piece  of 
linen  or  cotton.  The  specimen  is  heated  to  about  150°C.,  and 
then  rubbed  with  a  clean  piece  of  chamois  leather  while  still  hot." 
It  is  then  immediately'  raised  to  the  tinting  temperature. 

Instead  of  heating  in  air,  and  obtaining  a  colored  oxide 
film,  Stead  has  shown  that  other  atmospheres  maj'  be  used, 
such  as  sulphuretted  hj'drogen  or  bromine.  The  use  of  an 
atmosphere  containing  bromine  for  the  examination  of  Muntz 
metal  has  been  described  recently  by  Stead. 

Heat-tinting  appears  to  require  considerable  experience  in  order 
to  obtain  consistent  results,  and  the  author,  among  others  cannot 
rely  upon  it  to  be  uniformly  successful.  The  following  is  a  sum- 
mary of  the  principal  reagents  for  particular  metals  and  alloys. 

Etching  Reagents  Suitable  for  Particular  Metals  and  Alloys 

The  following  list  gives  the  principal  reagents  which  have 
been  found  especially  suitable  for  different  metals  and  alloys: 

Copper, — Ammonia  (.sp.  gr.  0.88,  diluted  1:1  with  water), 
ammonium  persulphate  (10  per  cent,  aqueous  solution), 
bromine  (followed  by  a  wash  with  ammonia),  copper-ammonium 
chloride  (5  grams  of  copper-ammonium  chloride  in  100  cc.  of 
water,  add  ammonia  until  precipitate  just  di.ssolves). 

Brasses. — Ammonia,  ammonium  persulphate,  copper-am- 
monium chloride,  electrolj'tic  etching,  ferric  chloride  (slightly 
acidulated  with  HCl),  chromic  acid  (saturated  or  nearly  satu- 
rated solution),  nitric  acid  (strong  acid,  followed  by  water), 
Tinofeef 's  reagent  (94  grams  HNO3  and  6  grams  Cr203,  a  few 
drops  are  used  in  50  cc.  of  water). 

Bronzes. — Ammonia,  ammonium  persulphate,  ferric  chloride. 

Copper-Aluminum  Alloys  (Aluminum  Bronzes). — Ammonium 
persulphate,  ferric  chloride,  copper-ammonium  chloride,  nitric 
acid. 

German  Silver. — Ammonium  persulphate,  ferric  chloride. 

Nickel-Copper  Alloys,  Monel  Metal.— Electrolytic  etching. 

Gold  and  Rich  Gold  Alloys,  Platinum  and  Its  Alloys. — Aqua 
regia  (dilute,  1  part  HNO3,  5  parts  HCl,  6  parts  distilled  water, 
used  at  15°C.). 

Aluminum  and  Light  Aluminiun  Alloys. — Caustic  soda, 
hydrochloric  acid,  hydrofluoric  acid  (1  part  fuming  HF  to  10 
or  20  parts  of  water,  clear  after  treatment  by  a  few  second's 
immersion  in  HNO3). 

Lead,  Tin  and  Their  Alloys  (White  Metal,  etc.). — Chronaic 
acid  in  nitric  acid,  ferric  chloride,  hydrochloric  acid,  nitric  acid, 
silver  nitrate  (5  per  cent,  solution). 

Zinc  and  Alloys  Rich  in  Zinc. — Caustic  soda,  iodine  (1  part 
iodine,  3  parts  Kl  and  10  parts  water). 
22 


338     METALLURGISTS  AND  CHEMISTS' HANDBOOK 


Gravimetric  Factors 

Multiply 

Given 

Sought 

by  factor 
A' 

Aluminum,  27.1  .... 

AI2O3 

Al 

0.5303 

Al 

AI2O, 

1.885G 

AIPO4 

AI2O, 

0.4187 

AI2O3 

Al  2  (804)3 

3.3504 

Antimony,  120.2 

SbjOi 

Sb 

0.7900 

SbjOi 

SbsOa 

0.9474 

Sb204 

SbsOs 

1.0526 

SbjS, 

Sb 

0.7142 

Sb2S3 

Sb203 

0.8569 

SbjSs 

SbjOs 

0.9520 

Sb 

SbjOa 

1.1998 

Sb 

SbsOs 

1.3330 

Arsenic,  74.96 

AS2S3 

As 

0.6091 

AS2S3 

AS2O, 

0.8041 

AS2S3 

AS2O5 

0.9341 

AS2S3 

ASO4 

1.1291 

AS2S5 

As 

0.4832 

MgjASiOy 

As 

0.4827 

MgzAsjOT 

AS2O3 

0.6373 

Mg2AS207 

AszOs 

0 . 7403 

MgjAsjOj 

A3O4 

0.8949 

AgaAsOi 

As 

0.1620 

As 

AS2OJ 

1.3202 

As 

AsjOj 

1 . 5336 

Barium,  137.37 

BaS04 

Ba 

0.5885 

BaS04 

BaO 

0.6568 

BaCr04 

Ba 

0.5422 

BaCr04 

BaO 

0.6053 

BaCO, 

Ba 

0.6960 

BaCOa 

BaO 

0.7771 

Ba 

BaO 

1.1165 

Bismuth,  208.0 

BioOs 

Bi 

0.8966 

BiOCl 

Bi 

0.8017 

BiOCl 

Bi203 

0.8942 

BijSa 

Bi 

0.8122 

Bi2S3 

Bi203 

0.9061 

Bi 

BizOs 

1.1154 

Boron,  11 

B2O3 

B 

0.3143 

B 

B2O3 

3.1818 

Bromine,  79.92 

AgBr 

Br 

0.4256 

AgBr 

HBr 

0.4309 

Br  -CI 

Br 

1.7969 

Br  -  C! 

AgBr 

4 . 2202 

Br 

Oh 

0.1001 

SAMPLING,  ASSAYING  AND  ANALYSIS 


339 


Gravimetric  Factors 


r- 

Multiply 

Given 

Sought 

bv  factor 
.V 

Cadmium,  112.4. . .  . 

CdO 

Cd 

0.8754 

CdS 

Cd 

0.7780 

CdS 

CdO 

0.8888 

Cd 

CdO 

1 . 1424 

Caesium,  132.81 

CS2SO4 

Cs 

0.7344 

CsaPtClg 

Cs 

0.3943 

Cs 

CS2O 

1.0623 

Calcium,  40.07 

CaO 

Ca 

0.7146 

CaO 

CaCOs 

1 . 7847 

CaS04 

Ca 

0.2943 

CaS04 

CaO 

0.4119 

CaCOa 

Ca 

0.4005 

CaCOa 

CaO 

0.5603 

Ca 

CaO 

1.3993 

Ca 

CaCO., 

2.4971 

CaO 

CaCzO* 

2.2841 

Carbon,  12 

CaC20« 

CO2 

0.3436 

CaCOa 

CO2 

0.4397 

CO2 

C 

0.2727 

C 

CO2 

3.6667 

CO2 

CO3 

1.3636 

Chlorine,  35.46 

AgCl 

CI 

0.2474 

AgCl 

HCl 

0.2544 

Ag 

CI 

0.3287 

CI 

0^ 

0.2256 

AgCl 

Oh 

0.05581 

Chromium,  52.0.  .  .  . 

CrjOa 

Cr 

0.6842 

CT2O3 

CrO, 

1.3158 

PbCr04 

Cr 

0.1609 

PbCr04 

CrjO, 

0.2351 

PbCr04 

CrO, 

0.3094 

Cr 

CT2O3 

1.4615 

Cr 

CrOs 

1.9230 

Cobalt,  58.97 

C0SO4 

Co 

0.3804 

C03O4 

Co 

0.7343 

Co 

CoO 

1.2713 

Co(N02)3-3IvN02 

Co 

0.1303 

Copper,  63.57 

CuO 

Cu 

0.7989 

Cu 

CuO 

1.2517 

CujS 

Cu 

0.7986 

CujS 

CuO 

0.9996 

CuSCN 

Cu 

0.5226 

CuSCN 

CuO 

0.6541 

340     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Gravimethic  Factors 


1 

Multiply 

Given 

Sought 

by  factor 

N 

Cyanogen,  26.01  .. .  . 

AgCN 

CN 

0.19427 

Ag 

CN 

0.2411 

Fluorine,  19 

CaF2 

F 

0.4867 

SiFi 

F 

0.7286 

Gold,  197.2 

Au 

AuCl, 

1.5395 

Hvdrogen,  1.008 

H2O 

H 

0.11190 

Iodine,  126.92 

Agl 

I 

0.54055 

Pdl. 

I 

0.7041 

I  -  CI 

I 

1.3877 

I  -CI 

Agl 

2.5673 

Iron,  55.84 

FejOa 

Fe 

0.6994 

FejO, 

FeO 

0.8998 

FejOa 

FeaO* 

0.9666 

FejOs 

FeSj 

1.5028 

FeO 

Fe 

0.7773 

FeO 

FejOa 

1.1114 

FeS 

Fe 

0.6352 

Fe 

FeO 

1.2865 

Fe 

FejOa 

1.4298 

Lead,  207.2 

PbS04 

Pb 

0.6832 

PbS04 

PbO 

0.7360 

PbS04 

Pb02 

0.7887 

PbS04 

PbS 

0.7890 

PbCr04 

Pb 

0.6411 

PbCr04 

PbO 

0.6906 

PbS 

Pb 

0.8660 

PbS 

PbO 

0.9328 

PbClj 

Pb 

0.7450 

PbO 

Pb 

0.9283 

Pb 

PbO 

1.0772 

Lithium,  6.94 

Li2S04 

Li 

0.13474 

LioSO* 

U2O 

0.29007 

Li3P04 

Li 

0.18197 

Li 

U2O 

2.1527 

LizCOs 

Li 

0.1879 

LijCOa 

U2O 

0.4044 

Magnesium,  24.32. . 

Mg2P207 

Mg 

0.2184 

Mg2P207 

MgO 

0.3621 

Mg2P207 

MgCO, 

0.7.572 

MgS04 

Mg 

0.20201 

MgS04 

MgO 

0.33491 

MgO 

Mg 

0.6032 

MgO 

MgCOa 

2.0912 

Mg 

MgO 

1 . 6579 

SAMPLING,  ASSAYING  AND  ANALYSIS        341 

Gravimetric  Factors 


Multiply 

Given 

Sought 

by  factor 

N 

Manganese,  54.93. .  . 

Mn2P207 

Mn 

0.3869 

Mn2P207 

MnO 

0.4996 

Mn304 

Mn 

0.7203 

Mn304 

MnO 

0.9301 

MnS 

Mn 

0.6314 

MnS 

MnO 

0.8153 

MnS04 

Mn 

0.3638 

MnS04 

MnO 

0.4697 

MnO 

MnOz 

1.2256 

Mn 

MnO 

1.2913 

Mn 

MnOz 

1.5826 

Mercury,  200.6 

HgS 

Hg 

0.8622 

HgS 

HgO 

0.9309 

HgCl 

Hg 

0 . 8498 

HgCl 

HgO 

0.9176 

Hg 

HgO 

1 . 0798 

Molybdenum,  96.0. 

M0O3 

Mo 

0.6667 

PbMo04 

M0O3 

0.3922 

Nickel,  58.68 

NiS04 

Ni 

0.3792 

NiO 

Ni 

0.7858 

Ni 

NiO 

1.2727 

Nitrogen,  14.01 .... 

NH4CI 

N 

0.26186 

NH4CI 

NH3 

0.31838 

NH4CI 

NH4 

0.33722 

(NH4)2PtCl6 

N 

0.06310 

(NH4)2PtCl6 

NHa 

0.07672 

(NH4)2PtCl6 

NH4 

0.08126 

(NH4)2PtCl6 

NH4C1 

0.2410 

Pt 

N 

0.1435 

Pt 

NH3 

0.1745 

Pt 

NH4 

0.1848 

N 

NH3 

1.2158 

NHs 

N 

0 . 82247 

N 

(NH4)20 

1.8587 

N 

(NH4)2S04 

4.7164 

N 

N206 

3.8579 

N 

N03 

4.4261 

N 

N02 

3.2841 

N 

NO 

2.1420 

Phosphorus,  31.04.  . 

Mg2P207 

P 

0.2787 

Mg2P207 

P2O6 

0.6379 

Mg2P207 

PO4 

0.8534 

FeP04 

P2O5 

0.4708 

U2P20n 

P2O5 

0.1989 

342     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 
Gbavimetric  Factors 


Multiply 

Given 

Sollgllt 

by  factor 

N 

Phosphorus,  3L04.. 

P2O. 

P 

0.4369 

P 

P2O. 

2.2886 

Platinum,  195.2.... 

(NHO^PtCl, 

Pt 

0.4396 

KiPtCl, 

Pt 

0.4015 

Potassium,  39.10. . . 

KCl 

K 

0.5244 

KCl 

KjO 

0.63170 

KBr 

K 

0.3285 

K2SO4 

K 

0.44870 

K5SO4 

K2O 

0 . 5405 

KjPtCle 

K 

0.1609 

KjPtCle 

KoO 

0.1941 

KjPtClg 

KCl 

0.3071 

KCIO4 

K 

0.28219 

KCIO4 

K2O 

0 . 33992 

KCIO4 

KCl 

0.53811 

K 

K,0 

1 . 2046 

KOH 

KjCOj 

1.2315 

Rubidium,  85.4.5.  .  . 

Rb2S04 

Rb 

0.6401 

RbaPtCl. 

Rb 

0.2952 

Rb 

RbiO 

1.0936 

Selenium,  79.2 

Se 

SeOs 

1.4040 

Se 

SeO, 

I.6O6O 

Silicon,  28.3 

SiOz 

Si 

0.4693 

SiO, 

SiOa 

1.2653 

SiO, 

SijOr 

1.3980 

SiOi 

Si04 

1.5307 

Si 

SiOz 

2.1308 

Silver,  107.88 

AgCl 

Ag 

0.7526 

AgCl 

Ag.O 

0.80843 

AgBr 

Ag 

0.57444 

Agl 

Ag 

0 . 4595 

Ag 

Ag,0 

1 . 0742 

Sodium,  23.00 

NaCl 

Xa 

0.3934 

NaCl 

NajO 

0.53028 

Na2S04 

Na 

0.3238 

NajSO* 

NajO 

0.4364 

NazCOa 

Na 

0.43396 

NajCOa 

Na^O 

0.58491 

Na 

NajO 

1.3478 

Strontium,  87.63.. . 

SrSO« 

Sr 

0.4770 

SrS04 

SrO 

0.5641 

SrCOa 

Sr 

0.5936 

SrC03 

SrO 

0.7019 

Sr 

SrO 

1 . 1826 

I  SAMPLING,  ASSAYING  AND  ANALYSIS       343 

Gravimetric  Factors 


Multiply 

Given 

Sought 

by  factor 
A' 

Sulphur,  32.07 

BaS04 

s 

0.13738 

BaS04 

S02 

0.27446 

BaSOi 

S03 

0.34300 

BaS04 

S04 

0.41154 

BaS04 

H2S04 

0.42018 

S 

S02 

1.9978 

s 

S03 

2.4967 

s 

H2S04 

3.0585 

Tellurium,  127.5.  .  . 

Te 

Te02 

1.2510 

Te 

Te03 

1.3765 

Thallium,  204.0.... 

Til 

Tl 

0.6165 

TloPtCle 

Tl 

0.5000 

Tl 

TI2O 

1.0392 

Thorium,  232.4 .... 

ThOa 

Th 

0.8790 

Tin,  118.7 

Sn02 

Sn 

0.7877 

Sn 

Sn02 

1.2693 

Titanium,  48.1 

Ti02 

Ti 

0.6005 

Tungsten,  184.0  .  .  . 

WO3 

W 

0.7930 

Uranium,  238.2 

U3O8 

U 

0.8481 

UsOg 

UO2 

0 . 9525 

UO2 

u 

0.8816 

Vanadium,  51.0.  . . . 

V2O6 

V 

0.5604 

V 

V206 

1 . 7843 

V 

V04 

2.2549 

Zinc,  65.37 

ZnO 

Zn 

0 . 8034 

ZnS 

Zn 

0.6709 

ZnS 

ZnO 

0.8351 

Zn2P207 

Zn 

0 . 4289 

Zn 

ZnO 

1.2448 

Zirconium,  90.6.  . .  . 

Zr02 

Zr 

0.7390 

Ammonia,  17.03  .  .  . 

Pt 

NH3 

0.17452 

Pt 

NH4 

0.1848 

Pt 

NH4OH 

0.35912 

Calculated  by  International  Atomic  Weight  Table  of  1915,  0  =  16. 


344     METALLURGISTS  AND  CHEMISTS'  HANDBOOK 


1" 

y                                o 

o 

03 

1.1 

0     -  3  =^                 c  a  2 

11 

s. « 

s 

C 
C9 

fl 

s 
s 

a 

8 

-33.=  0?+                              ^^1               fe^ 
^.5.5  S+O        <                CO                c'H. 

a 
"3 

CD 

■3t)  o~'«'C       "      o              <si:  V              «  =  0 

o 
s 

09 
00 

"S 
2  c 

.5.2 

C   a 
0 

O